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Abstract

Probabilistic planning has long been a complex and challenging area within AI planning.
Stochastic Shortest Path Problems (SSPs) provide an effective framework for scenarios
where an agent seeks to reach a goal state with minimal expected cost under uncer-
tain action outcomes. When dead ends are unavoidable, SSPs become multi-objective
optimisation problems with two conflicting objectives: maximising the probability of
reaching the goal and minimising the expected cost. The Minimising Cost given Maxi-
mum Probability (MCMP) criterion addresses this challenge by finding the policy with
the minimum expected cost among those with the maximum probability of reaching the
goal (pmax). Achieving this criterion first requires the accurate computation of pmax, yet
few effective approaches have been proposed. Moreover, most state-of-the-art heuris-
tic search algorithms for pmax remain reliant on determinisation and classical planning
heuristics, resulting in weak upper bounds for the actual probability of reaching the goal.
To our knowledge, no prior work has employed machine learning to develop heuristics
for estimating pmax.

In this study, we develop and implement two novel graph representations that encode
SSPs in a lifted format meanwhile incorporating probabilistic information directly. These
graph representations are designed to be either directly learned by Graph Neural Net-
works (GNNs) or transformed into feature spaces using the Weisfeiler-Lehman (WL)
algorithm, enabling effective learning through Statistical Machine Learning (SML) meth-
ods. We evaluate these representations within two experimental frameworks. The first
framework assesses the expressiveness of our graph representations, demonstrating that
GNN and SML models achieve higher accuracy in predicting pmax when using features
derived from our probabilistic graph structures, compared to state-of-the-art classical
planning graphs in determinised SSPs. In the second framework, our learned model
serves as a heuristic in i-dual—the only heuristic search algorithm for SSPs under MCMP
criterion—and we show that models trained on our probabilistic graphs offer competitive
performance against current pmax heuristics. Furthermore, they hold the potential to
significantly surpass existing heuristics by strategically trading off optimality to provide
a robust lower bound on pmax.
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Chapter 1

Introduction

Artificial intelligence (AI) is a field of study focused on designing systems that exhibit
intelligent behaviour. These systems aim to mimic human cognitive functions such as
learning, problem-solving, perception, and reasoning. One goal from the topic of AI is to
create agents that perceive their environment, take actions to achieve goals, and adapt
rationally to changing conditions. [Russell and Norvig, 2016].

In recent decades, breakthroughs in numerous machine learning techniques have led
modern AI to diverge into two key paradigms: model-free learners and model-based
solvers. Model-free learners primarily rely on data and experience to learn functions that
map inputs to expected outputs, whereas model-based solvers utilise explicit models of
the world to compute solutions for a variety of tasks [Geffner, 2018].

1.1 Learning for Planning Under Uncertainty

One of the most common applications of model-based solvers is in the area of AI planning,
which focuses on generating a sequence of actions or decisions that an agent can follow to
achieve specific goals [Ghallab et al., 2004]. In classical planning, the environment is fully
observable and deterministic, where each action leads to a single predictable outcome.
In contrast, probabilistic planning involves uncertainty, where each action can result in
multiple possible outcomes with associated probabilities [Puterman, 2014; Russell and
Norvig, 2016].

Stochastic Shortest Path Problems (SSPs) [Bertsekas and Tsitsiklis, 1991] provide a
practical framework for modelling probabilistic planning scenarios. In an SSP, an agent
aims to reach a goal state with the lowest possible expected cost. The solution to an SSP
is a policy that maps states to actions which ensures that the goal state is reached when
starting from the initial state. However, it is impossible to always reach the goal when
unavoidable deads are present. In this case, SSPs become multi-objective optimisation

1



1 Introduction

problems where two potentially conflicting objectives arise: maximising the probability
of reaching the goal and minimising the expected cost [Trevizan et al., 2017b]. To
illustrate this conflict, consider the box delivery problem: a simple SSP where a box
must be delivered to a city using one of two actions. A plane delivers the box with a
95% success rate at a cost of $1000, while a car delivers the box with a 90% success rate
at a cost of $100. The dead end occurs if the delivery fails and the box is destroyed. The
central conflict is whether paying an additional $900 is worth increasing the probability
of delivery from 90% to 95%.

Several criteria have been developed to manage such conflict. The Finite-Penalty cri-
terion [Kolobov et al., 2012b] assigns a fixed and finite penalty D for actions leading
to a dead end. The expected cost for the plane and car under Finite-Penalty would
be 0.95 × 1000 + 0.05D and 0.9 × 100 + 0.1D respectively. However, this criterion has
the drawback of labelling any state with a cost higher than D as a dead end. The
requirement for domain-specific knowledge to select an appropriate D makes it unsuit-
able for domain-independent planning. The Maximum Probability (Max-Prob) criterion
[Kolobov et al., 2011] avoids fixed penalties by ignoring costs and focusing solely on
maximising the probability of reaching the goal. In the box delivery problem, Max-Prob
would always select the plane but cannot distinguish between various planes with the
same probability of success but different costs (if there exist a second plane). To address
this, three approaches have been proposed: S3P [Teichteil-Königsbuch, 2012], iSSPUDE
[Kolobov et al., 2012a], and the Minimising Cost given Maximum Probability (MCMP)
criterion [Trevizan et al., 2017b]. MCMP is the most efficient and robust one. It con-
siders both the cost and risk of reaching dead ends, aiming to find the policy with the
minimum expected cost among those that share the maximum probability of reaching
the goal (pmax). Solving an SSP under the MCMP criterion can be divided into two
stages: (1) the Max-Prob stage, where the SSP is solved under the Max-Prob crite-
rion to obtain pmax from the optimal Max-Prob policy; and (2) the Min-Cost stage,
where the SSP is solved by considering only policies that can achieve pmax. Both stages
are addressed by solving two specific dual Linear Programming (LP) problems, derived
from the original SSP [Trevizan et al., 2017b].

Heuristic search algorithms are a type of model-based solver that allow efficient naviga-
tion through vast solution spaces by directing exploration towards the most promising
areas. This is achieved with the help of a heuristic function—a function that approxi-
mates the cost of reaching the goal from a given state [Bonet, 2001]. Heuristic search
algorithms have long been among the most effective approaches for solving SSPs [Hansen
and Zilberstein, 2001; Bonet and Geffner, 2003; Kolobov et al., 2011; Bonet and Geffner,
2012]. Meanwhile, i-dual [Trevizan et al., 2016] remains the only heuristic search algo-
rithm capable of efficiently solving SSPs under the MCMP criterion. To solve an SSP
under the MCMP criterion, i-dual requires two heuristic functions: one for the Max-Prob
stage and one for the Min-Cost stage. The performance of i-dual as a heuristic search
algorithm is directly tied to the quality of these heuristic functions. Some well-informed
heuristic functions such as hpom and hroc [Trevizan et al., 2017a], have been developed for

2



1.1 Learning for Planning Under Uncertainty

the Min-Cost stage to estimate the expected minimum cost. However, most state-of-the-
art heuristics for the Max-Prob stage are lacking as they do not consider probabilities
and often rely on determinisation or classical planning heuristics. This leads to poor es-
timates of pmax, with the only exception being Max-Prob pattern databases (Max-Prob
PDB) [Klößner et al., 2021]. Even so, Max-Prob PDB often fails to outperform simple
classical planning heuristics like hmax in many SSP domains [Bonet, 2001; Klößner et al.,
2021].

Machine Learning (ML) has become a cornerstone of model-free learners where sys-
tems learn directly from data without relying on explicit models of the environment
[Geffner, 2018]. Traditional Statistical Machine Learning (SML) methods such as Sup-
port Vector Machines (SVMs) [Vapnik, 2013] and Gaussian Process Regression (GPR)
[Williams and Rasmussen, 2006] focus on identifying patterns in data to make predic-
tions without the need for structured domain models [Bishop and Nasrabadi, 2006]. In
recent years, advancements in computing power have driven Deep Learning (DL) ap-
proaches which leverages Neural Networks (NNs) to learn complex representations from
data [Goodfellow, 2016]. This has revolutionised machine learning and significantly im-
proving performance on many tasks that previously required handcrafted features and
domain expertise, especially in fields like image recognition or natural language process-
ing [Krizhevsky et al., 2012; Vaswani, 2017; OpenAI, 2023]. NNs have further evolved
into specialised forms like Graph Neural Networks (GNNs) which enable learning from
graph-structured data (e.g., social networks, molecular structures) [Zhou et al., 2020].

With the development of these tools, more researchers start to explore the application of
machine learning for heuristic search. For instance, Action Schema Networks (ASNets)
simulate heuristic search by defining a dedicated neural network architecture that learns
generalised policies for both classical and probabilistic planning problems [Toyer et al.,
2018, 2020], though their fixed receptive field limits their ability to handle long chains of
reasoning. Recent state-of-the-art approaches focus on using machine learning to learn
heuristics through graph representations of planning problems. Approaches like STRIPS-
HGN [Shen et al., 2020] and the GOOSE framework with Lifted Learning Graph (LLG)
or Instance Learning Graph (ILG) [Chen et al., 2023a, 2024] parse classical planning
problems into graph representations that can be used as input to machine learning
models, enabling these models to learn robust heuristics for guiding existing heuristic
search algorithms. However, none of these approaches support SSPs. Meanwhile to the
best of our knowledge, no attempts have yet been made to apply any machine learning
techniques in developing heuristics for pmax.

Our motivation stems from the key challenges in developing robust heuristics for pmax,
which is essential for efficiently solving SSPs with unavoidable deadends under the robust
MCMP criterion. The lack of effective heuristics for pmax, coupled with the limited
application of ML in SSPs, inspires us to extend the concept of “learning for planning”—
specifically, learning heuristic values to guide search—from the deterministic domain to
the stochastic domain. The next section provides a detailed overview of our research
objectives and contributions.
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1 Introduction

1.2 Research Objective and Contributions

The primary objective of this research is to explore how both traditional SML and
modern DL methods can be applied to learn pmax for SSPs. Additionally, we aim to
investigate how predictions from these models can be leveraged as heuristics which are
capable of guide existing heuristic search algorithms to efficiently solve SSPs with un-
avoidable dead ends in the Max-Prob stage of MCMP. This thesis presents three main
contributions:

1. Novel Graph Representation for SSPs: Building on insights from Younes
and Littman [2004] and Chen et al. [2024], we develop two novel graph repre-
sentations for SSPs under lifted representation: Probabilistic Learning Graph
Small (PLGS) andProbabilistic Learning Graph Large (PLGL). Both graphs
directly incorporate the probabilistic information from SSPs without determinisa-
tion. PLGS captures both domain-specific and problem-specific information within
SSPs efficiently, while PLGL extends PLGS by introducing additional graph layers
which allow more internal relationships within SSPs to be encoded.

2. Learning Features of SSPs through PLG: We extend the GOOSE framework
[Chen et al., 2023a] to handle SSPs, allowing graph representations of SSPs to
be utilised in training both GNNs and SML models. Our extended framework
supports graph representation from both PLGS and PLGL which directly encodes
SSPs; as well as any other graphs representing classical planning problems by using
all-outcome determinisation on SSPs. This framework enables models to learn and
predict pmax as well as other potential SSP features. We further theoretically prove
that both PLGS and PLGL are strictly more expressive in learning SSP features
within our framework compared to Instance Learning Graph (ILG)—the state-of-
the-art graph for learning planning problems in deterministic environments. We
evaluate our graph representations through a set of experiments which compares
models that learn SSP features from PLG representations with those learning from
ILG representations. Results demonstrate that PLG outperforms ILG at predicting
pmax in terms of both effectiveness and generalisability.

3. Learning pmax Heuristics to Guide Search: We train both GNN and SML
models using PLG to learn pmax and deploy the i-dual algorithm to incorpo-
rate modified predictions from these trained models as heuristic functions, which
guide the search during the Max-Prob stage. We conduct another set of exper-
iments which evaluates the performance of these heuristics against hmax in SSP
domains where hmax remains the state-of-the-art. Results indicate that the gen-
erated heuristics can provide competitive performance against hmax in guiding
i-dual for solving Max-Prob SSPs, with the potential to significantly outperform
it by trading-off optimality with a strong lower bound.
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1.3 Thesis Outline

1.3 Thesis Outline

This thesis is structured to effectively present our contributions:

• Chapter 2 establishes the theoretical foundation, defining essential concepts in
probabilistic planning and machine learning, alongside a summary of key notations.

• Chapter 3 provides a comprehensive literature review, covering Max-Prob meth-
ods and machine learning approaches in planning, culminating in a discussion that
connects the research motivation to our specific objectives.

• Chapter 4 details the methodology addressing our research objectives, introduc-
ing the novel probabilistic graph representations PLGS and PLGL as first con-
tribution. We also exploring how the extended GOOSE framework is adapted to
learn pmax and effectively guide search.

• Chapter 5 presents the empirical evaluation for contributions two and three,
benchmarking PLGS and PLGL representations against existing graphs by pre-
dicting pmax and applying the learned heuristics to i-dual’s Max-Prob stage, with
a focus on evaluating improvements in search efficiency and robustness.

• Chapter 6 provides a comprehensive conclusion, summarising the findings and
implications of this research, while outlining potential directions for future work.
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Chapter 2

Background

The aim of this chapter is to introduce foundational concepts while providing in-depth
explanations of the theoretical definitions essential for understanding the research pre-
sented in this thesis. We begin with a comprehensive overview of AI planning in Section
2.1, focusing on Stochastic Shortest Path Problems (SSPs)—a key framework within
probabilistic planning. We then formalise the definition of SSPs, discuss their key fea-
tures and common challenges, with a highlight on optimisation criteria such as MCMP
in Section 2.2, which provide important motivation for our work. We also show how
classical planning problems can be seen as a special case of SSPs and provide formal
representations for both. In Section 2.3, we explore heuristic search algorithms by pre-
senting and explaining some heuristic functions and algorithms that will be employed in
our framework. Finally, in Section 2.4, we shift focus to machine learning by explaining
the definitions for regression tasks, GNNs, and the WL algorithm. Section 2.5 presents
a table summarising the notations used throughout this chapter, which may help the
audience to recall the key concepts in the remainder of the thesis.

2.1 AI Planning

Planning is the reasoning side of action. It involves explicit deliberation to choose
and organise actions based on their expected outcomes in order to achieve a particular
objective as effectively as possible [Ghallab et al., 2004].

AI planning, or Artificial Intelligence planning, is a sub-field of AI that focuses on de-
veloping algorithms and computational techniques to generate sequences of actions that
achieve specific goals [Russell and Norvig, 2016]. This field originates from the pursuit
of automating human-like capabilities, such as thinking ahead, strategising and deciding
on a series of steps to solve complex problems. AI planning extends beyond robotics
and virtual agents; its principles and algorithms are applied across various domains, in-
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2.1 AI Planning

cluding business process management, video game design, emergency response planning
and autonomous driving. Its wide range of applications underscores the essential role
of planning in intelligent behaviour. In this thesis, our primary focus lies on a specific
subset of AI planning known as Probabilistic Planning.

2.1.1 Probabilistic Planning: Assumptions

The problems being researched within this thesis operates under the following assump-
tions of probabilistic planning that distinguish them from problems other planning
paradigms [Russell and Norvig, 2016]:

• Finite: The number of states, actions and observations are finite.

• Static: The world does not change on its own, only in response to the agent’s
actions.

• Single Agent: Only one agent acts in the environment, however this agent has
access to multiple actions.

• Stochastic: Actions do not have deterministic outcomes. Instead, they result in
probabilistic transitions between states represented by a probability distribution
over possible successor states.

• Fully Observable: The agent has complete knowledge of the world’s state.

• Sequential: The solution to a probabilistic planning problem is a policy that
dictates the action to be taken in each state. The execution of such policy will
result a sequence of decisions as well as a sequence of visited states.

• Implicit Time: Actions occur one after another instantaneously and there is no
duration time.

• Reach-Ability of Goals: A policy is not always guaranteed to reach the goal.
Each policy has an associated probability of successfully reaching the goal.

• Cost Functions: Actions may have associated costs and policy may be evaluated
based on the total expected cost when executed from initial state.

2.1.2 Stochastic Shortest Path Problems

Stochastic Shortest Path problems (SSP) [Bertsekas and Tsitsiklis, 1991] provide a con-
venient mathematical framework for modeling problems under probabilistic planning
assumptions as discussed in Section 2.1.1. In this thesis, we formally define SSPs follow-
ing the definition from Trevizan and Veloso [2014] as shown below:

7



2 Background

Definition 1 (Stochastic Shortest Path Problems (SSP)). An SSP is a tuple S =
⟨S, s0, Sg, A, P, C⟩, where:

• S is the finite set of states;

• s0 ∈ S is the initial state;

• Sg ⊆ S is the non-empty set of goal states;

• A is the finite set of actions; A(s) ⊆ A denotes the set of all actions applicable in
state s ∈ S;

• P : S × S × A 7→ [0, 1] is the probabilistic transition function, where P (s′|s, a)
represents the probability that state s′ ∈ S is reached after applying action a ∈ A
in state s ∈ S;

• C : S ×A 7→ R+ is the cost function, where C(s, a) is the immediate cost incurred
when applying action a in state s. This function must be defined for all s, a where
there exists s′ such that P (s′|s, a) > 0.

■

To aid in understanding SSPs, consider the Box Delivery Problem previously intro-
duced in Section 1.1:

Example 1. A box must be delivered to a city using one of two actions. A plane delivers
the box with a 95% success rate at a cost of $1000, while a car delivers the box with a
90% success rate at a cost of $100. A dead end occurs if the delivery fails and the box is
destroyed. The central dilemma is whether paying an additional $900 is worth increasing
the delivery probability from 90% to 95%.

We can now formalise the Box Delivery Problem as a simple SSP following Definition 1:

▷ S = {s0, d, sg} where s0 is the initial state where the box has not yet been delivered;
d is the dead-end state where the box is destroyed; sg is the goal state where the box
is successfully delivered.

▷ A = {fly, drive} represents the two possible actions.

▷ P (sg|s0, f ly) = 0.95 and P (d|s0, f ly) = 0.05 represent the delivery outcomes by
airplane.

▷ P (sg|s0, drive) = 0.9 and P (d|s0, drive) = 0.1 represent the delivery outcomes by
car.

▷ C(s0, f ly) = 1000 and C(s0, drive) = 100 are the respective costs of delivery for each
option in dollars.

Figure 2.1 visualises this simple SSP as a graph, where nodes represent states and edges
represent actions. The edges are also labeled with the corresponding probabilities of the
uncertain outcomes.

8



2.1 AI Planning

Figure 2.1: Box Delivery Problem SSP represented as a directed multi-edge graph.
Where s0, d, sg are the initial/dead-end/goal state respectively. Edges rep-
resent two actions drive and fly with corresponding cost as $100 and $1000
respectively. The probability for each action outcome is labeled on the action
edges.

In SSPs, an agent executes an action a ∈ A(s) in discrete time steps on the current
state s ∈ S. The chosen action a transitions the state from s to s′ with probability
P (s′|s, a) and incurs a cost C(s, a) is incurred. The agent always starts at s0, and if a
goal state sg ∈ Sg is reached, the problem is considered solved and no further actions
are required. However, the agent might also reach a dead-end state, which occurs when
it is impossible to achieve the goal from the current given state. In this setting, the
agent must decide which action to apply at each step, and the solution to an SSP can
be viewed as a decision strategy that selects actions based on states. For instance, in
the Box Delivery Problem, should we choose to fly or drive at the initial state s0?

We formally define such decision strategy as a policy:

Definition 2 (Solution of an SSP). A solution to an SSP S is a policy π, which maps
states to actions with corresponding probabilities [Trevizan and Veloso, 2014].

Formally, π can be viewed as either of the two functions: π : S × A 7→ [0, 1] or π : S →
(A, [0, 1]) where:

• π(s, a) denotes the probability that action a ∈ A will be applied in state s ∈ S
when following policy π, with π(s, a′) = 0 for all a′ /∈ A(s).

• π(s) represents a probability distribution over all actions in A, indicating the pref-
erence for applying actions in state s under policy π, also every action a′ /∈ A(s)
has corresponding probability of 0.

• Sπ ⊆ S denotes the domain of π(s0). S
π represents the set of all states reachable

when following policy π from s0.

■
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2 Background

Extending from Definition 2, we introduce several key terms for policies [Trevizan and
Veloso, 2014] that will be used in subsequent sections:

• A policy π is complete if it is defined for all possible states, i.e., Sπ = S.

• A policy π is closed if all non-goal states reachable from s0 under π are included
in Sπ; otherwise, π is partial.

• A policy π is deterministic if it maps each state s ∈ Sπ to a single action a ∈ A(s),
i.e., for each s ∈ Sπ, there exists one a0 ∈ A(s) such that π(s, a0) = 1.0; otherwise,
π is a stochastic policy.

Now that we have defined a policy as the solution to an SSP, we need a metric to compare
the quality of different policies. Following the approach of [Trevizan and Veloso, 2014;
Shen et al., 2019], we define the cost of a policy as a metric for determining the best
policy. Combining Definitions 1 and 2, we formally define the cost of a policy as follows:

Definition 3 (Cost of an SSP Policy). The cost of a policy π on S is defined through
two functions:

• Equation 2.1 defines the state-value function V π : S 7→ R≥0, representing the
expected cost of reaching a goal state from state s ∈ S while following policy π.

V π(s) =

{
0 if s ∈ Sg∑

a∈A(s) π(s, a) ·Qπ(s, a) otherwise
(2.1)

• Equation 2.2 defines the action-state-value function Qπ : S × A 7→ R≥0, repre-
senting the expected cost of reaching a goal state from state s ∈ S when action
a ∈ A(s) is applied and policy π is followed thereafter.

Qπ(s, a) = C(s, a) +
∑
s′∈S

P (s′ | s, a) · V π(s′) (2.2)

■

With the state-value function V π defined in Definition 3, the optimal solution to an SSP
can be described as a closed policy π∗ that minimises the expected cost of reaching the
goal from the initial state. The formal definition is as follows:

Definition 4 (Optimal Solution to an SSP). The optimal solution to an SSP S is a
closed policy π∗ that minimises the expected cost of reaching the goal from the initial
state. Formally: π∗ = argmin

π
V π(s0) for all closed policy π on S. ■

Note that π∗ may not be unique, but at least one optimal policy is always deterministic
[Trevizan et al., 2016]. Furthermore, if S is dead-end-free, we can extend Equations
2.3 and 2.4 to define the optimal value function V ∗ with the corresponding optimal
action-state-value function Q∗ as follows:

10



2.1 AI Planning

• Equation 2.3 defines the optimal value function V ∗ : S 7→ R≥0, representing the
minimum total expected cost to reach a goal state from any state s ∈ S under any
closed policy.

V ∗(s) =

{
0 if s ∈ Sg
minQ∗(s, a) otherwise

(2.3)

• Equation 2.4 defines the optimal action-state-value function Q∗ : S × A 7→ R≥0,
representing the expected cost of reaching a goal state from state s ∈ S if action
a ∈ A(s) is applied under any optimal policy π∗.

Q∗(s, a) = C(s, a) +
∑
s′∈S

P (s′ | s, a) · V ∗(s′) (2.4)

Equations 2.3 and 2.4 are also known as the Bellman Equations [Puterman, 2014]. We
can consider the Bellman Equations as the generalised version of Equations 2.1 and
2.2 where the policy is deterministic. Moreover, any greedy policy with respect to
the optimal value function V ∗ is an optimal policy π∗ for S. Specifically, such π∗ is
deterministic and can be obtained by replacing “min” with “argmin” in Equation 2.3
to select an action for each state [Trevizan et al., 2017b].

From Trevizan et al. [2016], we know that at least one optimal policy is always deter-
ministic. Since we only require one optimal policy as the solution to the SSP, from this
section onwards, we will focus solely on deterministic policies. Hence, every occurrence
of π within the rest of this chapter will be treated as a deterministic policy unless explic-
itly stated otherwise. It is important to note that the nature of probabilistic planning
is not affected in deterministic policies, since the actions still have stochastic effects.

We denote by Π the set of all (deterministic) policies for S. Based on deterministic
policies, we define the following term:

Definition 5 (Trace). A trace Tπ,s is a sequence of states s1, s2, . . . visited when fol-
lowing π ∈ Π from state s. We denote the i-th state of Tπ,s as T i

π,s and require that
P (T i+1

π,s | T i
π,s, π(T

i
π,s)) > 0 for all pairs T i

π,s, T
i+1
π,s ∈ Tπ,s [Trevizan et al., 2017b].

A trace T can be either finite or infinite:

• Finite trace: The last state s of T is either a goal state (i.e., s ∈ Sg) or there
is no applicable action in s (i.e., A(s) = ∅). For a finite trace T , its probability is

P (T ) =
∏|T |−1

i=1 P (T i+1|T i, π(T i) and its cost is C(T ) =
∑|T |−1

i=1 C(T i, π(T i)).

• Infinite trace: Infinite traces occur when the execution of π enters a cycle that
never reaches the goal, getting trapped indefinitely. Since action costs are strictly
positive, the cost of any infinite trace is infinite. We also refer SSPs that allows
such π as cyclic SSPs or SSPs with circles.

■
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We denote by Tπ,s the set of all traces of π from s. Notice that Tπ,s may be an infinite
set (e.g., if an action prescribed by π has a positive probability of looping). We also
partition Tπ,s into the set of traces that reach the goal, T G

π,s, and its complement, T DE
π,s ,

i.e., the set of traces that reach dead ends. We can again refer back to Box Delivery
Problem as an illustrative example, and define a policy πd that always chooses to drive:
the set of goal traces becomes T G

πd,s0
= {(s0, sg)}; while the set of dead-end traces is

T DE
πd,s0

= {(s0, d)}. While every trace in T G
π,s is finite (as its last state must be a goal

state) T DE
π,s can have infinite traces, i.e., traces that loop indefinitely without reaching a

goal state.

With the trace notation from Definition 5, we can easily represent a dead-end-free SSP
by assuming there exists a policy π such that T DE

π,s0 = ∅. This is a common assumption
for many previous results and algorithms for solving SSPs [Hansen and Zilberstein, 2001;
Kolobov et al., 2011; Bonet and Geffner, 2003; Howard, 1960]. However, when dead ends
are unavoidable (for example, in the Box Delivery Problem, where there is always a non-
zero probability of reaching the dead-end state d regardless of the policy), the Bellman
Equations (2.3) become ill-defined.

We address this issue in Section 2.2 by introducing several criteria that have been pro-
posed to characterise SSPs with dead ends. Before discussing these criteria, we first pro-
vide an overview of classical planning problems and the concept of domain-independent
planning in the following sections.

Classical Planning

Classical planning is another essential subset of AI planning. Most assumptions for
problems under classical planning remain the same as outlined in Section 2.1.1, except
that actions are no longer subject to uncertain outcomes. Therefore, if a goal can be
reached, the probability of success is guaranteed to be 1 [Russell and Norvig, 2016].

We can formally define classical planning problems (problems under classical planning
assumptions) as a special case of SSPs as follows:

Definition 6 (Classical Planning Problems). A classical planning problem is a special
type of SSP Sc = ⟨S, s0, Sg, A, Pc, C⟩, where:

• S, s0, Sg, A, and C are the same as in Definition 1.

• Pc : S × S × A 7→ {0, 1} is a deterministic transition function, where Pc(s
′|s, a)

indicates whether the state s′ ∈ S is the next state after applying action a ∈ A
in state s ∈ S. For each state-action pair (s, a), if a ∈ A(s), there is exactly one
s′ ∈ S such that Pc(s

′|s, a) = 1; otherwise, Pc(s
′|s, a) = 0.

■

In a classical planning problem Sc, for each state s ∈ S, every applicable action a ∈ A(s)
always leads to a single successor state. A policy π for Sc can therefore be simplified as

12



2.1 AI Planning

a deterministic mapping from each state-action pair (s, a) to its corresponding successor
state s′, where s ∈ S, a ∈ A(s), and Pc(s

′|s, a) = 1. Since we can continue applying
the policy to each successor state until a goal is reached (if such a policy exists), a
solution to a classical planning problem Sc can be further simplified to a sequence of n
actions, ηπ,s0 = a1, a2, . . . , an, chosen by the policy π starting from s0, which results in
the trace Tπ,s0 = s0, s1, s2, . . . , sn where sn ∈ Sg. Tπ,s0 includes only the states visited
by sequentially executing ηπ,s0 from s0. As the solution to Sc, ηπ,s0 is commonly referred
to as a plan for Sc [Ghallab et al., 2004]. The optimal plan η∗π,s0 is a plan that minimise
the total cost of transitioning from s0 to sg in Sc.

One way to translate an SSP S = ⟨S, s0, Sg, A, Pc, C⟩ into a classical planning problem
Sc = ⟨S, s0, Sg, A′, P ′

c, C
′⟩ is through all-outcome determinisation [Teichteil-Königsbuch

et al., 2011] as described below:

◦ S, s0, Sg remains the same.

◦ for possible action outcome in S, we create a new deterministic action in Sc that
achieve the same outcome. Formally: for every a ∈ A with P (sj |si, a) > 0, we add a′

to A′ where P ′
c(sj |si, a′) = 1 and C ′(si, a

′) = C(si, a)

However, such transformed problem often completely change the scope of the original
SSP. This is because the process of determinisation often oversimplify the original SSP
by removing or modifying crucial probabilistic information. For example in Box Delivery
Problem, all-outcome determinisation will create two actions based on the original drive
action where: drive1 will always deliver the box and drive2 will always destroy the box.

The computational representation of AI-Planning problems is crucial for algorithms to
effectively solve them. While the representations for SSPs in Definition 1 and classical
planning problems in Definition 6 offer an intuitive and mathematically solid structure,
they may not be efficient enough as input for solvers, as the state space can grow expo-
nentially with increasing problem complexity. For example, in the Box Delivery Prob-
lem, simply adding two more boxes for delivery creates six additional states representing
whether each box has been successfully delivered, resulting in a total combination of 23

states. To address this issue, we introduce the concept of domain-independent planning
representations.

2.1.3 Domain-Independent Planning Representation

Domain-Independent Planning refers to a methodology where planning algorithms are
designed to function independently of the specifics of any particular domain [Russell
and Norvig, 2016]. The central idea is to abstract domain-specific details by separating
environment-specific descriptions (e.g., domain settings, action types, object types) from
problem-specific descriptions (e.g., initial states, goals, objects). This separation enables
a formalisation that applies across different problem domains, allowing algorithms to
be constructed in a domain-independent manner by taking problem inputs in such a
formalisation [Ghallab et al., 2004].
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We can apply a similar separation idea to the representation of classical planning prob-
lems as defined in Definition 6: the initial state s0 and the set of goal states Sg can
be viewed as problem-specific descriptions, while the rest of the information—such as
the set of states, actions, transition functions, and cost functions—can be considered
domain-specific. By integrating the concept of domain-independent planning with the
motivation to avoid enumerating all possible instances in S, we can represent a classi-
cal planning problem in a lifted format that encodes only the first-order information of
domain-specific knowledge through the use of predicates and action schemas [Haslum
et al., 2019].

Definition 7 (Lifted Classical Planning Problems). A lifted classical planning problem
is a tuple ScL = ⟨D, O, s0, g⟩ where:

• O is the set of objects in the problem, objects are allowed to have different types.

• D = ⟨P,A⟩ is the domain for ScL where:

– P is a set of first-order predicates representing the environment settings.

– A predicate P ∈ P has a tuple of parameters P (x1, . . . , xnP ) for nP ∈ N, we
call such predicate an np-ary predicate.

– A predicate where all the parameters are assigned with objects o ∈ O is called
a (grounded) proposition. (It is possible for a predicate to have no parameter
therefore default grounded)

– A is a set of action schemas.

– An action schema a ∈ A is a tuple ⟨∆(a), pre(a), add(a), del(a), cost(a)⟩ where
pre(a) = ⟨pre+(a), pre−(a)⟩ are the positive/negative preconditions. ∆(a) is
a set of parameter variables. pre+(a), pre−(a), add(a), del(a) are sets of pred-
icates from P and cost(a) is a cost function, they all need to be instantiated
with either parameter variables or objects in ∆(a) ∪ O. Similarly to pred-
icates, an action schema with n = |∆(a)| parameter variables is an n-ary
action schema.

• s0 a set of propositions representing the initial state.

• g a set of propositions representing the partial goal state.

■

In this thesis, both ScL (Definition 7) and Sc (Definition 6) represent the same classical
planning problem, but in different formats. We demonstrate this by showing how a lifted
planning problem ScL = ⟨⟨P,A⟩, O, s0, g⟩ can be transformed into a classical planning
problem Sc = ⟨S′, s′0, S

′
g, A

′, P ′
c, C

′⟩ as follows:

◦ States S′: The predicate set P defines the set of all possible states S′ with objects
from O. A state s′ ∈ S′ is a set composed of any valid combination of the propositions
instantiated by combining predicates P ∈ P with objects o ∈ O.
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2.2 Criteria of Stochastic Shortest Path Problems

◦ Actions A′: The set of objects O can also instantiate action schemas A. All possible
instantiated actions form the set A′.

◦ Initial State s′0: The initial state s0 directly corresponds to the initial state s′0 in the
classical planning model.

◦ Goal States S′
g: The goal states S′

g comprise all superset states of the partial goal
state set g.

◦ Transition Function P ′
c and Cost Function C ′: In the classical model, the tran-

sition function P ′
c maps a state and an action to their resulting state with a corre-

sponding cost described by C ′. If we denote a′ ∈ A′ as the action instantiated from
action schema a ∈ A with the corresponding parameter set O′ ⊆ (∆(a) ∪ O), then
P ′
c(s

′|s, a′) and C ′(s, a′) can be defined where:

– P ′
c(s

′|s, a′) = 1 and C ′(s, a′) = cost(a)(O′) for all combinations of s, s′ ∈ S′ × S′

where s is a superset of pre+(a)(O
′) not containing any element within pre−(a)(O

′),
with the corresponding s′ = s∪ add(a)(O′) \ del(a)(O′), indicating that action a′

can transition s to s′ at a cost C ′(s, a′).

– P ′
c(s

′|s, a′) = 0 for all other combinations of s, s′ ∈ S′×S′, indicating that action
a′ cannot transition s to s′.

The intuition is to view states as set of propositions, actions as instantiated action
schemas. While every action schema is a mapping that transit a state satisfying the
precondition into its successor state. A state satisfies the precondition if it contains all the
required(positive) propositions and does not contain any banned(negative) proposition.
The successor state is obtained by removing deleting(negative) effect propositions from
the original state and append the adding(positive) effect propositions onto it.

Modern planning languages such as the Planning Domain Definition Language (PDDL)
[Haslum et al., 2019] are defined based on the lifted format for classical planning prob-
lems (Definition 7). PDDL allows problems to be parsed as input to specific algorithms
and has become the standard language for many planning competitions, such as the
International Planning Competition (IPC) [Vallati et al., 2015]. The Probabilistic Plan-
ning Domain Definition Language (PPDDL) [Younes and Littman, 2004] extends PDDL
to allow for the parsing of SSPs in their lifted formats. We introduce the lifted represen-
tation for SSPs in Chapter 4.1, where we also provide examples of both a lifted classical
planning problem instance and a lifted SSP instance.

2.2 Criteria of Stochastic Shortest Path Problems

As briefly introduced in Section 1.1, when unavoidable dead ends are present, an SSP
inherently becomes a multi-objective optimisation problem with two conflicting objec-
tives: maximising the probability of reaching the goal and minimising the expected cost.
To better align with intuition, these objectives can be thought of as “minimising cost”
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by reducing the expected cost as much as possible; or “minimising risk” by increasing
the probability of reaching the goal as much as we can. The Box Delivery Problem serves
as an illustrative one: is it worth paying an additional $900 on airplanes to mitigate the
remaining 5% risk of delivery failure from cars?

At the end of Section 2.1.2, we have further discussed that most of the algorithms
developed for SSPs share one common assumption: the SSPs they take as input to solve
are dead-end-free. Unfortunately, this is not the case in many real-life scenarios. For
example we can never avoid the chance of destroying the box along the delivery in the
Box Delivery Problem no matter what vehicle we select.

2.2.1 Finite-Penalty Criterion

One approach, called the Finite-Penalty method, solves this trade-off by allowing the
agent to reach the goal from any state by applying a special high-cost action, as formally
defined below:

Definition 8 (Finite-Penalty Criterion). The Finite-Penalty criterion removes dead
ends in a Stochastic Shortest Path (SSP) problem by introducing a fixed dead-end
penalty D ∈ R+ and incorporating an additional “give-up” action [Kolobov et al., 2012b;
Trevizan et al., 2017b]. Solving an SSP S under the Finite-Penalty criterion is equivalent
to solving a transformed SSP S′ = ⟨S, s0, Sg, A′, P ′, C ′⟩, where for each state s ∈ S:

◦ A′(s) = A(s) ∪ {give-up};

◦ C ′(s, give-up) = D;

◦ C ′(s, a) = C(s, a) for a ∈ A(s);

◦ P (sg | s, give-up) = 1 for an arbitrary sg ∈ Sg.

It is important to note that the transformed SSP S′ contains no dead ends and can
therefore be solved using any standard SSP-solving algorithm. ■

However, as briefly discussed in Section 1.1, any state where the expected cost of reaching
the goal exceeds the dead-end penalty D will be considered as a dead end, regardless of
the state’s maximum probability of reaching the goal. For instance, consider the Box
Delivery Problem. If we set D = $10 and solve it using the Finite-Penalty criterion, the
optimal policy would always select the ”give-up” action, ignoring the options to either
drive or fly. This reliance on domain knowledge to select an appropriate value of D poses
a challenge, as it is not typically feasible to obtain a good D on every problem domain,
whilst the requirement for manually selecting D restrict the performance of solvers to
automate across various domains. To avoid such requirement for domain knowledge, an
alternative approach focuses on directly maximising the probability of reaching the goal
regardless of the cost.
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2.2.2 Max-Prob Criterion

Unlike the Finite-Penalty criterion, theMax-Prob criterion addresses the conflict between
“risk” and “cost” by focusing exclusively on minimising “risk.”

Definition 9 (Max-Prob Criterion). The Max-Prob criterion focuses on finding a policy
π that maximises the probability of reaching any goal state sg ∈ Sg; as opposed to π∗

which minimises the expected cost [Kolobov et al., 2011].

• In our trace notation, this can be represented as finding a π from the set of policies
argmaxπ∈ΠP (T G

π,s0), where goal probability P (T
G
π,s0) =

∑
T∈T G

π,s0
P (T ) represent the

expected probability for a policy to reach goal states from s0.

• We denote this maximum goal probability as pmax, i.e., pmax = maxπ∈Π P (T G
π,s0).

• We refer to all policies with a goal probability equal to pmax as Max-Prob Poli-
cies and use ΠMP to represent the set of all Max-Prob policies, i.e., ΠMP ={
π ∈ Π | P (T G

π,s0) = pmax
}
[Trevizan et al., 2017b].

■

The optimal solution of S under the Max-Prob criterion can be obtained by solving
a modified problem, denoted as M. In this modified problem M, everything remains
the same as in the original SSP S except that the objective shifts to maximising the
probability of reaching the goal when following a policy π, i.e., maxP (T G

π,s0) as shown
in Definition 9. This maximisation process can be accomplished by solving a modified
version of the Bellman Equations. Specifically, we adapt the Bellman Equations from
Equation 2.3 and 2.4 to suit the Max-Prob SSP M as follows:

• Equation 2.5 defines the probabilistic value function V p : S 7→ [0, 1], representing
the maximum probability of reaching the goal from s ∈ S. It lies within the range
of [0, 1], even if S has circles.

V p(s) =

{
1 if s ∈ Sg
maxQp(s, a) otherwise

(2.5)

• Equation 2.6 defines the probabilistic action-state-value function Qp : S × A 7→
[0, 1], representing the maximum probability of reaching a goal state from s ∈ S if
action a ∈ A(s) is applied.

Qp(s, a) =
∑
s′∈S

P (s′ | s, a) · V p(s′) (2.6)

Similar to what we have done in Section 2.1.2 for Bellman Equations, this modification
allows us to obtain a deterministic policy πp by replacing “max” with “argmax” in
Equation 2.5 to select an action for each state. If the probabilistic value function on
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Figure 2.2: Example of an SSP represented as a directed multi-edge graph. Where s0, sg
are the initial/goal state respectively, di are dead-end states. Edges represent
two actions a0 and a1 with omitted cost. The probability for each action
outcome is labeled on the action edges. pmax = 0.5.

initial state V p(s0) is globally optimal, i.e., V p(s0) = pmax, then we have πp ∈ ΠMP as a
Max-Prob policy.

Applying the above method to the Box Delivery Problem, the optimal policy will always
choose the airplane to deliver the box with the optimal maximum probability V p(s0) =
pmax = 0.95, without considering the cost.

However, solve the Bellman equations forM (Equations 2.5 and 2.6) may produce several
non-optimal fixed-point solutions for problems with circles. For instance, consider the
SSP listed in Figure 2.2 [Trevizan et al., 2017b], where there is only one goal state sg and
three dead-end states d1, d2, d3 with two applicable actions a0 and a1 (an edge without
float label indicate deterministic outcome). It may produce the following non-optimal
fixed-point solution for M: V p(d1) = 0 and V p(sg) = V p(s0) = V p(d2) = V p(d3) = 1
when V p(d2) = V p(d3) = 1 (probabilistic value function for states within the circles
are not initialised properly). Since solving Equation 2.5 under this scenario will always
guide the optimal policy to select a1 at s0. We discuss the works that address this issue
in the related works sections later in Chapter 3.

In addition to the non-optimal fixed-point solutions, the Max-Prob criterion has another
drawback: all policies in ΠMP are equally good for Max-Prob, regardless of their expected
cost since the consideration for “cost” is removed completely. To better illustrate this
drawback, consider an Extended Box Delivery Problem:

Example 2. An extension of the Box Delivery Problem where an additional action
“cheap-fly” is introduced. This discounted airplane delivery option offers the same 95%
success rate as the regular airplane but at a significantly lower cost of only $100 (equiv-
alent to the cost of car). For clarity, we visualise the SSP for this extended problem in
Figure 2.3 following Definition 1.

Clearly, the cheap airplane is always the best choice to select in Extended Box Delivery
Problem. Yet the Max-Prob criterion fails to distinguish between a policy that always
selects the normal airplane and one that always selects the cheap airplane since they both
share V p(s0) = pmax = 0.95. The S3P criterion [Teichteil-Königsbuch, 2012] addresses
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Figure 2.3: Extended Box Delivery Problem SSP represented as a directed multi-edge
graph. Where s0, d, sg are the initial/dead-end/goal state respectively. Edges
represent three actions drive, fly and cheap−fly with corresponding cost as
$100, $1000 and $100 respectively. The probability for each action outcome
is labeled on the action edges.

this issue by distinguishing Max-Prob policies with their expected cost across all traces
that successfully reach the goal. The formal definition for S3P is given below:

Definition 10 (S3P Criterion). The S3P criterion for solving an SSP S focuses on finding
a Max-Prob policy π that minimises the expected cost across all traces that successfully
reach the goal when following π from s0.

Formally, it finds a Max-Prob policy π where:

π∗ = arg min
π∈ΠMP

E[C(T ) | T ∈ T G
π,s0 ]. (2.7)

Solving S under S3P usually contains three stages (in some algorithms, removal of dead
ends can be done on-the-fly within Max-Prob stage):

• Max-Prob Stage: compute V p(s) for every reachable state s ∈ S.

• Remove dead ends Stage: translate S into a dead-end-free P*-SSP with V p(s)
by removing effects of actions that lead to a dead end state.

• Min-Cost Stage: solve P*-SSP to obtain π∗ as described in Equation 2.7.

■

The S3P criterion has also been proven to be equivalent to the iSSPUDE criterion un-
der SSPs defined in Definition 1 [Kolobov et al., 2012a; Trevizan et al., 2017b]. Both
approaches prioritise “risk” while still taking “cost” into account. However, a key lim-
itation of both S3P and iSSPUDE is their failure to account for the expected cost on
dead-end traces, i.e., T ∈ T DE

π,s . When executing the optimal policies derived from these
criteria, dead ends may still be encountered; incurring costs that were not considered
in the optimisation and resulting in a gap between the computed optimal value and the
actual expected cost when the policies are implemented.
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One of the state-of-the-art criteria for SSPs, the Min-Cost given Max-Prob (MCMP)
criterion, addresses this limitation by enhancing the S3P criterion to also account for
dead ends to some extent [Trevizan et al., 2017b].

2.2.3 Min-Cost given Max-Prob Criterion

Before introducing the MCMP criterion, we first define a truncation function ψ : T 7→ T
following from Trevizan et al. [2017b]:

ψ(sisi+1 . . . ) =

{
si if |T | = 1 or P (TG

π,si) = 0

siψ(si+1 . . . ) otherwise
(2.8)

Intuitively, the truncation function ψ truncates a trace after the first encountered dead-
end state (if any). Notice that after truncation, ψ(T ) is always a finite trace since either
a goal is reached; or a state si with zero probability of reaching the goal (P (TG

π,si) = 0) is
encountered and subsequent states si+1si+2 . . . are ignored. Moreover, ψ(T ) = T for all
T ∈ T G, meaning that the truncation function does not modify traces that successfully
reach the goal.

MCMP utilises the truncation function from Equation 2.8 and extends the idea from S3P
criterion to allow consideration of expected cost across the entire set of traces, especially,
it considers the dead-end traces. The formal definition of MCMP is given below:

Definition 11 (MCMP Criterion). The Minimising Cost given Maximum Probability
to reach the goal (MCMP) criterion for solving an SSP S focuses on finding a Max-Prob
policy π that minimises the expected cost across all traces when following π from s0.
For dead-end traces, the expected cost calculation only focuses on the parts before a
dead-end state is encountered.

Formally, it finds a Max-Prob policy π∗ where:

π∗ = arg min
π∈ΠMP

E[C(ψ(T )) | T ∈ T G
π,s0 ]. (2.9)

Unlike S3P, solving S under MCMP contains two stages:

• Max-Prob Stage: solve the SSP under Max-Prob criterion M to obtain pmax

(derived from the solution of M: a Max-Prob policy π ∈ ΠMP).

• Min-Cost Stage: solve Equation 2.9 with pmax to obtain optimal policy.

■

To illustrate the differences between S3P and MCMP, recall the Extended Box Delivery
Problem. If we calculate the expected cost of a policy that always selects the action
cheap-fly on s0 under both criteria: S3P will return $95 while MCMP will return $100.
Intuitively, S3P ignores the cost of failed delivery, assuming that no cost will be incurred
if the box is not delivered successfully; meanwhile MCMP aligns better with actual

20



2.2 Criteria of Stochastic Shortest Path Problems

expect cost by also considering the cost of failures. This difference in how paths leading
to dead-ends are treated further eliminates the need for transforming the original SSP
into a dead-end-free SSP before computation.

In addition to mitigating the gap between computed and actual expected cost, compu-
tation for solutions under MCMP has been proven to be up to one order of magnitude
faster compared to solutions computed under S3P and iSSPUDE criteria [Trevizan et al.,
2017b]. The main reason is that MCMP avoids the need to compute goal probability V p

for all reachable states s ∈ Sπ as required by S3P and iSSPUDE. Instead, it combines
the technique of linear programming over dual space [d’Epenoux, 1963] with heuristic
search algorithms [Pearl, 1984] to efficiently find pmax through heuristic search within
the space of dual variables that describe SSP policies. It then performs another heuristic
search on the space of dual variables describing only Max-Prob policies to obtain the
final solution. In the next section, we will discuss how linear programming over dual
space can be used to formulate the MCMP criterion. We will then explore heuristic
search algorithms that operate on this dual linear programming formulation of MCMP
in Section 2.3.

2.2.4 Linear Programming over Dual Space for MCMP

Linear Programming (LP) is a powerful optimisation method used to minimise or max-
imise a linear objective function, subject to a set of linear equality and inequality con-
straints. In this subsection, we assume the audience is familiar with the concepts of
LP problems and LP problems over dual space (dual LP). For a more comprehensive
understanding of LP, we refer readers to Bertsimas and Tsitsiklis [1997] and Vanderbei
[1998].

Dual LPs have long been employed to solve Markov Decession Process problems (MDP)
[d’Epenoux, 1963; Altman, 1999]. An SSP can be viewed as a specific type of MDP. To
solve an SSP S with dual LP, it is firstly transformed into its dual LP representation,
where the dual variables ys,a are known as policy occupation measures: ys,a representing
the expected number of times an action a ∈ A(s) is executed in state s. LP 1 gives an
example for a dual LP representation of S. Occupation measures y can be thought as
another representation for a policy π, and an optimal policy π∗ can be derived from the
optimal occupation measures y∗ by solving the dual LP formulation of the original SSP
[Trevizan et al., 2016].

Recall from Definition 11 that solving S under the MCMP criterion involves two stages:

• Max-Prob Stage: Solve M to obtain pmax.

• Min-Cost Stage: Solve Equation 2.9 using pmax to obtain the optimal policy.

We now demonstrate how two dual LP formulations, using policy occupation measures
as variables, can be constructed to address both stages. Specifically, we define two LPs
LP 1 and LP 2 where: solving LP 2 addresses the Max-Prob stage and solving LP 1
addresses the Min-Cost stage [Trevizan et al., 2017b].
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min
y

∑
s∈S,a∈A

ys,aC(s, a) s.t. (C1) - (C6)

ys,a ≥ 0 ∀s ∈ S, a ∈ A(s)(C1)

in(s) =
∑

s′∈S,a∈A(s′)

ys′,aP (s|s′, a) ∀s ∈ S(C2)

out(s) =
∑

a∈A(s)

ys,a ∀s ∈ S \ Sg(C3)

out(s)− in(s) ≤ 0 ∀s ∈ S \ (Sg ∪ {s0})(C4)
out(s0)− in(s0) ≤ 1 (C5)∑
sg∈Sg

in(sg) = pmax (C6)

(LP 1)

We denote the LP 1 [Trevizan et al., 2017b] formulation of S as LP1(S). A feasible so-
lution to LP1(S) is a combination of dual variables y that satisfies all of its constraints,
meanwhile every feasible solution y can be interpreted as a policy π of S. The objec-
tive function of is represented as VLP1(y) =

∑
s∈S,a∈A ys,aC(s, a). The optimal solution

of LP1(S) is the y∗ that minimises VLP1 among all feasible solutions, with correspond-
ing optimal objective value being V ∗

LP1. Moreover, Trevizan et al. [2017b] has proved
Proposition 1.

Proposition 1. Solving LP1(S) allow us to directly solve S in the Min-Cost stage of
MCMP. That is, the optimal solution y∗ of LP1(S) allows us to directly derive an optimal
policy π∗ for S under MCMP criterion.

Intuitively, LP 1 can be interpreted as a water flow problem, where each state s ∈ S
represents a sink. Each feasible action a ∈ A(s) for state s functions as a one-to-N pipe
connecting state s to other states s′ for which P (s′|s, a) > 0. Each unit of flow through
this pipe incurs a cost of C(s, a). Here, ys,a denotes a non-negative distributive water
flow (C1) leaving state s through pipe a (C3). Once it exits state s, the flow ys,a is
distributed to each state s′ connected to s by a; specifically, each state s′ receives a
portion of the flow ys′,aP (s

′|s, a) (C2). For each non-goal state, the sum of incoming
flows must be at least as great as the sum of outgoing flows, signifying that each non-
goal state sink s ∈ S \ Sg allow water flow to be “stored” (C4). Meanwhile, the starting
state has an inflow of 1.0 (C5) representing expected time for s0 to happen is 1. For all
goal states sg ∈ Sg, the sum of incoming flows must total pmax (C6), ensuring that the
expected time (probability) to reach the goal is pmax for any feasible y. The objective is
to minimise the total incurred cost of all flows.

To provide a better intuition on the flow interpretation of 1 we introduce a simple SSP
Sflow in Example 3 and visualise it in Figure 2.4.
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2.2 Criteria of Stochastic Shortest Path Problems

Figure 2.4: A simple SSP Sflow represented as a directed multi-edge graph. Where
s0, s1, d, sg are the initial/intermediate/dead-end/goal state respectively.
Edges represent a single action a0 with constant cost of 1. The probabil-
ity for each action outcome is labeled on the action edges. In the water flow
interpretation for LP 1 encoding of this SSP, we can consider the states as
sinks and edges as pipes.

Example 3. A simple flow problem SSP Sflow = ⟨S, s0, Sg, A, P, C⟩ under Min-Cost
stage of MCMP, where:

• pmax = 0.7

• the states are S = {s0, s1, sg, d};

• there’s only a single action a0;

• P (s1|s0, a0) = 1.0 for s0.

• P (sg|s1, a0) = 0.7, P (d|s1, a0) = 0.3 for s1.

• C(s, a) = 1.0 for both s0 and s1

Solving the Flow Problem SSP using LP 1 gives us: the optimal solution y∗s0,a0 = y∗s1,a0 =
1.0; the flows entering each state: s0 = 0.0, s1 = 1.0, d = 0.3, sg = 0.7; the flows leaving
each state: s0 = 1.0; s1 = 1.0; d = 0.0; sg = 0.0; the flows remaining in each state:
s0 = 0.0; s1 = 0.0; d = 0.3; sg = 0.7. from the previously calculated y∗, We can observe
that the policy π∗ obtained from y∗ is deterministic and always selects a0 on both s0
and s1, meanwhile π∗ has a goal probability P (T G

π∗,s0) = pmax = 0.7 with an expected
cost of 2.0, confirming that it is indeed the optimal solution for Sflow. This is achieved
by (C6), which make sure no flow can be preserved in the sink s0 and s1. In another
word, every flow is “pushed forward” in order to get a total flow of 0.7 entering sg as
required by pmax.

One important point to note is that constraint (C6) ensures LP 1 only consider solutions
that can be interpreted as Max-Prob policies, i.e., π ∈ ΠMP. This vastly reduce the
solution space and hence vastly increase the speed for solving LP 1. However, this
constraint requires the pre-computation of pmax, which is obtained as a solution from
the Max-Prob stage of MCMP. This is equivalent to solving M (S under the Max-Prob
criterion) as outlined in Definitions 9 and 11.

23



2 Background

Following the work of [Trevizan et al., 2017b; Altman, 1999], there also exists an LP
formulation for solving the Max-Prob stage. This can be achieved by making slight
modifications to LP 1, resulting in the construction of LP 2.

max
y

∑
sg∈Sg

in(sg) s.t. (C1) - (C3), (C7) - (C8)

out(s)− in(s) = 0 ∀s ∈ S \ (Sg ∪ {s0})(C7)
out(s0)− in(s0) = 1 (C8)

(LP 2)

We denote the LP 2 [Trevizan et al., 2017b] formulation of S as LP2(S). A feasible
solution to LP2(S) is a combination of dual variables y that satisfies all of its constraints
and a feasible y can also be interpreted as a policy π of S. The objective function of is
represented as VLP2(y) =

∑
sg∈Sg

in(sg). The optimal solution of LP2(S) is the y∗ that
maximises VLP2 among all feasible solutions, with corresponding optimal objective value
being V ∗

LP2

Intuitively, LP 2 does not allow flow to be kept in non-goal state sinks anymore, that
is, the flow can either be stored in a goal state sink or being trapped in an infinite loop
(C7, C8). LP 2 also modifies the objective to maximise the total flow entering all goal
state states. Altman [1999] has proved that the objective value for a feasible solution
of LP 2 y is equivalent to the goal probability of π interpreted from y. Trevizan et al.
[2017b] also has proved Proposition 2.

Proposition 2. Solving LP2(S) is equivalent to solving M (therefore also Max-Prob
stage of MCMP). That is:

1. The optimal objective value V ∗
LP2 of LP2(S) is equivalent to pmax of S.

2. The optimal solution y∗ of LP2(S) allows us to directly derive a Max-Prob policy
π ∈ ΠMP.

With Proposition 1 and 2, we can summarise the preceding background as follows: to
solve an SSP with unavoidable dead ends, we must decide between minimising cost or
risk. MCMP is a robust approach that prioritises risk minimisation while still considering
cost. It operates in two stages: the first stage solves the SSP under the Max-Prob
criterion, and the second stage uses the solution from the Max-Prob criterion to find the
Max-Prob policy with Min-Cost. Proposition 2 shows that stage 1 can be achieved by
solving LP 2, and Proposition 1 demonstrates that stage 2 can be achieved by solving
LP 1. As a result, the challenge of solving an SSP with unavoidable dead ends
under MCMP is reduced to solving two LP problems.

Furthermore, Trevizan et al. [2016, 2017b] propose how this process can be efficiently
managed using i-dual, the only heuristic search algorithms available for efficiently solving
SSP under MCMP criterion. In the next section, we introduce the concept of heuristic
search while addressing i-dual in the end of Section 2.3.2.
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2.3 Heuristic Search

2.3 Heuristic Search

In this thesis, we assume the audience to be familiar with the fundamental concepts and
notations of graph theory, including the definition for graph, weighted graph, weighted
multi-edge graph and the directed version of those graphs. For a more comprehensive
reading, we refer the audience to Gross et al. [2018] and Trudeau [2013].

Solving a planning task through search can be understood as a process of iteratively
exploring a graph, where each node represents an unexplored state and the edges de-
note the relationships between these states. During exploration, we keep expanding the
unexplored nodes and adding new unexplored nodes into the graph until a goal state is
found [Russell and Norvig, 2016].

Heuristic search, on the other hand, is a widely used method that employs heuristic
evaluation functions to estimate the value of each node before formally evaluating it.
This approach guides the search process more efficiently by concentrating exploration on
promising areas [Bonet, 2001; Russell and Norvig, 2016]. Many state-of-the-art planners,
such as (L)RTDP [Bonet and Geffner, 2003] and iLAO* [Hansen and Zilberstein, 2001],
rely on heuristic search to efficiently find solutions in large and complex domains.

In this section, we first define the concept of a heuristic as an evaluation function.
We then explaining the concept of admissibility, and provide two example heuristics:
Max-Cost and Fast-Forward. Finally, we explore the widely adopted heuristic search
algorithm A* and its variant i-dual which allows heuristic search to be performed in
dual space.

2.3.1 Heuristic Functions

Definition 12 (Heuristic Function). A heuristic function h : S 7→ R provides an es-
timate of the cost to reach the goal from a given state. This estimate is called the
heuristic value. In this thesis, both “heuristic” and “heuristic function” refer to this
definition. ■

In the rest of the section, we will explain heuristic in minimisation problem where the
objective is to minimise the cost unless otherwise stated. By utilising a heuristic, search
planners can prioritise paths that appear more promising (with lower heuristic values),
potentially saving time by reducing the number of state expansions and improving the
planning efficiency.

An important property of a heuristic is its admissibility. A heuristic for a minimisation
problem is considered admissible if it never overestimates the true cost of reaching the
goal from a given state. Formally, this is expressed as ∀s, h(s) ≤ h∗(s), where h∗(s)
is the true cost function for s in a minimisation problem. However, in a maximisation
problem where the objective is to maximise instead minimise the cost (e.g. in Max-Prob
SSP, we are trying to maximise the expected probability to reach the goal), an admis-
sible heuristic never underestimate the true cost, i.e., ∀s, h(s) ≥ h∗(s) in maximisation
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problems [Pearl, 1984]. Admissibility ensures that the heuristic provides optimistic es-
timates, which guarantees an optimal solution in some search algorithms, such as A*
[Hart et al., 1968] or i-dual [Trevizan et al., 2016].

Conversely, inadmissible heuristics may overestimate the cost; however, they are often
more informative than admissible ones therefore enables more aggressive pruning of
nodes during the search. This can make them faster, though at the risk of missing
the optimal solution [Geffner and Haslum, 2000]. Thus, while admissible heuristics
ensure finding optimal paths in algorithms like A*, non-admissible heuristics can increase
efficiency but without the same guarantees [Bonet, 2001].

Two well-known examples of these heuristics in classical planning are the admissible
heuristic Max-Cost (hmax) [Bonet, 2001] and the inadmissible heuristic Fast-Forward
(hFF) [Hoffmann and Nebel, 2001]. Both can be computed via a relaxed plan, which is
obtained efficiently from the relaxed version of the planning problem ScL+: a ScL where
the delete effects of actions are ignored. hmax estimates cost by returning the highest
cost required to achieve any individual proposition in the relaxed plan. In contrast, hFF

estimates cost by counting the number of actions in the relaxed plan [Russell and Norvig,
2016]. As we have discussed above, hFF is typically more informative than hmax and
perform better when guiding search, but does not guarantee optimal solution in some
algorithms like A* or i-dual.

2.3.2 Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions to estimate costs before expanding
new nodes, enabling the search to focus on promising regions and thus accelerating the
solving process [Russell and Norvig, 2016]. Best-First Search (BFS) is a general strategy
that extends traditional breadth-first and depth-first search methods by employing a
priority queue to determine the order of node expansion. The selection of nodes for
expansion is typically based on an evaluation function, often referred to as the cost of
a node [Russell and Norvig, 2016]. In BFS on a directed graph G = ⟨V,A⟩, with an
unexpanded node set N ⊆ V , the node n ∈ N selected for expansion is the one with the
lowest evaluation function value, defined as argminn f(n).

The search process in a classical planning problem Sc can be conceptualised as a path-
finding task in a directed graph, where nodes represent states and edges correspond to
actions. A well-known example of BFS applied to a classical planning problem Sc is
the A* search algorithm [Hart et al., 1968]. A* uses an evaluation function defined in
Equation 2.10:

f(s) = g(s) + h(s) (2.10)

where g(s) is the cost to reach state s from s0, and h(s) is the heuristic estimate of the
cost to reach the goal from s.

The intuition behind A* is that it avoids expanding paths already known to be expensive.
A* is guaranteed to terminate and is complete, meaning it will always find a plan if one
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Figure 2.5: An example from Patel [2014] for a simple path finding problem solved using
A* with an admissible heuristic. The objective is to move the star to the X
block with minimum steps. The heuristic is the Manhattan distance with the
X block. Under such heuristic, A* is guaranteed to reach optimal solution.
The optimal path is highlighted in white, explored nodes (blocks) are marked
with corresponding f value as defined in Equation 2.10.

exists, regardless of how uninformative the heuristic is. Furthermore, it has been proven
that if the heuristic function h is admissible, then A* is guaranteed to return the optimal
plan [Russell and Norvig, 2016]. Figure 2.5 provides an illustrative example where A*
finds an optimal solution using Manhattan distance as the heuristic function.

One of the state-of-the-art heuristic search algorithms for solving SSPs is i-dual [Trevizan
et al., 2016]. It is a variant of A* which takes input: an SSP S, an LP formulation LP,
and a corresponding heuristic function h that estimates its objective function VLP . It
performs heuristic search in a manner similar to A* and solve LP(S). Meanwhile, i-dual
has been proven to have the same properties as A* [Trevizan et al., 2016] as outlined
below in Proposition 3 and 4.

Proposition 3. i-dual guarantees the optimal solution V ∗
L for an LP(S) if the input

heuristic function h is admissible with respect to the optimal objective value V ∗
L of LP(S)

[Trevizan et al., 2016].

Proposition 4. i-dual guarantees termination and is complete, meaning it will always
find a solution for LP(S) if one exists, regardless of the quality of the input heuristic
[Trevizan et al., 2016].

Recall Propositions 1 and 2 establish that solving SSPs under the MCMP criterion can be
accomplished by solving LP 1 and LP 2. Trevizan et al. [2017b] further demonstrates that
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this can be efficiently achieved by using i-dual to solve LP 1 and LP 2, with corresponding
heuristic functions provided as stated in Proposition 5 and Theorem 1.

Theorem 1. For an SSP S, solving LP2(S) using i-dual with any heuristic hp for pmax

provides a lower bound on pmax. Furthermore, if hp is admissible, then we can directly
obtain pmax (which solves the first(Max-Prob) stage of MCMP) [Trevizan et al., 2017b].

Please notice that the formal proof can be found in Trevizan et al. [2017b] as a result of
combining Proposition 3 and 4.

Proposition 5. For an SSP S, solving LP1(S) using i-dual with pmax and any admissible
cost heuristic h provides a solution to the second (Min-Cost) stage of MCMP [Trevizan
et al., 2017b].

To the best of our knowledge, i-dual is the only heuristic search algorithm developed so
far that can solve SSPs under the MCMP criterion with unavoidable dead ends. This
concludes the final part of our background discussion on model-based approaches. We
will now shift our focus to machine learning techniques from a model-free perspective.

2.4 Machine Learning

Machine learning (ML) is another sub-field of AI that focuses on the development of
algorithms which is able to increase accuracy on performing certain tasks through learn-
ing from input data [Theodoridis, 2015]. Tasks that ML models perform can be broadly
classified into two categories:

• Classification: The task here is to predict discrete labels or categories. For
example, determining whether an email is spam or not is a classification problem.

• Regression: In regression tasks, the goal is to predict continuous numerical values.
An example would be predicting house prices based on features like size, location,
and number of rooms.

In this thesis, we will focus on regression tasks. We first introduce what a regression
task is, with a brief highlight on traditional models built for those tasks in Section 2.4.1.
We then shift our focus to Graph Neural Networks and explore how they learn features
from graphs in Section 2.4.2. Section 2.4.3 brings an end to background by introducing
the well-known Weisfeiler-Lehman Algorithms.

2.4.1 Regression Tasks

A regression task is a type of supervised learning task where a model learns to predict a
target from a set of training samples, each containing input data with its corresponding
expected prediction result [Theodoridis, 2015]. We provide its formal definition below:

Definition 13 (Regression Task). A regression task involves estimating a function F
that maps input variables x (features) to a continuous output variable y (target values).
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Given a set of training data {(xn, yn)}Nn=1, where xn ∈ X (X can represent any type of
data) and yn ∈ R, the objective is to find a function F such that, for any new input
feature x∗ with its corresponding target y∗, the function outputs ŷ = F(x∗), where ŷ is
a good prediction of y∗. ■

Mean Squared Error (MSE) is a common metric used to evaluate the performance of a
regression model. It measures the average of the squares of the differences between the
true values y and the predicted values ŷ. Mathematically, it is defined as:

MSE({(xi, yi)}Ni=1,F) =
1

N

N∑
i=1

(yi −F(xi))2 (2.11)

where:

• {(xi, yi)}Ni=1 is the evaluation dataset with N observations.

• xi is the feature data for observation i, with yi being the true target.

• F is the regression function to be evaluated.

MSE penalizes larger errors more than smaller ones because the errors are squared,
making it sensitive to outliers. MSE is commonly applied as an evaluation strategy for
quantifying the model’s performance during both training (the process for the algorithm
to learn F from input training data) and testing (the process for evaluating the learned
model on new datasets). The lower the MSE, the better the model predicts the data.

Statistical Machine Learning (SML) is a subfield of machine learning that emphasizes
the use of statistical models and inference to make predictions or decisions based on
data [Bishop and Nasrabadi, 2006]. The core idea is to create models that generalize
well to new, unseen data by understanding the underlying probability distributions and
relationships within the data. Two common SML approaches for regression tasks are
Support Vector Regression and Gaussian Process Regression.

Support Vector Regression (SVR) [Smola and Schölkopf, 2004] extends Support Vector
Machines [Cortes, 1995] to regression tasks. SVR uses kernels to map input data into a
higher-dimensional space and finds the best-fitting line (hyperplane) within a specified
margin of error. It minimizes prediction errors while controlling model complexity by
penalizing deviations beyond this margin. However, SVR will not be implemented in
this thesis.

Gaussian Process Regression (GPR) [Williams and Rasmussen, 2006] is a non-parametric,
probabilistic model used for regression tasks. It assumes that the underlying function F
that maps input x to output y is a sample from a Gaussian Process. A Gaussian Process
(GP) [Adler, 2010] is defined as a collection of random variables, any finite subset of
which follows a multivariate Gaussian distribution. A GP is fully specified by its mean
function µ(x) and covariance function k(x, x′), which captures relationships between
input points. Formally, it is written as:

F(x) ∼ GP(µ(x), k(x, x′)) (2.12)
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where:

• xi ∈ Rd is a d-dimensional vector.

• GP(µ(x), k(x, x′)) is a GP with mean function µ(x) and covariance function k(x, x′).

• Both µ(x) and k(x, x′) are often defined using kernel functions [Bishop and Nasrabadi,
2006].

Given a set of training data (x, y), the GP regression model uses Bayesian inference to
learn the distribution of F that is most likely to have generated the data. This involves
computing the posterior distribution of F given the data, which is defined as:

p(F | x, y) = p(y | x,F)p(F)
p(y | x)

where p(y | x,F) is the likelihood of the data given the function F ; p(F) is the prior
distribution of F ; and p(y | x) is the marginal likelihood of the data.

Once the posterior distribution of F has been learned, the model can make predictions
at new test points x∗ by computing the posterior predictive distribution F∗ as below:

p(F∗ | x∗, y, x) =
∫
p(F∗ | x∗,F)p(F | y, x) dF

where the mean and variance of the final predictive distribution F∗ provide the predicted
target ŷ for x∗ and the estimate of uncertainty respectively. In this thesis, we will use
FGΘ(x) to denote a GPR model with parameters Θ that performs regression task on
vector x.

2.4.2 Graph Neural Networks

In this thesis, we assume the audience to be familiar with the basis of graph theory.
However for clarification purpose, we will provide definition for three different types of
undirected graphs that is going to be used along the rest of the thesis [Gross et al., 2018].

Definition 14 (Graph). An undirected graph G = ⟨V,E⟩ is a mathematical structure
consisting of:

• V , a finite set of nodes;
• E ⊆ V × V , a finite set of edges.

We denote n as the number of nodes |V | and m as the number of edges |E|. ■

Definition 15 (Weighted Graph). A weighted graph G = ⟨V,E, ωV , ωE⟩ is an undirected
graph where each node and edge is associated with corresponding weight. The node
weight and edge weight are defined by two mapping functions: ωV : V 7→ X and ωE :
E 7→ X where X can be any type. ■
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A weighted graph allows nodes and edges to carry attributes, providing additional in-
formation for many practical applications [Gross et al., 2018]. Notice that in this thesis,
we will mainly be using a simplified version of it with only node features.

Definition 16 (Weighted Multi-Edge Graph). A weighted multi-edge graph or weighted
multi-graph G = ⟨V,E, ωV , ωE , κ,Σ⟩ is an undirected graph where each node is associated
with a weight and each edge is associated with a weight and a colour, where:

• E ⊆ V × V , a finite list of edges;

• The node weight and edge weight are defined by two mapping functions: ωV : V 7→
X and ωE : E 7→ X where X can be any type;

• The edge colour (or edge type) is defined by a mapping function κ : E 7→ Σ, where
Σ is a set of colours (usually represented as a set of integers).

■

In the remainder of this thesis, we will use term multi-graph to refer to a weighted multi-
edge graph. A multi-graph allows both nodes and edges to carry attributes, enhancing
expressiveness. It is commonly used in graph-related machine learning tasks. A key
difference between multi-graphs and general graphs is that multi-graphs allow multiple
edges with different colours between the same pair of nodes. The coloured neighbourhood
of a node v ∈ V in a multi-graph G, under edge colour ι, is the set of all neighbours of
v connected through an edge with colour ι, denoted as Nι(v) = {u ∈ V | e = ⟨u, v⟩ =
⟨v, u⟩ ∈ E, κ(e) = ι}. The total neighbourhood of a node v ∈ V in a multi-graph G is the
set of all neighbours of v, denoted as N (v) =

⋃
ι∈ΣNι(v).

A Graph Neural Network (GNN) is a type of neural network designed to operate on
graph-structured data. Unlike traditional neural networks that work on regular data
structures like grids (images) or sequences (text), GNNs are tailored to capture the
complex, non-Euclidean relationships present in graphs. It can also be viewed as an op-
timisable transformation on all attributes of the graph that preserves graph symmetries.
GNNs are highly applicable given that many structures can be represented as graphs
[Zhou et al., 2020]. In this subsection, we assume that the readers are familiar with
mainstream deep learning concepts such as neural networks and their operation.

A Message Passing Neural Network (MPNN) is a specific type of GNN [Gilmer et al.,
2017]. Given a weighted graph from Definition 15 G = ⟨V,E, ωV , ωE⟩, where ωV : V 7→
Rd and ωE : E 7→ Re are feature mapping functions that map each node and edge to their
corresponding features, an MPNN iteratively updates node embeddings of G locally in
one-hop neighbourhoods with the general message-passing (Equation 2.13) defined as
following:

h(t+1)
u = φ(t)

(
h(t)u , agg

(t)
v∈N (u)f

(t)
(
h(t)u , h(t)v , e(t)v,u

))
(2.13)

where in the t-th iteration or layer of the network:

• h
(t)
u ∈ RF (t) is the embedding of node u, with h

(0)
u = ωV (u);
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• e
(t)
v,u ∈ RD(t) is the embedding of the edge (v, u), with e0v,u = ωE(ev,u);

Here, φ(t) and f (t) are arbitrary almost everywhere differentiable functions, and agg(t) is
typically a differentiable permutation-invariant function acting on sets of vectors, such
as sum, mean, or component-wise max [Chen et al., 2023a].

For graphs without edge features G = ⟨V,E, ωV ⟩ (which is going to be the major focus
within this research), equation 2.13 can be simplified to equation 2.14:

h(t+1)
u = φ(t)

(
h(t)u , agg

(t)
v∈N (u)f

(t)
(
h(t)u , h(t)v

))
. (2.14)

To retain the “neural network” component within an MPNN, it is typical for φ or f
to incorporate learnable parameters; for example, φ can be modelled by a feed-forward
network. To generate a graph representation for an input, MPNNs commonly aggregate
all node embeddings after a series of message-passing updates using a graph readout
function Φ, which is typically a differentiable, permutation-invariant function. Specifi-
cally, for an MPNN with T total iterations and message-passing equation 2.14, the final

graph embedding is given by hG = Φu∈V (h
(T )
u ). To perform a regression task, this graph

embedding hG is often passed through one or more fully connected layers to produce
the final output [Chen et al., 2023a]. In this thesis, we will use FMΘ(G) to denote a
MPNN regression model with parameters Θ that performs regression task on graph G.

Before moving onto the next section, we also introduce one-hot encoding. One-hot
encoding is a widely used technique in ML where categorical variables are converted
into binary vectors. Each category is represented by a vector containing all zeros except
for a single 1 at the index corresponding to that category [Rumelhart et al., 1986].
In GNNs, one-hot encoding is frequently applied in the node feature weight function
ωV , allowing the network to effectively distinguish and process features of nodes from
different categories.

2.4.3 Weisfeiler-Lehman Algorithms

In graph theory, two graphs G1 and G2 are said to be isomorphic if there exists a one-
to-one correspondence (or bijection) between their vertex sets that preserves adjacency.
This means that the structure of connections between vertices in G1 can be perfectly
mapped onto G2, making them structurally identical. Formally, graphs G1 = ⟨V1, E1⟩
and G2 = ⟨V2, E2⟩ are isomorphic if there exists a bijection φ : V1 7→ V2 such that
(u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2 [Gross et al., 2018].

The k-Weisfeiler-Lehman (k-WL) algorithm was originally developed to provide tests
for graph isomorphism. It iteratively refines node colours by considering tuples of k
nodes and their neighbouring structures, allowing the algorithm to distinguish between
an increasing number of non-isomorphic graphs as k increases. The k+1-WL algorithm
subsumes the k-WL algorithm, meaning it can distinguish a broader class of graphs
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[Weisfeiler and Leman, 1968]. However, the complexity of k-WL grows exponentially
with k, making it less efficient for large graphs [Cai et al., 1992].

The 1-WL algorithm, also known as the colour refinement algorithm, is a special case of
the k-WL algorithm, operating on individual nodes. Algorithm 1 illustrates the process
of the 1-WL algorithm on a simplified weighted graph G = ⟨V,E, ωV ⟩, following Defini-
tion 15, where edges are unweighted and ωV : V 7→ ΣV is a node colouring function that
assigns each node a specific colour. Such a graph G is referred to as a Coloured Graph.
Additionally, we use {{. . .}} to denote a multiset, which allows multiple occurrences of
the same element.

Algorithm 1: 1-WL Algorithm

Input : Coloured Graph G = ⟨V,E, ω⟩ where ω : V 7→ N is the node colouring
function; A max iteration number J

Output: A multiset of node colours seen over all iterations.
1 Procedure 1-WLAlgorithm(G, J)
2 ω0(v)← ω(v), ∀v ∈ V // Initial coloring for all nodes
3 for j = 1, . . . , J do
4 for v ∈ V do
5 ωj(v)← hash(ωj−1(v), {{ωj−1(u) | u ∈ N (v)}})

6 return
⋃

j=0,...,h{{ωj(v) | v ∈ V }}

The 1-WL algorithm begins by taking the graph G and a predefined maximum number
of iterations J as input. It iteratively updates each node’s colour by hashing the current
colour of the node with the multiset of its neighbours’ colours, continuing this process
until the colours stabilise or the maximum number of iterations is reached (Lines 2–5).
The algorithm returns a multiset of node colours seen over all iterations (line-6). If two
different multisets are produced for two graphs G1 and G2, then the graphs are non-
isomorphic. However, if the algorithm outputs the same multisets for two graphs, we
cannot conclusively determine whether they are isomorphic.

The 1-WL algorithm is computationally efficient, requiring at most |V |−1 iterations for a
graph with node set V [Weisfeiler and Leman, 1968]. One of its key applications is in the
construction of graph kernels, where the final multiset of node colours is transformed
into a feature vector, enabling the graph to be used in machine learning tasks with
statistical machine learning (SML) models [Shervashidze et al., 2011; Chen et al., 2024].
This approach has been shown to be effective, as MPNNs have proved to be are at
most as powerful as colour refinement [Xu et al., 2018]. In this thesis, we employ
a variant of the 1-WL algorithm to perform regression tasks on graphs, which will be
detailed later in Chapter 4.

This concludes the last part of background. In the next section, we provide a summary
of all the notations used throughout the entire chapter in Table 2.1.
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2.5 Summary of Notations

Table 2.1: Summary of notations.

Notation Description

S = ⟨S, s0, Sg, A, P, C⟩ A Stochastic Shortest Path Problem (SSP)
S A set of states of an SSP
s0 ∈ S An initial state of an SSP
Sg ⊆ S A non-empty set of goal states of an SSP
A A set of actions of an SSP
A(s) All actions applicable in state s ∈ S
P : S × S ×A 7→ [0, 1] A probabilistic transition function
C : S ×A 7→ R+ A cost function
π : S ×A 7→ [0, 1] One policy function as a solution to an SSP
Sπ ⊆ S The domain of π(s0)
V π : S 7→ R≥0 The state-value function
Qπ : S ×A 7→ R≥0 The action-state-value function
π∗ = argmin

π
V π(s0) Optimal solution to an SSP

V ∗ Optimal state-value function
Q∗ Optimal action-state-value function
Π The set of all (deterministic) policies for an SSP
ΠMP The set of all Max-Prob policies
Tπ,s A trace from s following π ∈ Π
Tπ,s The set of all traces of π from s
T G
π,s The set of all traces that reach the goal

T DE
π,s The complement of T G

π,s, i.e., the set of all traces that
reach dead ends

Sc = ⟨S, s0, Sg, A, Pc, C⟩ A classical planning problem
ScL = ⟨D, O, s0, g⟩ A lifted classical planning problem
D = ⟨P,A⟩ The domain of a lifted SSP
ScL+ Relaxed version of the planning problem ScL
pmax = maxπ∈Π P (T G

π,s0) Maximum goal probability in Max-Prob Criterion

V p : S 7→ [0, 1] The probabilistic value function under Max-Prob with
modified Bellman

Qp : S ×A 7→ [0, 1] The probabilistic action-state-value function under Max-
Prob with modified Bellman

ψ : T 7→ T A truncation function
LP(S) The LP formulation of an SSP
VLP Objective function of an LP
y Dual variables of a LP
y∗ Optimal dual variables of an LP

Continued on next page
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Notation Description

G = ⟨V,E⟩ A graph G with the set of vertices V and edges E
ωV : V 7→ X A node weight mapping function of graph
ωE : E 7→ X An edge weight mapping function of graph
κ : E 7→ Σ An edge color mapping function of graph
G = ⟨V,E, ωV , ωE⟩ A weighted graph with the set of vertices V and edges

E, the node weight mapping ωV , and the edge weight
mapping ωE

G = ⟨V,E, ωV , ωE , κ,Σ⟩ A weighted multi-edge graph G with the set of vertices
V , list of edges E, node weight mapping ωV , edge weight
mapping ωE , edge color mapping κ, and a set of colors Σ

G = ⟨V,A⟩ A directed graph G with the set of vertices V and arcs A
N (v) Neighborhood of v in G
Nl(v) Colored neighborhood of v in G connected by edge with

color l
h : S 7→ R A heuristic function
hmax Max-Cost heuristic
hFF Fast-Forward heuristic
F A regression task function
GP(µ(x), k(x, x′)) A Gaussian Process
µ(x) A mean function of a GP
k(x, x′) A covariance function of a GP
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Chapter 3

Related Work

The aim of this chapter is to review the works closely related to our research, providing
a concise discussion on the challenges they face and their limitations. We divide the
related works into two sections: Section 3.1 addresses the area relates to solving the Max-
Prob criterion; while Section 3.2 focuses on the area of learning for planning. Section
3.3 concludes the chapter with an discussion on how our motivation stems from the
challenges in these two areas, as well as an emphasis on the research objectives that align
with those motivations. By further elucidating our motivation and research objectives,
we expect to offer the audience a conceptual understanding of the significance and novelty
of our contribution, which are designed to address these challenges. Consequently, this
facilitates a smooth and logical transition to the next chapter.

3.1 Solving Max-Prob

The Max-Prob criterion for SSPs, as defined in Definition 9, involves finding a policy
that maximizes the probability of reaching a goal in an SSP. It also serves as the nec-
essary preliminary stage for the more robust MCMP criterion (Definition 11). Several
approaches have been proposed to solve Max-Prob problems in the past decade.

3.1.1 Algorithms for Solving Max-Prob SSPs

Before discussing the algorithms for solving Max-Prob SSPs, we first introduce some
algorithms that are commonly used to solve standard SSPs. Numerous existing algo-
rithms are available for solving SSPs without dead ends including: Value Iteration (VI)
[Howard, 1960], which computes the solution for Bellman Equations (Equation 2.5, 2.6)
in an iterative manner; linear programming [Puterman, 2014], which utilises constraints
to represent transition probabilities; and the well-established heuristic search algorithms
such as LAO* [Hansen and Zilberstein, 2001] and (L)RTDP [Bonet and Geffner, 2003].
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Collectively, these methods are referred to as primal-space algorithms, as they directly
compute the optimal solution for SSPs. Aside from primal-space algorithms, policy iter-
ation [Howard, 1960] solves dead-end-free SSPs by alternating between policy evaluation
and policy improvement; while dual linear programming [d’Epenoux, 1963] solves SSPs
by solve their dual LP representations.

As outlined in Section 9, SSPs under the Max-Prob criterion can be reformulated as
standard SSPs by shifting the objective from minimising expected cost to maximising
the probability of reaching the goal. The modified Bellman equations (2.5) provide
one approach for solving such Max-Prob SSPs with algorithms designed for standard
SSPs (e.g. VI). However, when the SSPs contain cycles, directly solving the modified
Bellman may return non-optimal fixed-point solutions. In order to solve Max-Prob SSPs
with cycles, a few methods have been developed by extending the ideas from algorithms
that solves standard SSPs. For instance, VI on the modified Bellman equations can
still be applied by initiating the algorithm with a value of 1 for all goal states and 0
elsewhere. Another approach for solving Max-Prob SSPs with circles involves heuristic
search algorithms like FRET [Kolobov et al., 2011] and FRET-π [Steinmetz et al., 2016],
both of which alternate between: finding a fixed-point solution for the maximum goal
probability using an optimal heuristic search algorithm for SSPs; and post-processing
the solution to remove cycles. Since both FRET and FRET-π are heuristic search
algorithms, they require a heuristic function that estimates the maximum probability of
reaching the goal, pmax.

The only other approach for solving Max-Prob SSPs is i-dual, which achieves this by
solving the first stage of MCMP as described in Theorem 1. This method is our primary
focus, as it has been shown to be more efficient than the above approaches, even when us-
ing an average-level heuristic function for pmax adapted from classical planning problems
[Trevizan et al., 2017b, 2016]. Therefore, i-dual has potential for further performance
gains, especially with improvements in heuristic functions for pmax.

3.1.2 Heuristic Functions for Max-Prob

A major advantage of heuristic search algorithms, especially in the Max-Prob context, is
their capacity to leverage well-designed heuristic functions to improve search efficiency.
However, only limited efforts have been made to design effective heuristic functions
for pmax, and most existing attempts lack probabilistic encoding [Klößner et al., 2021].
For instance, E-Mart́ın et al. [2014]; Keyder and Geffner [2008] explore determinisation
by first converting SSPs into classical planning problems and then generating heuristic
functions based on the maximum-likelihood sequential plan. As discussed in Section
2.1.2, this process often disregards crucial probabilistic information, oversimplifying the
original SSP and significantly altering the problem’s nature. Consequently, heuristic
functions derived from determinisation are often less informative. Trevizan et al. [2017a]
introduce two admissible heuristics for the Min-Cost stage that consider probabilities:
the projection occupation measure heuristic, hpom, and the regrouped operator-counting
heuristic, hroc. Both are domain-independent and admissible, demonstrating strong per-
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formance across multiple domains for Min-Cost tasks. However, they are not designed for
Max-Prob SSPs and therefore underperform when applied to Max-Prob SSPs [Klößner
et al., 2021].

Most other heuristic functions for Max-Prob rely on combining determinisation with
classical planning heuristics. These functions apply classical planning heuristic func-
tions, which estimate the cost to reach the goal on the determinised SSPs to obtain
the heuristic value for pmax. The resulting heuristic function for pmax returns either 0
or 1, where 0 is returned only if the determinised SSP is unsolvable (with an infinite
cost estimate to reach the goal) and 1 otherwise. This 0-or-1 heuristic is admissible but
offers little information, particularly when dealing with intermediate states with partial
goal probabilities [?Trevizan et al., 2017b; Klauck et al., 2020]. The sole exception is
Max-Prob Pattern Databases (MPDBs) [Klößner et al., 2021], which effectively guide
search in Max-Prob tasks by abstracting the problem into smaller subproblems that pre-
serve probabilistic transitions. MPDBs provide admissible heuristics that upper-bound
the real pmax, encoding probabilistic information directly through unique probabilities
for abstract transitions. Nevertheless, MPDBs still fail to outperform 0-or-1 heuristics
generated from hmax (referred to hereafter as “0− 1 hmax”) in many domains, especially
cyclic, resource-unconstrained environments, which are the focus of our study. In conclu-
sion, despite the significant loss of information, 0− 1 hmax remains the best-performing
heuristic for predicting pmax when applied to heuristic search algorithms on our testbeds,
highlighting the need for more robust heuristic functions for pmax.

3.2 Learning for Planning

The integration of ML into planning has evolved rapidly, driven by advances in DL and
its capacity to automatically learn complex relationships and patterns from data. Two
primary research directions have emerged in this area: learning generalised policies and
learning heuristics, with the latter being most relevant to our work.

3.2.1 Learning Generalised Policies

We begin by examining prior work on learning for planning through generalised policies.
A generalised policy is one that can be applied across all possible problems within a
given domain, rather than being limited to a specific instance. Similar to a heuristic
function, a generalised policy guides the agent’s actions, but instead of estimating costs
and relying on an explicit heuristic search algorithm to choose the next action, a model
with a learnt generalised policy selects the next action directly.

Action Schema Networks (ASNets) [Toyer et al., 2020] represent a significant develop-
ment in learning generalised policies for planning. ASNets leverage the relational struc-
ture of planning problems encoded in (P)PDDL to learn generalised policies without
requiring handcrafted input features. They employ a specialised neural network archi-
tecture comprising alternating action and proposition layers, sparsely connected based
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on the action schemas defined in (P)PDDL problems. This weight-sharing mechanism
provides theoretical guarantees for generalisation across problems of varying sizes within
a domain. However, ASNets are limited by their fixed receptive field, which restricts
their capacity for handling long chains of reasoning.

Other approaches to generalised policy learning use hand-crafted domain-specific trans-
lators to convert states into representations before feeding them into GCNs [Groshev
et al., 2018]. ToRPIDo [Bajpai and Garg, 2018] and TraPSNet [Garg et al., 2019] apply
standard GCN and Graph Attention Networks [Velickovic et al., 2017] to RDDL-defined
planning problems [Sanner et al., 2010]. While effective in domain-dependent settings,
these models impose limitations such as unary actions (actions with a single argument)
and binary non-fluents (static propositions with two arguments). In contrast, SymNet
[Garg et al., 2020] and SymNet2 [Sharma et al., 2022] extend generalised policy learning
for RDDL to handle more expressive domains without these restrictions.

As discussed in [Shen et al., 2020], however, learning heuristics is often a more robust
approach than learning actions from generalised policies. While combining a model
that learns generalised policies with a search algorithm is possible, as [Shen et al., 2019]
demonstrated by integrating Monte-Carlo Tree Search with ASNets. Using a model that
directly learns heuristics within a heuristic search algorithm provides formal guarantees.
For example, A* search is complete, meaning it will always find a solution if one exists,
regardless of the heuristic’s accuracy. This makes learned heuristics ideal for critical
applications, as the heuristic search algorithm can compensate for any inaccuracies or
misleading information in the learned heuristic.

3.2.2 Learning Heuristics

Learning heuristics for planning has become essential because it enables planners to man-
age large-scale, complex, and dynamic environments more effectively. This approach re-
duces reliance on domain expertise, enhances scalability, and integrates well with modern
ML techniques, making it possible to address problems that would otherwise be infeasible
with manually designed heuristics. This has significant implications for real-world ap-
plications where both performance and adaptability are essential [Bonet, 2001; Geffner,
2018; Salhi and Thompson, 2022].

Over the years, various methods have been proposed, focusing on both domain-dependent
and domain-independent heuristics. Early work such as Yoon et al. [2008] introduced
learning domain-dependent heuristics by predicting the difference between the optimal
heuristic h∗ and easily computed relaxed heuristics like hFF. Similarly, Samadi et al.
[2008] employed neural networks to learn either admissible or optimal heuristics for each
domain, using different loss functions and representing states as vectors of pre-computed
heuristics. However, these methods are limited by their heavy reliance on existing heuris-
tics. Arfaee et al. [2011] proposed a bootstrapping method that iteratively improves a
weak heuristic by generating training samples from search results. Although this ap-
proach incrementally strengthens the learned heuristic, it remains domain-dependent

39



3 Related Work

and is computationally expensive due to its iterative nature, without guaranteeing opti-
mality in a reasonable timeframe.

STRIPS-Hypergraph Networks (STRIPS-HGN) [Shen et al., 2020] marked a major shift
by introducing a deep learning approach to learning domain-independent heuristics from
scratch using a hypergraph representation of planning instances. Unlike previous ap-
proaches, STRIPS-HGN does not rely on pre-computed heuristics. However, it has
limitations: the model omits delete lists, lacks permutation invariance in its update
functions, imposes constraints on action preconditions and effects, and requires the con-
struction of the entire grounded hypergraph. These limitations result in performance
bottlenecks in complex domains. Nevertheless, STRIPS-HGN demonstrates better per-
formance than hmax on certain domains.

The Graphs Optimised fOr Search Evaluation (GOOSE) [Chen et al., 2023a, 2024] is
the state-of-the-art architecture for learning heuristics that addresses STRIPS-HGN’s
limitations. GOOSE introduces two graph-based representations for planning tasks:
Lifted Learning Graphs (LLG) [Chen et al., 2023a] and Instance Learning Graphs (ILG)
[Chen et al., 2024], enabling heuristic learning as a feature of the planning task for both
SML and GNN models. In the GOOSE framework, graphs can be input directly to
GNN models or transformed into a feature space for SML models using a variant of
the Weisfeiler-Lehman algorithm [Weisfeiler and Leman, 1968]. Both graphs are rep-
resented in a lifted form. LLG enables the learning of domain-independent heuristics
and outperforming all previous approaches including STRIPS-HGN. ILG, on the other
hand, refocuses on learning robust domain-dependent heuristics. The domain-dependent
heuristics learned from ILG achieve state-of-the-art performance when guiding heuristic
search, surpassing both hFF and heuristics learned from LLG.

In summary, GOOSE has introduced a new phase in learning for planning: separating
model learning from problem encoding. This allows various existing models, such as GCN
[Kipf and Welling, 2016], RGCN [Schlichtkrull et al., 2018], SVM [Cortes, 1995], and
GPR [Williams and Rasmussen, 2006], to learn the features from any problem set with a
certain representation without modifying the model’s structure. Chen et al. [2023a] also
provide extensive theoretical and empirical analysis that demonstrates the framework’s
efficiency and effectiveness over previous approaches, marking GOOSE a significant ad-
vancement in heuristic learning for planning in deterministic environments. However,
GOOSE enables only the learning of heuristics for classical planning problems, as its
graph encoding does not support SSPs. To the best of our knowledge, no research has
yet been undertaken to learn any heuristics for SSPs, particularly for learning heuristics
for pmax.
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3.3 Discussion

As discussed in Section 2.2, when unavoidable dead ends are present, it becomes impos-
sible to always reach the goal. In such cases, an SSP transforms into a multi-objective
optimisation problem, with conflicting goals of either maximising the probability of
reaching the goal or minimising the cost of doing so. Unavoidable dead ends are com-
mon in real-world SSPs; however, most SSP solvers rely on applying a finite-penalty
criterion to transform the SSP into a dead-end-free version before solving it, which is
often impractical in many domains. MCMP has been shown to be one of the most
advanced criteria for both efficiency and robustness when handling SSPs with unavoid-
able dead ends. Extending the Max-Prob criterion by estimating cost from all possible
traces, MCMP achieves a closer alignment with actual costs compared to previous crite-
ria, such as S3P and iSSPUDE. Furthermore, SSPs under MCMP can be formulated as
two LPs, enabling i-dual—the only heuristic search algorithm to operate on SSPs under
MCMP—to solve them far more efficiently than other criteria.

Since i-dual is a heuristic search algorithm, its performance is directly influenced by
the quality of heuristic functions that guide its search. In Section 3.1, we discussed the
development of robust heuristics, such as hroc and hpom, which efficiently guide i-dual in
the second (Min-Cost) stage of MCMP. However, the Max-Prob stage lacks an effective
heuristic capable of guiding the search by accurately estimating pmax. Moreover, prior
efforts to create effective heuristics for pmax have not incorporated machine learning
techniques, and most of them lack the encoding of probabilistic information. This leads
to our first research objective: to develop an effective heuristic for pmax using machine
learning techniques to allow consideration of probabilistic information, which can be
applied in the Max-Prob stage of i-dual to enhance its performance relative to current
state-of-the-art heuristics for pmax.

In Section 3.2, we showed that learning for planning has advanced rapidly over the
past decade, with the state-of-the-art approach being GOOSE, which learns heuristic
functions in deterministic domains. GOOSE’s robustness aligns naturally with our first
research objective, while its limitation to classical planning problems motivates our sec-
ond research objective: extending GOOSE to handle SSPs, enabling various models
to learn heuristic functions for pmax. Since GOOSE separates model learning from
problem representation, this can be achieved by designing a novel graph representation
beyond ILG and LLG that captures SSPs without losing valuable probabilistic informa-
tion; and by upgrading the framework to support model training on these new graph
representations.

Our research is centred around these two objectives, leading to the contributions dis-
cussed in Section 1.2. In the next chapter, we detail our methodology.
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Chapter 4

Learning for Planning Under
Uncertainty

The aim of this chapter is to present our approach that address learning for planning un-
der uncertainty, specifically detailing our implementation to achieve the two primary re-
search objectives: developing an effective heuristic for pmax using machine learning tech-
niques that incorporate probabilistic information within SSPs; and extending GOOSE to
accommodate SSPs by creating novel graph representations, thus enabling the learning
of SSP features including pmax.

We begin in Section 4.1 by formalising lifted SSPs, establishing the foundation and inspi-
ration for our graph-based methods. Here, we also provide examples of a lifted SSP and
its determinised version, which serve as illustrative references for the graph structures
introduced in the remainder of the chapter. Section 4.2 explores the structural design of
our novel graph representations, PLGS and PLGL, along with a comprehensive analysis
of how they address ILG’s limitations in learning-for-planning with SSPs, particularly in
terms of expressiveness and generalisability. In Section 4.3, we turn to the development
of learning frameworks, detailing how we accomplish the second objective by extending
GOOSE to enable both GNN and SML models to be trained to learn features such as
pmax of SSPs throughout various graph representations. We also demonstrate that our
graph representations are strictly more expressive than ILG therefore enhancing their ef-
fectiveness within these learning frameworks. Finally, Section 4.4 concludes the chapter
by explaining how we achieve the first research objective by transforming the predictions
from models learning pmax into a suitable Max-Prob heuristic.

4.1 Lifted Planning Problem Representations

Recall from Section 2.1.3 that we defined ScL (Definition 7) as the lifted representation of
a classical planning problem Sc (Definition 6). PDDL is a language that describes ScL in a
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format compatible with planning solvers. Younes and Littman [2004] extended PDDL to
PPDDL, which describes a lifted representation for SSPs, thus enabling solvers to accept
SSPs as input. In this section, we present a formal lifted representation for an SSP, SL,
which defines action schemas in Unary Nondeterminism Normal Form [Rintanen, 2003]
and can be expressed in PPDDL.

Definition 17 (Lifted SSPs). A lifted SSP is a tuple SL = ⟨D, O, s0, g⟩ where:

• O is the set of objects in the problem, objects are allowed to have different types.

• D = ⟨P,A⟩ is the domain for SL where:

– P is a set of first-order predicates representing the environment.

– A predicate P ∈ P has a tuple of parameters P (x1, . . . , xnP ) for nP ∈ N,
which we call an np-ary predicate.

– A predicate with all parameters assigned to objects o ∈ O is called a (grounded)
proposition. (A predicate can have no parameters, in which case it is grounded
by default).

– A is a set of action schemas.

– An action schema a ∈ A is a tuple ⟨∆(a),pre(a),outcomes(a), cost(a)⟩
where pre(a) = ⟨pre+(a),pre−(a)⟩ are the positive/negative preconditions;
outcomes(a) = [outcome(a1), outcome(a2), . . . , outcome(anJ )] is a list of
nJ ∈ N outcomes. Each outcome(aj) = ⟨probaj , add(aj),del(aj)⟩ is repre-
sented by a probability probaj for its occurrence when action a is applied,
along with corresponding add and delete effects add(aj), del(aj). ∆(a) is a
set of parameter variables; pre+(a), pre−(a), add(aj), del(aj) are sets of pred-
icates from P; cost(a) is a cost function, all instantiated with parameter
variables or objects in ∆(a) ∪ O. Like predicates, an action schema with
n = |∆(a)| parameter variables is an n-ary action schema.

• s0 is a set of propositions representing the initial state.

• g is a set of propositions representing the partial goal state.

■

As discussed in Section 2.1.3, lifted SSPs enable domain-independent planning by pro-
viding a more efficient and compact representation. In this thesis, both SL (Definition
17) and S (Definition 1) represent the same SSP but in different formats. We demon-
strate this by showing how a lifted SSP SL = ⟨⟨P,A⟩, O, s0, g⟩ can be transformed into
an SSP S = ⟨S′, s′0, S

′
g, A

′, P ′, C ′⟩ as follows:

◦ States S′: The predicate set P defines the set of all possible states S′ with objects from
O: a state s′ ∈ S′ is a set formed by valid combinations of propositions instantiated
by pairing predicates P ∈ P with objects o ∈ O.
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◦ Actions A′: The set of objects O can also instantiate action schemas A. All possible
instantiated actions form the set A′.

◦ Initial State s′0: The initial state s0 directly corresponds to the initial state s′0 in the
classical planning model.

◦ Goal States S′
g: The goal states S′

g comprise all superset states of the partial goal
state set g.

◦ Transition Function P ′ and Cost Function C ′: In S, the probabilistic transition
function P ′ maps a state and an action to their resulting states with a probability
distribution and a single cost described by C ′. If we denote a′ ∈ A′ as the action
instantiated from action schema a ∈ A with parameters O′ ⊆ (∆(a) ∪ O), then
P ′(s′|s, a′) and C ′(s, a′) can be defined as follows:

For each outcome(aj)(O
′), P ′(s′|s, a′) = probaj and C ′(s, a′) = cost(a)(O′) for all

combinations of s, s′ ∈ S′ × S′ where s is a superset of pre+(a)(O
′) containing no

elements from pre−(a)(O
′), with the corresponding s′ = s∪ add(aj)(O′) \ del(aj)(O′).

This specifies that action a′ can transition s to s′ with probability probaj and cost
C ′(s, a).

This process mirrors that discussed in Section 2.1.3, with the key difference being that
we consider all possible outcomes for action schemas rather than a single deterministic
outcome. Throughout this thesis, all our graph representations will be based on lifted
problem representations. To illustrate and differentiate the various graphs introduced
in the following section, we represent the Box Delivery Problem in both lifted SSP and
lifted classical planning problem formats (using all-outcome determinisation) as below:

Example 4. SLbox = ⟨⟨P,A⟩, O, s0, g⟩ is the lifted SSP representation (Definition 17) for
the Box Delivery Problem, where:

▷ O = {b−Box, c−City} contains two objects where b is a box of type “Box” (we use
B to represent a variable of type “Box”) and c is a city of type “City” (we use C to
represent a variable of type “City”).

▷ P = {no − destroy(B), arrived(B,C)} where no − destroy(B) indicates whether a
box B is intact, and arrived(B,C) indicates whether a box B has reached city C.

▷ A = ⟨fly, drive⟩ where both fly(B,C) and drive(B,C) are action schemas.

▷ fly is an action schema with parameters ∆(fly) = {B,C}; positive precondition
pre+(fly) = {no−destroy(B)}; negative precondition pre−(fly) = {arrived(B,C)};
and cost(fly) = $1000. This represents the action of delivering B to C by plane at a
cost of $1000, only if B is intact and has not reached C. fly has two possible effects:

– outcome1(fly) = ⟨0.05, {}, {no − destroy(B)}⟩, indicating a 5% chance that B is
destroyed in transit.
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– outcome2(fly) = ⟨0.95, {arrived(B,C)}, {}⟩, indicating a 95% chance that B is
successfully delivered to C.

▷ drive is another action schema with the same parameters and preconditions as fly,
but with a lower cost of $100. It represents the action of delivering B to C by car
at a cost of $100, provided B is intact and has not reached C. drive also has two
possible effects:

– outcome1(drive) = ⟨0.1, {}, {no− destroy(B)}⟩, indicating a 10% chance that B is
destroyed in transit.

– outcome2(drive) = ⟨0.9, {arrived(B,C)}, {}⟩, indicating a 90% chance that B is
successfully delivered to C.

▷ s0 = {no − destroy(b)}, g = {no − destroy(b), arrived(b, c)} indicates the objective
is to deliver a box b to city c without it being destroyed.

Example 5. ScLbox = ⟨⟨P,A⟩, O, s0, g⟩ is the lifted classical planning problem representa-
tion (Definition 7) for the Box Delivery Problem after all-outcome determinisation (see
Sections 2.1.2 and 4.3.3), where:

▷ P, O, s0, g are as defined in SLbox.

▷ A = ⟨fly − 1, f ly − 2, drive− 1, drive− 2⟩ are the determinised action schemas.

▷ fly−1 and fly−2 have the same parameters, preconditions, and cost as fly in SLbox,
but each represents a single deterministic effect, i.e., del(fly−1) = {no−destroy(B)}
and add(fly − 2) = {arrived(B,C)}.

▷ drive− 1 and drive− 2 have the same parameters, preconditions, and cost as drive
in SLbox, but each represents a single deterministic effect, i.e., del(drive− 1) = {no−
destroy(B)} and add(drive− 2) = {arrived(B,C)}.

4.2 Representations as Learning Graphs

As discussed in Chapter 3, the state-of-the-art learning-for-planning framework GOOSE
translates lifted classical planning problems into graphs, enabling models to learn fea-
tures from these graphical representations. In Section 4.2.1, we begin by illustrating the
Instance Learning Graph from GOOSE, discussing its structure and potential limita-
tions when being applied to SSPs. We then introduce two novel graph representations
for SSPs in Sections 4.2.2 and 4.2.3 with a discussion on how they address limitations
of ILG.

We use the lifted representations for the box delivery example (SLbox and ScLbox) through-
out this section to illustrate the graphs and provide insight into their structural design.
All graph representations are given as (undirected) weighted multi-edge graphs (Defini-
tion 16), with omitted edge weights, denoted as G = ⟨V,E, ω, κ,Σ⟩. Here, ω : V 7→ Rd

represents the weight mapping function, which assigns each node a corresponding feature
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vector in Rd. This format directly aligns with the expected input structure for GNNs, as
discussed later in Section 4.3.1. We will further show how G can be easily transformed
into a colour graph, enabling SML models to process it as input in Section 4.3.2.

4.2.1 Instance Learning Graph

The Instance Learning Graph (ILG) is a graph representation that enables models to
learn features from classical planning problems with state-of-the-art accuracy through
the GOOSE framework [Chen et al., 2024]. It can be formally defined as follows:

Definition 18 (Instance Learning Graph). An Instance Learning Graph (ILG) rep-
resentation of a lifted classical planning problem ScL = ⟨⟨P,A⟩, O, s0, g⟩ is the graph
GILG = ⟨V,E, ω, κ,Σ⟩ where

• V = O ∪ s0 ∪ g is an ordered set of nodes.

• E =
⋃

p=P (o1,...,onp )∈s0∪g{(p, o1), . . . , (p, onp)} is the set of all edges.

• ω : V → Rd where d = 1 + 3 × |P|. For feature vector ω(v) ∈ Rd, v ∈ V we use
ω(v)[i] to denote the i-th element of ω(v). We have the following:

– ω(v)[1] = 1 if v is an object node, i.e., v ∈ O;

– ω(v)[3× j − 1] = 1 if v is the j-th element of the ordered set s0 ∪ g and v is an
“achieved goal proposition” (ag), i.e., v ∈ s0 ∩ g.

– ω(v)[3 × j] = 1 if v is the j-th element of the ordered set s0 ∪ g and v is an
“achieved non-goal proposition” (ap), i.e., v ∈ s0 \ g.

– ω(v)[3× j + 1] = 1 if v is the j-th element of the ordered set s0 ∪ g and v is an
“unachieved goal proposition” (ug), i.e., v ∈ g \ s0.

• Σ = {1, 2, . . . , argmaxP∈P nP }: the number of colours is equivalent to the maxi-
mum number of parameters within any single predicate P ∈ P.

• κ : E 7→ Σ is the colour function where κ(p, oi) = i.

■

Figure 4.1 shows the ILG representation of ScLbox as an illustrative example. Intuitively,
ILG only selects problem-specific information s0, g, O to create the graph nodes, so every
node is either an object node or a proposition node. Since ILG was originally designed
with node features represented by different colours, we use one-hot encoding to convert
colours into feature vectors as in Chen et al. [2024]. All object nodes share the same
feature, while proposition nodes are categorised as one of ag, ap, ug combined with their
predicate type; this creates a total of 1+3×|P| distinct features under one-hot encoding.
The edges link each proposition to its parameters, and the colour of each edge represents
the index of the object as parameter within the proposition connects to it.
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Figure 4.1: ILG representation of ScLbox. Different colours represent different node fea-
tures. The initial state no-destroy(b) represents an achieved goal for pred-
icate no-destroy(B), whereas the goal state arrived(b, c) corresponds to an
unachieved goal for predicate arrived(B,C). Edges connect proposition
nodes and their parameters (object nodes) with colours indicating the pa-
rameter indices, labelled as “arg-i”.

The ILG’s use of problem-specific information alone is due to its focus on learning
domain-dependent features from lifted classical planning problems [Chen et al., 2024].
This compact design makes ILG both efficient (quick to train and predict) and effective
(state-of-the-art performance in learning domain-specific heuristic values). Moreover,
ILG’s encoding can be easily adapted to lifted SSPs since ScL and SL share the same
s0, g, O. However, applying ILG to lifted SSPs reveals some limitations:

1. ILG assigns the same feature to all objects, regardless of their types. This can
limit expressiveness in domains where objects vary by type.

2. The current one-hot encoding for ILG’s node feature vector in Rd where d =
1 + 3× |P| is a direct translation from colour to feature vector, which is not very
efficient as GNN inputs due to the excessive length of the feature vector.

3. ILG is designed specifically for classical planning problems and thus does not en-
code probabilistic information, as probabilities reside within A, which is domain-
specific. This design stems from the assumption that classical planning problems
are relatively straightforward and that relationships between predicates and action
schemas are not overly complex, enabling model learning meaningful features from
solely problem-specific information. However, this assumption does not hold for
SSPs, which are often more challenging to solve, with problem domains encoding
crucial probabilistic relationships, particularly in SSP domains that may contain
cycles. The absence of domain-specific encoding in ILG can significantly reduce its
generalisability in learning-for-planning tasks with SSPs, especially when training
data is sparse. In such cases, the objects and propositions present across initial
and goal states in the training data are likely to represent only a small subset of
all possible objects and propositions in the domain, thereby limiting the model’s
ability to generalise effectively to new, unseen problems.
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To address these limitations, we design two graphs that represent lifted SSPs at different
levels of detail. In the following sections, we introduce our novel graph representations
and discuss how they overcome these limitations.

4.2.2 Probabilistic Learning Graph Small

To address the limitations of ILG when applied to lifted SSPs, we extend ILG to create
our first novel graph, the Probabilistic Learning Graph Small (PLGS), which, to the best
of our knowledge, is the first graph structure specifically designed to represent lifted SSPs
in a learning-for-planning task.

Definition 19 (Probabilistic Learning Graph Small). A Probabilistic Learning Graph
Small (PLGS) representation of a lifted SSP SL = ⟨⟨P,A⟩, O, s0, g⟩ is the graphGPLGS =
⟨V,E, ω, κ,Σ⟩ where

• V = O ∪ s0 ∪ g ∪ P ∪N(A) is an ordered set of nodes where:

– N(A) = A∪ {ai | a ∈ A, outcome(ai) ∈ outcomes(a)} is the set containing both
action schema nodes and their corresponding outcome nodes.

• E = Eparam ∪Eout ∪
⋃

e∈{add,del}Ee ∪
⋃

f∈{pre+,pre−}Ef ∪Eground is a set of edges
where:

– Eparam =
⋃

p=P (o1,...,onp )∈s0∪g{(p, o1), . . . , (p, onp)} is the set of parameter edges

that link object nodes with proposition nodes, as in ILG.

– Eout = {(a, ai) | a ∈ A, outcome(ai) ∈ outcomes(a)} is the set of outcome edges
that link each action schema node with its outcome nodes.

– Ee =
⋃

P∈e(a){(ai, P ) | a ∈ A, outcome(ai) ∈ outcomes(a)} is the set of ef-
fect edges that link outcome nodes with their corresponding add/delete effect
predicates.

– Ef =
⋃

P∈f(a){(a, P ) | a ∈ A} is the set of precondition edges that link action
schema nodes with their corresponding positive/negative precondition predi-
cates.

– Eground =
⋃

p=P (o1,...,onp )∈s0∪g{(p, P )} is the set of grounding edges that link

each grounded proposition to its predicate.

• ω : V → Rd where d = 1+ types(O)+ |P|+ |A|+1 and types(O) returns the total
number of types within the objects O. For feature vector ω(v) ∈ Rd, v ∈ V , we
use ω(v)[i] to denote the i-th element of ω(v). The following holds:

– ω(v)[1] = 1 if v is a ground proposition node, i.e., v ∈ s0 ∪ g;

– ω(v)[1+ j] = 1 if v is an object node v ∈ O and the type of v is the j-th element
within the ordered set types(O).
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– ω(v)[1+types(O)+j] = 1 if v is the j-th element of the ordered set P, indicating
it is a predicate node.

– ω(v)[1 + types(O) + |P| + j] = 1 if v is the j-th element of the ordered set A,
indicating it is an action schema node.

– ω(v)[−1] = probaj if v = aj is any outcome node with probability probaj .

• Σ = {1, 2, . . . , (I + 8)} where I = argmaxP∈P nP denotes the maximum number
of parameters within any single predicate P ∈ P. The total number of colours is
therefore I + 8.

• κ : E 7→ Σ is the colour function where:

– κ(p, oi) = i for (p, oi) ∈ Eparam.

– κ(e) = I + 1 for e ∈ Eout.

– κ(e) = I + 2 for e ∈ Eeff+ .

– κ(e) = I + 3 for e ∈ Eeff− .

– κ(e) = I + 4 for e ∈ Epre+ .

– κ(e) = I + 5 for e ∈ Epre− .

– κ(p, P ) = I + 6 for p ∈ s0 ∩ g, indicating p is ag.

– κ(p, P ) = I + 7 for p ∈ s0 \ g, indicating p is ap.

– κ(p, P ) = I + 8 for p ∈ g \ s0, indicating p is ug.

■

Figure 4.2 provides an illustrative example of the PLGS representation for SLbox. Intu-
itively, PLGS can be divided into a problem subgraph and a domain subgraph.

The problem subgraph can be viewed as an extension of ILG, focusing on problem-specific
information s0, g, O through three layers: the object layer, the (grounded) proposition
layer, and the predicate layer. In PLGS, object nodes encode type information such
that objects of different types have different features. Additionally, propositions are
encoded not as a single node with 3× |P| potential features, but as a combination of a
proposition node (where all proposition nodes share the same feature) and a predicate
node (with |P| potential features). Edges connecting these nodes can take on one of
three colours, corresponding to ag, ap, and ug. This modification reduces the feature
vector’s dimensionality by 2×|P|−1 without losing expressiveness, as the complexity is
shifted onto the edges. The edges connecting proposition nodes to object nodes are the
same as in ILG, representing the index of the object as a parameter in the proposition
it connects to.

In contrast, the domain subgraph captures domain-specific information, especially how
P and A interact. This subgraph includes three layers: predicate, outcome, and action
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Figure 4.2: PLGS representation of SLbox (with only action fly). Different colours repre-
sent different node features. Edges are labelled as per Definition 19. PLGS
can be interpreted as two subgraphs, referred to as “Problem subgraph” and
“Domain subgraph”.

schema. Each predicate and action schema, along with their associated outcomes, is en-
coded as a node in a lifted format (without instantiation by objects). Each predicate and
action schema node has a unique feature, while outcome nodes are characterised by the
probability of occurrence, represented as a value in [0, 1] rather than an one-hot encoding.
This encoding captures the probabilistic nature of action outcomes, distinguishing SSPs
from classical planning problems. Precondition/effect relationships between predicates
and action schema/outcome nodes are represented by distinct edges, with an additional
outcome edge linking each action schema to its outcomes. For different problems within
the same domain, this subgraph remains unchanged.

PLGS is designed to address ILG’s limitations when applied to SSPs. It allows ob-
jects to have unique features based on their types. As we demonstrate in Section 4.3.4,
this added information on object types increases the graph’s expressiveness in certain
domains. PLGS also changes the way propositions are encoded, reducing the feature
dimensionality for propositions by 2 × |P| − 1, making it more suitable as input for
GNNs. Furthermore, PLGS incorporates domain-specific knowledge of SSPs within the
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domain subgraph, embedding probabilistic information directly within the graph struc-
ture. Although the primary focus of this thesis is domain-dependent learning tasks, we
expect PLGS to provide improved generalisability in learning-for-planning tasks, espe-
cially with limited training data, compared to ILG. This is because problem subgraphs
or ILG contain only the objects and propositions present in initial and goal states; with
sparse training data, models learned from them may struggle to make predictions on
new graphs with previously unseen objects and propositions. The domain subgraph,
however, enables the model to learn general interactions between predicates and action
schemas across different problems within the same domain, as it remains complete and
static for every problem in that domain. This learned information can benefit predictions
on new problem subgraphs, as the connections between problem and domain subgraphs
via predicate layers also remain static across all problems.

PLGS is larger than ILG due to the inclusion of the domain subgraph, which requires
additional computational resources for training and evaluation. However, this can be
mitigated by pre-computing the domain subgraph for the entire problem domain, as we
discuss later in Section 2.4.1. By incorporating domain subgraphs, PLGS has the poten-
tial to be further adapted for domain-independent learning-for-planning tasks, similar
to what Chen et al. [2023a] achieved with LLG. Although this is beyond the scope of
this thesis, we explore it as a potential direction for future work in Section 6.2.

4.2.3 Probabilistic Learning Graph Large

In PLGS, the domain subgraph and problem subgraph can be considered as two distinct
parts, meaning we do not expect the model to learn directly from the domain subgraph
in ways that enhance learning on the problem subgraph. Instead, we expect the model to
learn relationships between various edges and nodes within the domain subgraph across
multiple problems within the same domain, which could indirectly support learning in
the problem subgraph through the connecting edges. For instance, in MPNN, each node
is influenced only by its neighbouring nodes within each training iteration, so it would
take four iterations for information from an action schema node to reach an object node.

One motivation for improving this structure is that, although predicates and actions
are lifted within the domain subgraph, we still expect the interactions between action
parameters and lifted predicates for outcome effects to mirror those that occur if they
were instantiated, i.e., they should interact the same way as actual objects do with
instantiated grounded propositions. For instance, edges representing parameter indices
connecting predicates and parameter variables should be the same as those connecting
objects and propositions. If we can learn how these index edges interact among various
predicate schemas and parameters, we can then apply this edge knowledge gained from
domain subgraphs to new, unseen problem subgraphs which encode the same index
edges. This approach allows the information learned on the domain subgraph across
different problems to be directly beneficial for the problem subgraph, further enhancing
generalisability in learning-for-planning under uncertainty. Following this motivation,
we extend PLGS to create the Probabilistic Learning Graph Large (PLGL) as follows:
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Definition 20 (Probabilistic Learning Graph Large). A Probabilistic Learning Graph
Large (PLGL) representation of a lifted SSP SL = ⟨⟨P,A⟩, O, s0, g⟩ is the graphGPLGL =
⟨V,E, ω, κ,Σ⟩ where:

• We use GPLGS = ⟨V PLGS, EPLGS, ωPLGS, κPLGS,ΣPLGS⟩ to denote the features
from PLGS.

• V = V PLGS ∪N ′(A) ∪N(P) is an ordered set of nodes where:

– N ′(A) = {δi,j | a ∈ A, outcome(ai) ∈ outcomes(a), δi,j ∈ ∆a} is the set of out-
come parameter nodes, containing parameters for each action schema outcome.

– N(P) =
⋃

f∈{pre+,pre−}{Pf | Pf ∈ P, a ∈ A, Pf ∈ f(a)} ∪
⋃

e∈{add,del}{Pe |
Pe ∈ P, a ∈ A, outcome(ai) ∈ outcomes(a), Pe ∈ e(ai)} is the set of predicate
schema nodes containing all the predicate schemas including preconditions of
action schemas and effects from action outcomes.

• E = Eparam ∪Eout ∪
⋃

e∈{add,del}Ee ∪
⋃

f∈{pre+,pre−}Ef ∪Eground is a set of edges
where:

– Eparam = EPLGS
param ∪ {(δi,j , ai) | a ∈ A, outcome(ai) ∈ outcomes(a), δi,j ∈ ∆a} ∪⋃

e∈{add,del}
⋃

p=P (δi,1,...,δi,np )∈e(ai),np≥1{(δi,j , Pe) | a ∈ A, outcome(ai) ∈ outcomes(a)}
is the set of parameter edges linking object nodes with proposition nodes as in
PLGS; linking predicate schema nodes with parameter nodes; and parameter
nodes with action outcome nodes.

– Eout = EPLGS
out is the set of outcome edges linking each action schema node with

its outcome nodes as in PLGS.

– Ee =
⋃

P∈e(a){(ai, Pe), (Pe, P ) | a ∈ A, outcome(ai) ∈ outcomes(a)} is the set
of effect edges linking outcome nodes with their corresponding add/delete effect
predicate schema nodes and linking predicate schema nodes with corresponding
predicate nodes.

– Ef =
⋃

P∈f(a){(a, Pf ), (Pf , P ) | a ∈ A} is the set of precondition edges linking
action schema nodes with their corresponding positive/negative precondition
predicate schema nodes and linking those predicate schema nodes with corre-
sponding predicate nodes.

– Eground = EPLGS
ground is the set of grounding edges linking each grounded proposi-

tion node to its predicate node as in PLGs.

• ω : V → Rd where d = dPLGS + 1. For feature vector ω(v) ∈ Rd, v ∈ V , we use
ω(v)[i] to denote the i-th element of ω(v). The following holds:

– ω(v)[1] = 1 if v is a ground proposition node, i.e., v ∈ s0 ∪ g.

– ω(v)[2] = 1 if v is a predicate schema node, i.e., v ∈
⋃

f={pre+,pre−,add,del} Pf .
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– ω(v)[2 + j] = 1 if v is an object node v ∈ O or if v is a parameter variable node,
i.e., v = δi; meanwhile the type of v is the j-th element within the ordered set
types(O).

– ω(v)[2+types(O)+j] = 1 if v is the j-th element of the ordered set P, indicating
it is a predicate node.

– ω(v)[2 + types(O) + |P| + j] = 1 if v is the j-th element of the ordered set A,
indicating it is an action schema node.

– ω(v)[−1] = probaj if v = aj is any outcome node with probability probaj .

• Σ = ΣPLGS = {1, 2, . . . , (I + 8)} where I = argmaxP∈P nP denotes the maximum
number of parameters within any single predicate P ∈ P. The total number of
colours is I + 8, each representing the same as in PLGS.

• κ : E 7→ Σ is the colour function where:

– κ(p, oi) = κ(δj,i, ai) = i for (p, oi), (δj,i, ai) ∈ Eparam.

– κ(δ, P ) = i for (δ, P ) ∈ Eparam and δ is the i-th argument of P .

– κ(e) = I + 1 for e ∈ Eout.

– κ(e) = I + 2 for e ∈ Eeff+ .

– κ(e) = I + 3 for e ∈ Eeff− .

– κ(e) = I + 4 for e ∈ Epre+ .

– κ(e) = I + 5 for e ∈ Epre− .

– κ(p, P ) = I + 6 for p ∈ s0 ∩ g, indicating p is ag.

– κ(p, P ) = I + 7 for p ∈ s0 \ g, indicating p is ap.

– κ(p, P ) = I + 8 for p ∈ g \ s0, indicating p is ug.

■

Figure 4.3 provides an illustrative example of the PLGL representation for SLbox. Intu-
itively, PLGL can also be divided into a problem subgraph and a domain subgraph, where
the problem subgraph of PLGL uses the same encoding as in PLGS.

The domain subgraph of PLGL extends the domain subgraph of PLGS by adding two
additional layers: an action parameter layer and a predicate schema layer. The predicate
schema nodes represent either positive/negative preconditions or add/delete effects that
are required or produced when applying an action schema. For each action outcome, we
define corresponding action parameter nodes. A single feature represents all predicate
schema nodes, as in the grounded proposition layer, while parameter nodes are defined
based on object type features to match their corresponding types. All other nodes
are encoded as in PLGS. Relationships between these nodes follow the encoding of
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Figure 4.3: PLGL representation of SLbox (with only action fly). Different colours repre-
sent different node features. Edges are labelled as per Definition 20. PLGL
can also be interpreted as two subgraphs, referred to as “Problem subgraph”
and “Domain subgraph”.

outcome edges and precondition/effect edges in PLGS, with the exception that predicate
schema nodes act as intermediaries between precondition/effect predicate nodes and their
corresponding action/outcome nodes. Additionally, predicate schema nodes connect to
parameter nodes, and parameter nodes connect to outcome nodes, both using the same
parameter index edges as in the problem subgraph. This structure aligns with the
definition of action schema A within the lifted SSP SL (Definition 17). As in PLGS, the
domain subgraph remains unchanged for different problems within the same domain.

As discussed at the beginning of this subsection, PLGL enables knowledge learned from
the domain subgraph to directly benefit the interpretation of the problem subgraph. This
is achieved through learning how action parameters interact with predicate schemas,
providing insights into both the index edges and the object nodes used to encode the
problem subgraph. Since the domain subgraph is complete and encodes all possible ways
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predicates can be affected by action schemas, we expect PLGL to achieve enhanced gen-
eralisability in learning-for-planning tasks, particularly when making predictions on new
graphs with previously unseen propositions. Given that PLGL extends PLGS with-
out omitting any encoding, we also expect it to be at least as expressive as PLGS for
problems within the same domain; this is formally proved in Section 4.3.4. A poten-
tial drawback is that PLGL is larger than PLGS due to the inclusion of two additional
layers within the domain subgraph. However, this increase in size can be mitigated by
pre-computing the domain subgraph for the entire problem domain. Like PLGS, PLGL
also has potential applications in domain-independent planning, which we will discuss
in the future work section.

It is worth noting that Definitions 18, 19, and 20 can all be viewed as definitions for graph
representation functions: GILG : ScL 7→ G, GPLGS : SL 7→ G, and GPLGL : SL 7→ G,
respectively. Each of these functions translates a lifted planning task into a weighted
multi-graph representation. In the next section, we will formally demonstrate how our
framework, extended from GOOSE, enables regression tasks to be performed on these
novel graph representations.

4.3 Regression Tasks with Learning Graphs

Recall from Section 3.3 that our second research objective is to extend GOOSE to handle
SSPs and enable various models to learn heuristic functions for pmax. With our graph
representations, we can formally define the task that address this research objective as
a Max-Prob graph regression task, extending the regression tasks from Definition 13 as
follows:

Definition 21 (Max-Prob Graph Regression Task). A Max-Prob graph regression task
involves estimating a function F that maps a graph representation of a lifted SSP SL to
the maximum probability of reaching the goal in this problem, denoted as pmax, formally:

Given a set of training data {(SLn , pmax
n )}Nn=1 and a (stochastic) graph representation

function G : SL 7→ G where pmax
n is the maximum probability of reaching the goal in

SLn , and every problem SLn shares the same domain. The objective is to find a function
F : G 7→ R such that, for any new input SL∗ from the same problem domain with its
corresponding target pmax∗, the function outputs ˆpmax = F(G(SL∗)), where ˆpmax is an
accurate prediction of pmax∗. In the remainder of this thesis, we refer to such an F as a
“Max-Prob regression model”. ■

To solve the Max-Prob graph regression task, we extend the GOOSE framework from
Chen et al. [2023a] and Chen et al. [2024] to build two frameworks, allowing either a GNN
model or an SML model to be trained and serve as F . We describe the GNN approach in
Section 4.3.1 and the SML approach in Section 4.3.2. Additionally in Section 4.3.3, we
provide a framework that uses all-outcome determinisation to enable classical planning
graphs, including ILG and LLG, to be parsed as graph representations within the same
Max-Prob graph regression task. Section 4.3.4 concludes our second research objective
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with a theoretical analysis of ILG, PLGS, and PLGL in terms of their expressiveness on
a Max-Prob graph regression task.

4.3.1 Learning Through GNN Models

In this section, we describe how an MPNN (Section 2.4.2) can be used to perform
the Max-Prob graph regression task by creating a learning framework based on the
approach in Chen et al. [2023a]. We use FMΘ : G 7→ R to denote an MPNN regression
model with parameters Θ that takes input in the form of a weighted multi-edge graph
G. Algorithm 2 outlines the learning framework to train a Max-Prob MPNN regression
model for solving the Max-Prob graph regression task using the graph transition function
G, training data {(SLn , pmax

n )}Nn=1, and any training algorithm train(M,X, Y ) where M
is the model, and X and Y are lists of features and labels, respectively. For simplicity, we
use Gd(SL) to represent the transition function that outputs only the domain subgraph
GPLG

d ; Gp(SL) outputs only the problem subgraph GPLG
p ; and G(SL) outputs the entire

PLG GPLG = GPLG
d +GPLG

p .

Algorithm 2: Graph learning framework with MPNN

Input : Training dataset D = {(SLn , pmax
n )}Nn=1; An MPNN model framework

FMΘ; A graph representation function G : SL 7→ GPLG; Any training
algorithm for MPNN train(M,X, Y ).

Output: A Max-Prob MPNN regression model
1 Procedure LeaningMPNN(D,FMΘ,G, train())
2 X ← [ ]; Phase 0
3 Y ← [ ];
4 SL ← D[0][0]; Phase 1
5 GPLG

d ← Gd(SL) ;
6 for (SL, pmax) ∈ D do
7 GPLG

p ← Gp(SL); Phase 2

8 GPLG ← GPLG
d +GPLG

p ; Phase 3

9 X += GPLG;
10 Y += pmax;

11 train(FMΘ, X, Y ) ; Phase 4
12 return FMΘ

Algorithm 2 can be divided into four phases, as follows: in phase 1, we extract the
first SSP from the training data and compute the domain subgraph (Lines 4–5). Since
each problem shares the same domain, the domain subgraph only needs to be computed
once. In phase 2, for each SSP in the training data, we compute the problem subgraph
(Line 7). In phase 3, we combine the domain and problem subgraphs to form a PLG
as an input feature with the corresponding label being the pmax value for that SSP; this
feature-value pair is then appended to the MPNN dataset (Lines 8–10). In phase 4, we

56



4.3 Regression Tasks with Learning Graphs

Figure 4.4: An illustration of the MPNN learning framework (Algorithm 2) that enables
an MPNN to learn to predict pmax from a dataset of (SSP, pmax) pairs. Each
phase is visualised as an explicit edge to facilitate understanding.

use the constructed MPNN dataset to train the MPNN and obtain a Max-Prob MPNN
regression model as the solution to the Max-Prob graph regression task (Lines 11–12).
The framework enables the domain subgraph to be computed only once throughout the
entire process, thus mitigating the efficiency overhead introduced by structural complex-
ity. In the actual implementation, the domain subgraph is stored as part of the model
structure once computed, and keep reused along the entire training process to further
enhance efficiency. Figure 4.4 illustrates the four phases of the framework on a dataset
D with a single (SSP, pmax) pair.

4.3.2 Learning Through SML models

In this section, we describe how to use a GPR model (Section 2.4.1) to perform the Max-
Prob graph regression task by constructing a learning framework following the approach
of Chen et al. [2024]. We selected GPR because it has been demonstrated as one of the
most efficient models among traditional SML regression models in Chen et al. [2024].
Although our framework can be applied to any SML regression model, unlike MPNN
models, which allow graphs to be directly parsed as input, GPR models require input
in the form of a feature vector Rd. Therefore, we first explain how to transform a PLG
into a feature vector.

We start by introducing a modified 1-WL algorithm in Algorithm 3. The modified 1-
WL algorithm operates on a coloured multi-graph G = ⟨V,E, ω, κ,Σ⟩, where ω : V 7→ N
is the node colouring function. The only difference between the modified 1-WL and
the original 1-WL in Algorithm 1 is that it incorporates coloured edges during colour
refinement (Line 5). For simplicity, we will refer to Algorithm 3 as WL in the following
sections.
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Algorithm 3: Modified 1-WL Algorithm

Input : Coloured multi-graph G = ⟨V,E, ω, κ,Σ⟩ where ω : V 7→ N is the
node colouring function; A max iteration number J

Output: A multiset of node colours seen over all iterations.
1 Procedure WLAlgorithm(G, J)
2 ω0(v)← ω(v), ∀v ∈ V // Initial coloring for all nodes
3 for j = 1, . . . , J do
4 for v ∈ V do
5 ωj(v)← hash(ωj−1(v),

⋃
ι∈Σ{{(ωj−1(u), ι) | u ∈ Nι(v)}})

6 return
⋃

j=0,...,h{{ωj(v) | v ∈ V }}

Chen et al. [2024] and Shervashidze et al. [2011] present a method that translates the
multiset of colours output by the WL algorithm into a feature vector by representing
these multisets as histograms. The feature vector of a graph is a vector v⃗ whose size
corresponds to the number of colours observed during training, where v[k] counts how
often the WL algorithm encounters each colour. Formally, let G1, G2, . . . , Gn be the set
of training graphs where Gi = ⟨Vi, Ei, ωi, κi,Σi⟩. Then, the colours encountered by the
WL algorithm in the training graphs are given by

C = {ωj
i (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , J}; v ∈ Vi}

where ωj
i (v) is the colour of node v in graph Gi during the j-th iteration of WL for

j > 0 and c0i (v) = ci(v). Given a new graph G′ and the set of colours C observed during
training, we denote the feature vector function featC : G 7→ R|C| formally as in Equation
4.1.

featC(G
′) = [countC(G

′, C[0]), countC(G′, C[1]), . . . , countC(G′, C[−1])] (4.1)

where countC(G
′, C[i]) is the number of times the colour C[i] appears in the output after

running WL on G′. There is no guarantee that C contains all possible observable colours
within a given planning domain; therefore, any colours not in C that are encountered
after training are ignored.

Now that we have a transformation function allowing a coloured multi-graph to be
represented as a feature vector, we illustrate how a PLG can be represented as a coloured
multi-graph.

Definition 22 (PLG as a Coloured Multi-Graph). A PLG GPLG = ⟨V,E, ω, κ,Σ⟩ can
be represented as a coloured multi-graph GPLG′

= ⟨V,E, c, κ,Σ⟩ with the new colouring
function c : V 7→ N as defined in Equation 4.2. ■

c(v) =

{
Cp[round(B, probv)] if v ∈ N (A)o
idx(ω(v), 1) otherwise

(4.2)
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where:

• d is the dimension of feature vectors in GPLG.

• N (A)o denotes the set of all outcome nodes.

• idx(v⃗, 1) is the index function that returns the position of the entry with value 1
in a one-hot encoding vector v⃗.

• Cp = {d−1, d, d+1, . . . , d+B−2} denotes the set of “probability bucket colours” of
size B, indicating there are B different colours representing probabilities in [0, 1].
Each colour bucket Cp[i] represents a probability interval [i/B, (i + 1)/B). For
example, if B = 20, then Cp[3] represents the probability interval [0.15, 0.2).

• round(B, prob) rounds the probability prob to its corresponding colour bucket in-
dex. For example, round(20, 0.17) = 3.

Algorithm 4: Graph learning framework with GPR

Input : Training dataset D = {(SLn , pmax
n )}Nn=1; A GPR model framework

FGΘ; A graph representation function G : SL 7→ GPLG′
; Any training

algorithm for GPR train(M,X, Y ); Max WL iteration J .
Output: A Max-Prob GPR model

1 Procedure LeaningGPR(D,FGΘ,G, train(), J)
2 X ← [ ]; Phase 0
3 Y ← [ ];
4 SL ← D[0][0]; Phase 1

5 GPLG′
d ← Gd(SL) ;

6 for (SL, pmax) ∈ D do

7 GPLG′
p ← Gp(SL); Phase 2

8 GPLG′ ← GPLG′
d +GPLG′

p ; Phase 3

9 X += GPLG′
;

10 Y += pmax;

11 C ←
⋃

x∈X WLAlgorithm(x, J) // Algorithm 3 Phase 4
12 X ′ ←

⋃
x∈X featC(x) // Equation 4.1

13 train(FGΘ, X ′, Y ) ; Phase 5
14 return FGΘ ◦ featC

Intuitively, since every non-outcome node uses a one-hot encoding to represent node
features, we assign each colour to a unique node feature for nodes not in the outcome
set, v /∈ N (A)o. For the action outcome nodes v ∈ N (A)o, which have a non-zero fea-
ture probv representing their probability of occurrence, we use a “bucket discretisation”
method with B colour buckets to represent all possible probabilities and assigning each
probv to its corresponding bucket. In practice, this approach preserves probabilistic in-
formation if B is chosen to capture the smallest gap between any two probability values.
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4 Learning for Planning Under Uncertainty

Figure 4.5: An illustration of the GPR learning framework (Algorithm 4) that enables
a GPR to learn to predict pmax from a dataset of (SSP, pmax) pairs. Each
phase is visualised as an explicit edge to facilitate understanding

For example, in the IPC [Vallati et al., 2015], the smallest probabilistic effect unit is
0.05, so setting B = 20 ensures no loss of information during transformation.

Now, with the WL features and a coloured multi-graph representation of PLG, we can
build a new graph learning framework with GPR. We denote a GPR model with pa-
rameters Θ as FGΘ : Rc 7→ R, which takes an input in the format of vector feature
x ∈ Rc where c is undetermined yet. Algorithm 4 outlines the learning framework for
training a Max-Prob GPR model to solve the Max-Prob graph regression task. The no-
tation aligns with that used in Section 4.3.1, except that the graph transition function
G : SL 7→ GPLG′

now returns a coloured multi-graph representation of PLG (Definition
22).

Algorithm 4 can be divided into five phases: phases 1–3 (Lines 4–10) are identical to
those in the MPNN learning framework in Algorithm 2. In phase 4, we first apply the
WL algorithm to compute the feature generation function, then use this function to
transform the training PLG set into a set of feature vectors. These feature vectors,
along with the corresponding pmax values, form the GPR training dataset (Lines 11–12).
In phase 5, we use the GPR training set to train the GPR model and obtain a Max-Prob
GPR model. This model, as a composition of the trained GPR model with the feature
generation function, serves as the solution to the Max-Prob graph regression task (Lines
13–14). Like the MPNN learning framework, the GPR framework also requires only
one computation of the domain subgraph along the entire training process. Figure 4.5
provides an illustrative example of the five phases of the framework using a dataset D
containing a single (SSP, pmax) pair.
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4.3 Regression Tasks with Learning Graphs

4.3.3 Learning Through Determinisation

In the previous two sections, we defined how to use our PLG representation to build
two learning-for-planning frameworks that allow either GPR or MPNN models to pre-
dict pmax and thereby solve the Max-Prob Graph Regression Task (Definition 21). In
this section, we propose a simple modification to both frameworks that enables a clas-
sical planning graph representation to be used within the same learning-for-planning
frameworks through all-outcome determinisation on lifted SSPs.

All-outcome determinisation of a lifted SSP SL follows the same process as introduced
at the end of Section 2.1.2 (for all-outcome determinisation on a general SSP S). The
main idea is to transform each possible action outcome into a distinct action schema.
Formally:

Definition 23 (All-Outcome Determinisation on Lifted SSPs). All-outcome determin-
isation of a lifted SSP SL = ⟨⟨P,A⟩, O, s0, g⟩, denoted as det(SL), returns a classical
lifted planning problem ScL = ⟨⟨P,A′⟩, O, s0, g⟩ where:

◦ P, O, s0, g remain unchanged.

◦ For each action outcome ai where a ∈ A and outcome(ai) ∈ outcomes(a), we create a
new action schema ⟨∆(a),pre(a), add(ai),del(ai), cost(a)⟩ in A′.

■

We can now compose the all-outcome determinisation function det(SL) with any classical
graph representation function G : ScL 7→ G (e.g., GILG, GLLG) to create a stochastic
graph representation function G ◦ det : SL 7→ G. This resulting function can be directly
used as input for either the MPNN learning framework (Algorithm 2) or the GPR
learning framework (Algorithm 4), depending on whether G is a weighted multi-graph or
a coloured multi-graph. For example, if we combine ILG’s graph representation function
with det, the resulting function GILG ◦ det becomes a stochastic graph representation
function that can directly be used as input for the MPNN learning framework.

Since ILG encodes only problem-specific information from s0, g, O,P, which remains
unaffected by all-outcome determinisation, using ILG in a Max-Prob graph regression
task with all-outcome determinisation does not impact ILG’s expressiveness or its rep-
resentation of the original SSP (SL) in learning-for-planning tasks. This enables us to
directly compare the expressiveness of ILG and PLG in the next section. However, for
some other classical planning graph representations such as LLG [Chen et al., 2023a]
which rely on A in their graph encoding, all-outcome determinisation prevents them
from representing the original SSP in the same way as PLG, as probabilistic information
of various effects is lost in the determinisation process.

4.3.4 Expressiveness of Graphs

In Section 4.2, we stated that ILG is less expressive than PLGS in learning-for-planning
tasks under uncertainty, while PLGL is at least as expressive as PLGS. Here, we formally
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4 Learning for Planning Under Uncertainty

Figure 4.6: ILG and PLGS representations of two SSPs as presented in proof (second
part of Theorem 2). Models learning from the ILG representation fail to
distinguish between two problems, as both (i) and (ii) generate the same
WL features (Algorithm 3). In contrast, PLGS allows for the generation of
different WL features for (iii) and (iv) due to the presence of an additional
object type feature distinguishing a and b as neighbours of proposition nodes
with different features.

prove these statements using the frameworks discussed earlier. Since Chen et al. [2024];
Xu et al. [2018] have already shown that both FM and FG have equal power in distin-
guishing planning tasks when given the same graph structure as input, we will use F as
either the MPNN or GPR learning-for-planning framework within our proof, focusing

on comparing the expressiveness of different graph structures. We use F{PLGS,PLGL}
Φ to

denote the framework with parameters Φ which use the graph representation functions
G{PLGS,PLGL}.

As discussed in the previous section, all-outcome determinisation does not affect the
expressiveness of ILG on SSPs since it does not modify s0, g, O,P. This enables di-
rect comparison of ILG’s expressiveness with PLG’s on FILG

Φ , which denotes the learn-
ing framework with parameters Φ using the graph representation function GILG ◦ det.
Whenever we refer to ILG on an SSP, we mean the ILG on the all-outcome determin-
isation of the SSP, omitting the term for brevity. We use set notation ⊆,⊊ to denote
expressiveness hierarchy.

Theorem 2. FPLGS is strictly more expressive than FILG in distinguishing SSPs within
the same domain, i.e., (ILG ⊊ PLG):
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• (ILG ⊆ PLGS) Let SL1 and SL2 be any two SSPs from a given domain. For all Φ,
if FILG

Φ (SL1 ) ̸= FILG
Φ (SL2 ), then there exists a corresponding set of parameters Ψ

such that FPLGS
Ψ (SL1 ) ̸= FPLGS

Ψ (SL2 ).

• (ILG ̸⊇ PLGS) There exists a pair of SSPs SL1 and SL2 such that there exists a Ψ
where FPLGS

Ψ (SL1 ) ̸= FPLGS
Ψ (SL2 ); however, for all Φ, FILG

Φ (SL1 ) = FILG
Φ (SL2 ).

Proof. (ILG ⊆ PLGS). To show that PLGS is at least as expressive as ILG, we demon-
strate that the ILG representation of SL can always be transformed into a problem
subgraph of PLGS. This transformation proceeds as follows: for each object node o in
ILG, create an object node o′ of default object type for PLGS. For each proposition
node p = P (o1, o2, . . . ) in ILG with goal status gs ∈ {ap, ug, ag}, create a predicate
node P ′ and a proposition node p′ = P ′(o1, o2, . . . ), and connect the predicate node to
the proposition node using an edge labelled with the goal status gs. For each edge (oi, p)
in ILG, create the corresponding edge (o′i, p

′) in PLGS.

Since each unique proposition feature in ILG maps to a unique combination of proposi-
tion, predicate, and grounded edges in PLGS, and since each object node and argument
edge maps to a corresponding object node and argument edge meanwhile both ILG and
the transformed PLGS subgraph describe the same SL. Therefore, there exists a param-
eter pair Φ and Ψ such that FILG

Φ (SL) equals FPLGS
Ψ (SL) (e.g., a fully connected layer in

MPNN that assigns the same weight to corresponding nodes and edges). Hence, under
this parameter pair Φ and Ψ, if FILG

Φ (SL1 ) ̸= FILG
Φ (SL2 ), then FPLGS

Ψ (SL1 ) ̸= FPLGS
Ψ (SL2 ),

proving the first part.

(ILG ̸⊇ PLGS). To show that PLGS is strictly more expressive than ILG, consider
two SSPs, SL1 = ⟨P,A, O, s0,1, g⟩ and SL2 = ⟨P,A, O, s0,2, g⟩, with O = {a−O1, b−O2},
P = {P (x−O, y−O), Q(x−O, y−O)}, s0,1 = {P (a, b), P (b, a)}, s0,2 = {P (a, a), P (b, b)},
g = {Q(a, b), Q(b, a)}, and a single action a ∈ A with precondition P (x, y) and an out-
come that adds effect Q(x, y) with a probability of 1 (i.e., it always succeeds). Con-
sequently, the corresponding pmax will be 1.0 for SL1 and 0 for SL2 , as Q(a, b) cannot
be reached from P (a, a), P (b, b). We illustrate this example in Figure 4.6 for both ILG
and the PLGS problem subgraph representations. As shown in Chen et al. [2024], the
ILG representation FGILG fails to distinguish the two problems since Algorithm 3 al-
ways return the same WL features for both SSPs. Therefore, for all Φ, FGILGΦ (SL1 ) =
FGILGΦ (SL2 ). This inability to distinguish the two arises because ILG cannot differentiate
the object nodes despite their distinct types. In PLGS, however, the WL features for the
problem subgraphs differ due to the object type features, allowing GPR to distinguish
between the two SSPs, i.e., there exists a Ψ such that FGPLGS

Ψ (SL1 ) ̸= FGPLGS
Ψ (SL2 ).

Theorem 3. FPLGL is at least as expressive as FPLGS in distinguishing SSPs within
the same domain, i.e., (PLGS ⊂ PLGL): let SL1 and SL2 be any two SSPs from a given
domain. For all Φ, if FPLGS

Φ (SL1 ) ̸= FPLGS
Φ (SL2 ), then there exists a corresponding set

of parameters Ψ such that FPLGL
Ψ (SL1 ) ̸= FPLGL

Ψ (SL2 ).
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Proof. The proof is straightforward. According to Definitions 19 and 20, the domain sub-
graph for both PLGS and PLGL does not change across problems in the same domain,
meaning that domain-dependent encoding in both PLGS and PLGL is based on the prob-
lem subgraphs. Since PLGS and PLGL share the same problem subgraph encoding, for
any SSPs SL1 and SL2 within the same domain, their PLGS and PLGL representations will
share identical problem subgraphs. Consequently, if FPLGS

Φ (SL1 ) ̸= FPLGS
Φ (SL2 ), there

will always be a corresponding parameter set Ψ such that FPLGL
Ψ (SL1 ) ̸= FPLGL

Ψ (SL2 ).

Combining Theorems 2 and 3, we have theoretically proven that our novel graph repre-
sentations, PLGS and PLGL, are strictly more expressive in domain-dependent graph
regression tasks than the state-of-the-art ILG representation. As a result, our novel
graph representations enable more effective learning of SSP features, including pmax.
The second part of the proof for Theorem 2 serves as a good example where ILG fails
to distinguish two SSPs with pmax values of 0 and 1 respectively but PLGS provides
distinct encodings for both.

In the next section, we will switch focus back to our first research objective and discuss
how to use our designed frameworks to develop a heuristic function for pmax that can be
directly applied to any heuristic search algorithm on Max-Prob SSPs.

4.4 Learning to Solve Max-Prob

Recall in Section 3.3, we presented our first research objective as “to develop an effective
heuristic for pmax using machine learning techniques that account for probabilistic infor-
mation, applicable in the Max-Prob stage of i-dual to enhance performance over current
state-of-the-art heuristics for pmax”. In this section, we formally present how can we
develop such heuristic using our existing framework designed earlier in this chapter.

In Section 2.3.1, we defined a heuristic h : S 7→ R as a function estimating the cost to
reach the goal from a given state (Definition 12). To address the first research objective,
we can formally define a heuristic that addresses our first research objective as follows:

Definition 24. [Max-Prob heuristic] A Max-Prob heuristic hmp : SL 7→ [0, 1] is a
domain-dependent heuristic function for an SSP domain D, where SL = ⟨D, O, s0, g⟩.
This function provides an estimate of pmax for SL0 . ■

Since hmp estimates pmax, which always falls within the range [0, 1] as defined in Def-
inition 9, we restrict its co-domain to real numbers within this interval. Furthermore,
since pmax serves as the heuristic for SSPs under the Max-Prob criterion, which is a
maximisation problem, an admissible hmp will always give an upperbound of pmax.

To generate such a heuristic, we can directly use a Max-Prob regression model F trained
with either an MPNN framework (Algorithm 2) or a GPR framework (Algorithm 4)
under a graph transition function G. By applying a modification function mod: R 7→ [0, 1]
to map the predicted result into a heuristic value, we obtain the Max-Prob heuristic.
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For example, the simplest approach is clip(x, 0, 1), which clips values of x > 1 to 1 and
values of x < 0 to 0. We formally define the process for creating a Max-Prob heuristic
in Algorithm 5: to predict the heuristic value of a SSP, we first translate it into a graph
representation, then put this graph as input to a Max-Prob regression model trained on
the same graph representation, we than call the a modification function on the model
output to obtain the final heuristic value as an estimation of pmax for the input problem.

Algorithm 5: Graph learning heuristic function

Input : A trained Max-Prob regression model F : G 7→ R; a graph transition
function G : SL 7→ G; a modification function mod: R 7→ [0, 1].

Output: A Max-Prob heuristic SL 7→ [0, 1]
1 Procedure GLHeuristic(F ,G, mod)
2 return mod ◦ F ◦ G

With Algorithm 5, we obtain a Max-Prob heuristic GLHeuristic(F ,G, mod) that can
be applied to any heuristic search algorithm which requires a Max-Prob heuristic for
solving Max-Prob SSPs, such as FERT, or i-dual in solving LP 2. However, since this
heuristic is derived by modifying a predicted feature from a machine learning model, we
cannot guarantee its admissibility. We will explore and evaluate the potential impact of
this on heuristic performance in the second experiment set in Section 5.3.
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Chapter 5

Empirical Evaluation

In this chapter, we put everything together to conduct two sets of experiments aligned
with the research objectives outlined in Section 3.3. In Section 5.1, We begin by in-
troducing the two testbed domains and the two models that are being used along the
entire chapter. Section 5.2 focuses on a comprehensive series of experiments that com-
pare the performance of different models trained under various graph representations in
learning pmax across different datasets for both domains. This experimental set covers
a wide range of scenarios and, through evaluations across these different contexts, we
address Research Objective 2, demonstrating that our PLG representations facilitate
more effective feature learning compared to ILG. In Section 5.3, we introduce the second
set of experiments, where we focus on a single domain and deploy models trained on
different problem instances within that domain as Max-Prob heuristics to guide i-dual
in the Max-Prob stage. We compare and evaluate the performance of our model-based
heuristic against two benchmarks: a baseline heuristic and the current state-of-the-art
heuristic for this domain. By assessing the impact of our heuristics on performance, we
address Research Objective 1 and provide insights that may inspire future work.

5.1 Domains and Models

We begin this chapter by discussing the benchmark domains selected for our experi-
ments. As previously noted, this thesis focuses on learning pmax from SSPs particularly
in challenging cyclic domains. Unlike classical planning, this area has seen limited re-
search, which also restricts the range of available cyclic, non-resource-constrained SSP
domains suitable for our study. Consequently, we select two representative domains as
our experimental testbeds, both previously examined by and obtained from Trevizan
et al. [2017b]: the Exploding Blocksworld and Triangle Tireworld domains.

Another key reason for selecting these domains is that as discussed in Section 3.2.2,
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the state-of-the-art Max-Prob PDB heuristic fails to outperform the 0-1hmax heuristic
within these environments. Therefore, these domains are also considered some of the
most challenging in probabilistic planning, demonstrating a pronounced need for robust
heuristic solutions. Our choice enables us to directly compare the performance of our
heuristics with the existing state-of-the-art 0-1hmax.

5.1.1 Exploding The Blocks World

Figure 5.1: An example of an EXBW instance with an initial state (left) consisting of:
b0 on b1 on b5 on the table; b2 on b4 on the table; and b3 on the table. The
partial goal state (right) specifies the goal of placing b3 on b2 and b0 on b1
on table.

Our first testbed domain, Exploding Blocksworld (EXBW) is initially introduced in
the 2008 International Planning Competition (IPPC) [Bryce and Buffet, 2008]. EXBW
represents a challenging probabilistic extension of the classic deterministic Blocksworld.
For a comprehensive overview of the deterministic Blocksworld domain, we refer readers
to Slaney and Thiébaux [2001]; this thesis focuses on EXBW as an SSP, assuming the
audience is familiarity with the Blocksworld concept. Figure 5.1 provides an illustrative
example of an EXBW task.

EXBW extends the traditional deterministic blocks world by introducing the possibility
of block explosions that can destroy other blocks or even the table itself. While all
actions retain the same primary effects as their deterministic counterparts, the put-down
and put-on-block actions in EXBW include probabilistic side effects. Specifically, there
is a 0.4 probability that the block currently held will detonate, potentially destroying
the table, and a 0.1 probability of damaging the block directly beneath.

Once a block or the table is destroyed, they become non-functional: objects cannot be
placed on them, and destroyed blocks are immovable. As a result, most configurations
in EXBW can lead to unavoidable dead ends (since the unnecessary put down action is
not safe). Furthermore, since some actions allow state revisitation, EXBW is a cyclic
domain (e.g., in Figure 5.1, we can repeatedly picking up and putting down b3). These
characteristics make EXBW uniquely challenging in probabilistic planning. Importantly,
each block can only detonate once. After detonation, a block can be safely moved, which
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necessitates a strategic shift post-detonation. Additionally, we use a corrected version
of this domain, where blocks are explicitly forbidden from being placed on themselves,
refining the problem space by removing trivial and unrealistic configurations.

5.1.2 Triangle Tiresworld

Figure 5.2: An example of a Triangle Tireworld instance with the initial state (blue node)
and the goal state (yellow node). Every node along the longest path (from
the blue node to the top corner to the yellow node) is equipped with a spare
tire.

Our second testbed domain Triangle Tireworld (referred to hereafter as “tireworld”) is
introduced by Little et al. [2007] and also frequently used in IPPCs. Tireworld is a
probabilistic planning domain where a car must navigate a triangular map of locations
to reach a designated goal from its starting position. Each move carries a 0.5 probability
of resulting in a flat tire, which immobilises the car unless it has a spare tire or one is
available at its current location. Only the longest path in this domain is equipped with
sufficient spare tires to guarantee a successful route to the goal with probability 1. As a
result, problems in this domain include avoidable dead ends, meaning unlike in EXBW,
pmax = 1 for all tireworld instances. However, shorter paths lack adequate spare tires
and pose a probabilistic risk of stranding the car.

Triangle Tireworld is also cyclic, as the car may need to revisit locations to access spare
tires or avoid risky paths. Moving between locations often involves returning to previous
states to maintain progress. The triangular map structure allows multiple routes between
points, leading to loops. Figure 5.2 provides an illustrative example of a tireworld task
where the longest path runs from the left corner to the top corner to the bottom corner.
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5.1.3 Model Configuration

In this chapter, we examine two models: an MPNN model for learning within the
MPNN framework (Algorithm 2) and a GPR model for learning within the GPR frame-
work (Algorithm 4). Specifically, we select MPNN and GPR model configurations
that have demonstrated optimal performance in domain-dependent learning-for-planning
tasks [Chen et al., 2024]. The model details are listed below:

Model for MPNN Framework

Within the MPNN framework, we utilise a modified Relational Graph Convolutional
Network (RGCN) [Schlichtkrull et al., 2018] with a mean aggregator function and 10
message-passing layers, which is selected as the best performing layer that ensuring each
node in PLGL receives at least one message from the most distant node in the graph
meanwhile not adding too much overhead to computation time. The update function
for our RGCN extends Equation 2.14 as follows:

h(t+1)
u = φ

(
W

(t)
0 h(t)

u +
∑
l∈Σ

(u,v)∈Nl(u)W
(t)
l h(t)

v

)
. (5.1)

All other hyperparameters for the framework directly follow the optimal configuration
provided in GOOSE Chen et al. [2023a].

Model for GPR Framework

In the GPR framework, we employ a GPR model with a dot-product kernel, setting the
overall iteration count of the WL algorithm to 10, aligning with the 10 layers used in
RGCN. The remaining hyperparameters for this framework are directly inherited from
the optimal settings specified in WL-GOOSE Chen et al. [2024].

Environment Setting

All experiments in this chapter were conducted on a system equipped with an AMD
Ryzen 7 7745HX 3.60GHz CPU and a single NVIDIA GeForce RTX 4070 GPU with
CUDA version 12.5. The models were implemented in PyTorch [Paszke et al., 2019] and
interfaced with the C++ implementation of i-dual for MCMP [Trevizan et al., 2017b] via
pybind [Jakob, 2023].

5.2 Learning with Different Graph Representations

In this section, we conduct the first set of experiments to comprehensively compare and
evaluate the performance of PLGS/PLGL against ILG in learning pmax. We assign all
graph representations to both frameworks across four tasks covering both EXBW and
Tireworld domains.
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5.2.1 Experimental Setup

To enable both MPNN and GPR frameworks to learn pmax, we first use i-dual with the
0-1 hmax heuristic to solve problems within these domains, obtaining pmax values and an
optimal policy π ∈ ΠMP . Within a 30-minute time limit for each problem instance, i-
dual with 0-1 hmax in the Max-Prob stage successfully solved 9 EXBW and 13 Tireworld
instances. For each solved instance, we use the visited states returned by i-dual with
their corresponding pmax values as individual training data points. We denote the solved
EXBW instances as exbw p1–exbw p9 and the Tireworld instances as tire 3–tire 15.
Based on the features of these datasets, we design four tasks. For each task, we conduct
six sets of experiments representing the combination of ILG, PLGS, and PLGL on both
the RGCN and GPR frameworks. We run RGCN for five times and take the mean for
final time, accuracy.

• EXBWTask 1 investigates the generalisability of different graphs/models to unseen
problems within the same domain. Here, we train models only with exbw p1 and
test on exbw p2–exbw p9.

• EXBW Task 2 examines how performance is influenced by an increase in training
data. Models are trained with exbw p1–exbw p3 and tested on exbw p4–exbw p9.

• EXBW Task 3 explores the impact of large training datasets without adjusting
any hyperparameters that could affect overfitting analysis. Models are trained
with exbw p1–exbw p5 and tested on exbw p6–exbw p9.

• Tire Task: due to the extensive size of training plans for each Tireworld instance,
the memory limitations of our device restrict the GPR framework to a maximum
of one input problem. Therefore, we train models with tire 3 and investigate per-
formance across tire 3–tire 15, aiming to provide insights through comparisons
with other tasks.

5.2.2 Results and Analysis

Table 5.1 summarises the experimental results for all configurations, including accuracy,
node count, computation time, and hit-colour ratio, while Figures 5.3, 5.5, and 5.4
provide visualisations of accuracy and node counts to enhance intuition and highlight
trends across the tasks. In Table 5.1, the RGCN node counts represent the median
number of graph nodes generated per problem instance, while the GPR node counts
indicate the total number of nodes across all training instances, reflecting the GPR
framework’s iterative node aggregation approach. Time refer to the time it takes for
model to make predictions. Meanwhile the hit-colour ratio is the amount of seen colour
compared to the total colour during testing stage only exist for GPR frameworks.

In this subsection, we evaluate these results to assess the performance of ILG, PLGS, and
PLGL across different configurations, focusing on accuracy, computational requirements,
and generalisation.
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Figure 5.3: Overall test accuracy in terms of MSE (Equation 2.11). The x-axis indicates
the four tasks; the y-axis represents the corresponding test accuracy. Baseline
ILG graphs are shown with solid lines.

Accuracy in Terms of Median Square Error (MSE)

Accuracy, measured by Mean Square Error (MSE), serves as a fundamental metric for
evaluating how well each graph representation captures pmax across the various tasks. As
summarised in Table 5.1, PLGL consistently achieves the lowest MSE in all EXBW tasks,
affirming its superior predictive accuracy over both ILG and PLGS. This advantage is
particularly evident in EXBWTask 1, where PLGL achieves an MSE of 1.30 with RGCN,
outperforming ILG and PLGS, which reach MSEs of 1.76 and 1.54, respectively. The
design of PLGL allows it to encode complex probabilistic relationships effectively, a
quality that proves beneficial as it maintains this advantage across subsequent EXBW
tasks. This trend highlights PLGL’s robustness and adaptability, especially in SSP
domains where probabilistic dependencies are challenging to model. The persistent gap
between PLGL and PLGS further underscores PLGL’s enhanced capability to capture
structural information essential for generalisation in probabilistic planning.

PLGS generally outperforms ILG in EXBW Tasks 1 and 2, where its added structural
expressiveness enables lower MSEs. For instance, in EXBW Task 2 under the GPR
framework, PLGS achieves an MSE of 1.33, surpassing ILG’s 1.62. This improvement
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Figure 5.4: Median number of graph nodes created by RGCN across different graph rep-
resentations for all training input problems. The x-axis indicates the four
tasks; the y-axis indicates the median number of graph nodes created across
the training set for each graph representation. Labels for graph representa-
tions are provided in the top-right corner.

Figure 5.5: Total number of graph nodes created by the GPR framework across different
graph representations for all training input problems. The x-axis indicates
the four tasks; the y-axis indicates the total number of graph nodes created
across the training set for each graph representation. Labels for graph rep-
resentations are provided in the top-right corner.
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is attributable to PLGS’s ability to incorporate more domain-specific features into its
graph structure, which enhances its generalisability within the EXBW domain. However,
the performance gap between PLGS and PLGL suggests that while PLGS provides a
better representation than ILG, it lacks the same depth of structural adaptability as
PLGL, particularly in more complex scenarios.

An interesting pattern emerges in the Tireworld task, where the performance hierarchy
among graph representations shifts depending on the model framework. Under the
RGCN framework, ILG actually surpasses both PLGS and PLGL, achieving an MSE of
3.48 compared to PLGS’s 3.81 and PLGL’s 3.92. This outcome is directly influenced by
the high number of objects in Tireworld relative to the schema variables, which leads ILG
to generate more nodes than PLGS and PLGL, compensating for its otherwise limited
structure by effectively encoding object-specific transitions. The excessive objects reduce
the advantage of PLGS and PLGL in RGCN, allowing ILG to slightly outperform them
in this specific setup. However, when using the GPR model in Tireworld, PLGL regains
its superiority, achieving an MSE of 2.41 compared to ILG’s 2.52 and PLGS’s 2.50. This
demonstrates that GPR’s iterative learning approach mitigates the limitations observed
with RGCN in PLGS and PLGL, allowing these graph representations to fully leverage
their structural advantages, even in object-heavy domains like Tireworld.

Graph Node Count Analysis

The node count for each graph representation reveals key insights into structural com-
plexity and computational overhead. In Table 5.1, the RGCN’s node counts represent
the median nodes generated per problem instance, while the GPR’s represent the to-
tal nodes across all training instances, reflecting GPR’s iterative aggregation approach.
Under the RGCN framework, PLGL consistently generates a higher median node count
across EXBW tasks. This increased node count reflects PLGL’s richer expressiveness,
which enhances its ability to model complex relationships between states and actions
within probabilistic environments, thereby contributing to its improved accuracy. How-
ever, in domains like Tireworld, characterised by a higher object-to-schema ratio, ILG
produces a greater node count than PLGS and PLGL under RGCN. This increase al-
lows ILG to approximate the probabilistic structure more effectively in such object-heavy
problems, accounting for its slightly better performance in Tireworld with RGCN.

In contrast, under the GPR framework, the total node count is generally higher across
all representations due to the iterative node aggregation inherent in GPR. While PLGL
again yields the highest total node count, the disparity among representations is less
pronounced, as GPR’s design tends to balance node creation. In Tireworld, for instance,
PLGL generates 15,367 nodes, compared to 13,465 for PLGS and 12,030 for ILG. This
convergence indicates that GPR’s iterative approach minimises the node count differ-
ences seen in RGCN, allowing PLGL’s structural advantages to shine. The additional
nodes in PLGL under GPR directly contribute to its superior accuracy, especially in do-
mains like Tireworld, where rich structural information can enhance probabilistic mod-
elling.
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Table 5.1: Summary of experiment results of Section 5.2 across all configurations, with
best performing model highlighted for each task

RGCN GPR

Exbw Task 1 (train 1 test 2–9) ILG PLGS PLGL ILG PLGS PLGL

accuracy 1.76 1.54 1.30* 1.68 1.70 1.70
no. nodes 40 40 80 2160 4184 9312
time (s) 1.62 1.61 2.72 0.03 0.08 0.12
hit colour ratio – – – 0.39 0.18 0.22

RGCN GPR

Exbw Task 2 (train 1–3 test 4–9) ILG PLGS PLGL ILG PLGS PLGL

accuracy 2.07 1.63 1.52 1.62 1.33 1.30*
no. nodes 44 40 80 4889 9399 16369
time (s) 1.23 1.42 2.82 0.04 0.22 0.33
hit colours ratio – – – 0.45 0.19 0.22

RGCN GPR

Exbw Task 3 (train 1–5 test 6–9) ILG PLGS PLGL ILG PLGS PLGL

accuracy 2.02 1.92 1.89* 2.33 2.01 1.95
no. nodes 40 44 80 10203 18937 32435
time (s) 1.32 1.28 2.42 2.09 0.60 0.90
hit colour ratio – – – 0.42 0.20 0.23

RGCN GPR

Tire Task ILG PLGS PLGL ILG PLGS PLGL

accuracy 3.48 3.81 3.92 2.52 2.50 2.41*
no. nodes 221 121 138 12030 13465 15367
time (s) 1.32 1.42 1.24 0.82 2.99 4.28
hit colour ratio – – – 0.34 0.13 0.20

Computation Time Evaluation

The computation time results, as shown in Table 5.1, highlight the trade-offs between
accuracy and computational efficiency. In the RGCN framework, ILG and PLGS gener-
ally execute faster than PLGL across all tasks. This difference is especially pronounced
in EXBW Task 3 and Tireworld, where PLGL’s increased complexity results in signif-
icantly longer runtimes. For example, in Tireworld, PLGL requires 4.28 seconds under
GPR, whereas ILG completes the task in 0.82 seconds. The added computational cost
for PLGL is attributable to its larger node count and complex structure, which demand
more processing time during both training and inference.
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While PLGL provides superior accuracy, its increased time requirements suggest that
it may be less suitable for time-sensitive applications. ILG, with its simpler structure,
performs efficiently, particularly in the RGCN framework, where it even surpasses PLGS
and PLGL in accuracy for the Tireworld task. This outcome underlines the importance
of selecting graph representations based on both accuracy and runtime requirements, as
the most expressive model (PLGL) is not always the most efficient, especially in domains
where excessive detail can hinder rather than help.

It is also noteworthy that an increase in training size can lead to additional overhead in
the GPR framework, while the prediction time for RGCN remains largely unaffected by
the size of the training input.

Hit-Colour Ratio Analysis

The hit-colour ratio, applicable in the GPR framework, provides additional insights into
each representation’s generalisation ability. This metric reflects the proportion of WL
(Weisfeiler-Lehman) colours in test data that are also present in training data, indicat-
ing how well the model generalises across similar structures. PLGL achieves a relatively
high hit-colour ratio across the EXBW tasks compared to PLGS, suggesting it effectively
captures recurring structural patterns necessary for accurate prediction in EXBW. For
example, in EXBW Task 2, PLGL achieves a hit-colour ratio of 0.22, outperforming
PLGS (0.19). This outcome suggests that PLGL’s richer structure facilitates generali-
sation within EXBW tasks, allowing it to recognise similar probabilistic configurations
more consistently than PLGS.

In the Tireworld task, however, hit-colour ratios are generally lower for all represen-
tations, reflecting the domain’s structural complexity and the limited overlap in node
features between training and test instances. PLGL’s hit-colour ratio remains competi-
tive, albeit slightly lower than in EXBW, indicating its resilience in handling structural
diversity in cyclic domains. While the absolute values decrease, PLGL’s consistently
higher hit-colour ratio in comparison to PLGS suggests that it maintains better gener-
alisation, even in structurally challenging tasks like Tireworld.

5.2.3 Summary of First Experiment Set

In conclusion, PLGL stands out as the most accurate and structurally expressive repre-
sentation, particularly in probabilistically complex tasks, albeit with increased computa-
tional costs. PLGS offers a balanced improvement over ILG in EXBW tasks but is more
constrained in generalisability than PLGL. ILG, while structurally simpler, exhibits un-
expected strengths in object-heavy tasks like Tireworld, particularly under the RGCN
framework, however it achieves that accuracy at a cost of losing its efficiency. This
analysis underscores the importance of selecting graph representations and frameworks
aligned with domain characteristics and task-specific requirements.
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5.3 Learning Max-Prob Heuristic to Guide Search

In this section, we conduct a second set of experiments by combining all developed
components into a Max-Prob heuristic, as outlined in Algorithm 5. This heuristic is
then used to guide i-dual to focus on more promising areas when solving the Max-
Prob stage of MCMP. We evaluate the performance of our learned heuristic function
against benchmark heuristics and assess its effectiveness as well as its potential for future
application.

5.3.1 Experimental Setup

Given that the Tireworld domain features avoidable dead ends, resulting in pmax always
equalling one, this section focuses exclusively on EXBW, which contains both cycles and
unavoidable dead ends. Since ILG has demonstrated limited effectiveness in terms of
expressiveness and generalisability, we exclude it here, assessing only the performance of
heuristics learned from both RGCN and GPR models. The models were trained on three
distinct training sets and applied to a single randomly selected test problem. Specifically,
we defined the training sets as follows:

• Train Set 1: Consists of four problems not similar to the test problem.

• Train Set 2: Containing three problems similar to the test problem.

• Train Set 3: Contain just one most similar problem to the test problem.

We introduce a new clipping function, h < X, which returns a value of 0 for any state
where the heuristic value h(s) is strictly less than X. This function effectively designates
such states as dead ends within the solver. We evaluate the influence of this clipping
function on the performance of our heuristic h in comparison with two benchmarks: the
always-1 heuristic, which returns the upper bound of 1, and the 0-1 hmax heuristic,
which achieves dead-end detection and demonstrates state-of-the-art performance.

All experiments use i-dual [Trevizan et al., 2017b] to solve the Max-Prob stage of SSP
under MCMP, as detailed in Theorem 1. We use l/s to simplify PLGS/PLGL.

5.3.2 Results and Analysis

Table 5.2 summarise the experimental results for all models, with features interpreted
as follows:

• P*: The solution returned by i-dual in the Max-Prob stage of MCMP. If P∗ =
pmax, we achieve the correct optimal solution. Otherwise, if P∗ = pτ < pmax,
indicating a suboptimal probability, the result is highlighted in blue.

• No. states: The total number of states expanded during the search process.

• No. iterations: The number of solver iterations, directly reflecting the compu-
tational effort.
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• h < X: The clipping threshold applied to the Max-Prob heuristic.

• h time: The computation time for generating the heuristic value.

• Solver time: The total time taken by i-dual to solve the problem using the
specified heuristic.

Due to Python-related limitations, the computation time for heuristic generation (h
time) is not directly comparable across different heuristics. Thus, we rely primarily on
the number of expanded states (No. states) and the number of solver iterations (No.
iterations) as our main indicators of performance, as these metrics are unaffected by
Python-related delays and offer a more reliable assessment of search efficiency.

Our learned Max-Prob heuristics, derived from both WL and RGCN models, demon-
strate substantial efficiency improvements over the always-1 heuristic across all con-
figurations. For example, This significant difference proves the basic-level ability for
our heuristic to be able to focus the search on promising paths, minimising unnecessary
expansions.

In certain configurations, our heuristics achieve the optimal pmax with comparable state
expansions and iterations than hmax. For instance, in Train Set 3, GPR-l achieves
P ∗ = 0.90 (the optimal pmax) with 901 states and 3390 iterations, approaching the
efficiency of hmax, which reaches P ∗ = 0.90 with only 875 states and 1257 iterations.
This indicates that, under favourable configurations, our learned heuristics can attain
optimality with efficient state expansions, approaching the performance of hmax.

Moreover, even when our heuristics do not yield the optimal pmax, they often provide
a strong lower bound on pmax, which is advantageous in guiding the search process
effectively. For example, in Train Set 3, using GPR-l with a h < 0.25 clipping thresh-
old results in P ∗ = 0.73 while expanding only 157 states and requiring 270 iterations.
Although suboptimal, this solution offers a reliable lower bound on pmax, drastically re-
ducing computational effort. This trade-off showcases the flexibility of our heuristics to
balance efficiency and solution quality, allowing users to prioritise computational savings
when optimality is not strictly required. This balance between efficiency and optimality
in MCMP underscores both the strengths and potential limitations of our approach,
which we discuss further in the next chapter.

The choice of training set also plays a significant role in heuristic performance. Heuris-
tics trained on more extensive and diverse sets, such as Train Set 1, tend to generalise
better, achieving near-optimal pmax values with fewer states and iterations. Conversely,
heuristics trained on smaller sets, such as Train Set 3, while computationally efficient,
may return a lower P ∗ due to limited exposure to diverse state configurations. This ob-
servation highlights the importance of training set diversity in enhancing the robustness
and overall efficacy of heuristics in structured probabilistic domains.
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Table 5.2: Summary of experimental results for heuristic performance in Section 5.3

Data Time (s)

Domain-independent P* No. states No. iterations h < X h time Solver time

hmax 0.90 875 1257 none 0.01 0.05
always-1 0.90 25461 71884 none - 1.65

Data Time (s)

Train Set 1 P* No. states No. iterations h < X h time Solver time

GPR-s 0.90 3893 17953 none 11.41 0.51
GPR-l 0.90 1615 5872 none 6.21 0.21
GPR-l 0.44 1253 3644 0.3 5.69 0.11
GPR-l 0.73 2089 7469 0.2 9.65 0.27
GPR-l 0.73 1869 7320 0.1 8.52 0.27
RGCN-s 0.81 7581 48449 none 23.14 1.54
RGCN-l 0.60 3864 20441 none 11.64 0.53

Data Time (s)

Train Set 2 P* No. states No. iterations h < X h time Solver time

GPR-s 0.90 2065 8712 none 8.19 0.28
GPR-l 0.90 1523 7065 none 5.12 0.26
GPR-l* 0.44 652 675 0.3 3.91 0.02
GPR-l 0.73 1003 4319 0.2 4.50 0.13
GPR-l* 0.73 874 3542 0.1 3.65 0.11
RGCN-s 0.81 2567 18231 none 9.15 0.52
RGCN-l 0.81 2130 15714 none 8.21 0.49

Data Time (s)

Train Set 3 P* No. states No. iterations h < X h time Solver time

GPR-s 0.90 1031 3709 none 1.25 0.12
GPR-l 0.90 901 3390 none 2.25 0.11
GPR-l* 0.00 257 478 0.3 0.47 0.02
GPR-l* 0.73 157 270 0.25 0.29 0.01
GPR-l* 0.73 230 478 0.2 0.42 0.01
GPR-l* 0.83 550 1511 0.1 1.00 0.04
RGCN-s 0.81 1711 10397 none 4.61 0.30
RGCN-l 0.81 2552 18447 none 7.46 0.53
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5.3.3 Summary of Second Experiment Set

Our analysis shows that Max-Prob heuristics from WL and RGCN models achieve con-
siderable efficiency gains over the always-1 heuristic by minimising state expansions
and iterations, effectively guiding the search away from less promising paths. In some
cases, these heuristics perform comparably to or even exceed the efficiency of hmax,
particularly when incorporating with heuristic clipping. While the inadmissibility of
these heuristics can occasionally lead to suboptimal solutions, they often provide a ro-
bust lower bound on pmax, balancing efficiency and solution quality. This trade-off,
advantageous in many scenarios, suggests avenues for further optimisation to enhance
efficiency without sacrificing solution quality. Additionally, the computational overhead
from Python implementation reinforces the importance of state and iteration counts as
primary performance metrics, ensuring that our heuristics deliver robust guidance in
complex probabilistic environments. We will explore potential enhancements to address
these limitations as part of our future work in the next chapter.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research presents a novel approach to addressing the Max-Prob criterion in Stochas-
tic Shortest Path Problems (SSPs) with unavoidable dead ends by introducing probabilis-
tically enriched graph representations and machine learning-driven heuristics that offer
enhanced search guidance. Motivated by the limitations of existing Max-Prob heuristics,
which often lack probabilistic nuance and rely on simplifications like determinisation;
meanwhile inspired by the effectiveness of learning-based approaches in deterministic
domains, we developed two novel graph representations: Probabilistic Learning Graph
Small (PLGS) and Probabilistic Learning Graph Large (PLGL). Both representations
encode critical probabilistic dependencies directly within their structure, eliminating
the need for determinisation and preserving essential uncertainty-related information.
Through these enriched representations, our extended framework leverages Graph Neu-
ral Networks (GNNs) and Statistical Machine Learning (SML) models to accurately
predict pmax, allowing us to construct heuristics that strengthen the guidance provided
during the Max-Prob stage of i-dual—the foremost algorithm for tackling SSPs under
the robust Minimising Cost given Maximum Probability (MCMP) criterion.

Our empirical evaluation provides strong evidence that PLGS and PLGL yield substan-
tial gains over traditional deterministic graph representations, consistently achieving
lower prediction error in estimating pmax, which ultimately enhances i-dual’s search ef-
ficiency across challenging, probabilistic planning domains. By accurately encoding the
probabilistic dependencies in SSPs, our learned heuristics from both GNN and SML
models deliver high-quality estimates that not only match but can occasionally exceed
the performance of existing best-performing heuristics such as hmax. This competitive
performance is especially noteworthy given that our heuristics are generated directly
from graph-based learning, allowing for seamless integration into heuristic-guided search
frameworks. Moreover, our learned heuristics provide a strong lower bound on pmax in
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cases where exact optimality is not reached, enabling an effective balance between com-
putational efficiency and solution quality. This trade-off underscores the practical utility
of our approach, offering improved efficiency and predictive accuracy while maintaining
the flexibility to adapt across a range of SSP domains.

6.2 Future Work

In the last section, we highlight potential extensions and unresolved challenges that
remain associated with our research.

Optimising Engineering Performance

As discussed in Section 5.3, components of our framework that contribute to heuristic
generation are implemented in Python and subsequently transferred to C++ within i-dual
using the pybind package. However, this setup prevents a direct comparison of heuristic
generation time as part of the overall performance metric, as native C++ implementations,
such as hmax, run considerably faster than Python code interfaced through pybind.
To address this disparity, a promising upgrade would involve implementing our entire
framework in C++, enabling us to factor heuristic generation times into performance
comparisons with hmax.

Adapting i-dual for Inadmissible Max-Prob Heuristics

The heuristic produced by our model for pmax is inadmissible, leading to i-dual’s Max-
Prob stage occasionally yielding pτ , a lower bound for pmax, as observed in Section 5.3.
Consequently, the Min-Cost stage may not produce the optimal solution for SSPs under
the MCMP criterion. This limitation arises because, in the Min-Cost stage, i-dual solves
the linear program LP 1 using the probability requirement pτ in constraint (C6). If pτ is
indeed a lower bound rather than equal to pmax, the search halts once enough flow has
reached the goal state at pτ < pmax, potentially leaving remaining flow in non-goal state
sinks. Since transferring this remaining flow incurs additional cost, i-dual will return
the solution at goal probability pτ , rather than pushing remaining flow to the goal state
sinks. Improving i-dual’s Min-Cost stage to continue exploring when non-goal state
sinks retain residual flow could enable us to find optimal MCMP solutions even if the
Max-Prob stage produces a lower bound. When pτ is a reliable lower bound, solving the
Min-Cost stage would require minimal additional computational effort while preserving
the efficiency advantage of the Max-Prob stage with our learned heuristic.

Learning Metrics Beyond pmax

Our framework is currently tailored for learning pmax in SSPs, employing trained model
predictions as a Max-Prob heuristic. However, the framework’s design can be adapted
to train models that predict any SSP feature, providing a range of heuristic options
for search guidance. This adaptation involves substituting the pmax label in the training
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data with another SSP feature. For example, we could learn a heuristic for V ∗ and apply
it to the Min-Cost stage of i-dual or other heuristic search algorithms under the finite-
penalty criterion. Furthermore, the framework could be extended to capture metrics
like search effort, which assesses the difficulty of reaching the goal from a given state
and helps direct search algorithms towards more computationally efficient paths [Ferber
et al., 2022].

Extending Heuristics to Constrained and MOPLTL SSPs

A Constrained Stochastic Shortest Path problem (C-SSP) is an SSP with k + 1 cost
functions, where the objective is to optimise the primary cost function while respecting
upper bounds on the remaining k cost functions [Altman, 1999]. Heuristics for C-SSPs
estimate the likelihood of reaching the goal while adhering to these constraints, though
designing effective heuristics is challenging due to probabilistic transitions and high-
dimensional state spaces, which limit the applicability of standard deterministic heuristic
methods [Geißer et al., 2020]. Extending our framework to support C-SSPs could involve
integrating model predictions with a search algorithm that dynamically compensates for
potential model inaccuracies, allowing the algorithm to adjust predictions in real-time
and improve heuristic reliability in constraint-driven environments.

A language capable of encoding these constraints is Probabilistic Linear Temporal Logic
(PLTL), which applies temporal constraints to SSPs, known as multi-objective PLTL
SSPs (MOPLTL-SSPs) Baumgartner et al. [2018]. MOPLTL-SSPs require precise track-
ing of probabilities across state-action sequences, significantly increasing computational
demand. Describing PLTL constraints often leads to exponential state-space expan-
sion, with a complexity of O(22

n
), where n denotes the size of the largest LTL for-

mula. MOPLTL-SSP heuristics estimate the feasibility of meeting PLTL constraints
while reaching the goal. Specifically, they approximate the likelihood that an action or
state sequence will satisfy PLTL-defined temporal and probabilistic conditions. Such
heuristics guide search algorithms towards paths that are both cost-effective and more
likely to satisfy specified constraints, including safety, goal reachability, and sequential
dependencies. MOPLTL-SSP’s extreme complexity limits the efficacy of existing heuris-
tics, which often struggle with computational constraints [Mallett et al., 2021]. Extend-
ing our framework to encode MOPLTL-SSPs as graphs containing both SSPs and PLTL
constraints could allow our model to learn MOPLTL-SSP heuristics from these encod-
ings, balancing MOPLTL-SSP’s high complexity with the enhanced evaluation speed
offered by ML-based frameworks.

Extending Heuristics to Multi-Objective Planning

Multi-Objective Planning (MOP) involves optimising multiple objectives—such as cost,
time, and risk—under probabilistic conditions, where improvements in one objective may
necessitate trade-offs with others [Geißer et al., 2022]. SSPs with unavoidable outcomes
can be framed as Bi-Objective Planning problems with conflicting goals of maximising
safety and minimising cost. In MCMP, we address these conflicts by prioritising safety
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maximisation before cost minimisation, using separate heuristic functions for Max-Prob
and Min-Cost that guide the search independently at each stage, thereby avoiding the
need to consider inter-objective interactions. However, developing vector-valued heuris-
tics directly representing all objectives in MOP introduces additional challenges, as these
heuristics require accounting for complex interdependencies between objectives and re-
main computationally intensive—an area where existing heuristics often fall short [Chen
et al., 2023b]. Extending our framework to support learning heuristics for MOP may
involve exploring new graph encodings and model architectures that improve accuracy
and efficiency, yielding heuristics better suited for complex MOP tasks. The primary
challenge in MOP heuristic learning lies in that the heuristics must function as map-
pings from a state to a dynamic set of vectors, where the number of vectors varies across
states and is unknown a priori. This variability presents a unique challenge to all current
learning-for-planning methods, as they traditionally predict fixed-size outputs, such as
a single heuristic value or an individual action for policies.
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Chen, D. Z.; Trevizan, F.; and Thiébaux, S., 2023b. Heuristic search for multi-
objective probabilistic planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, 11945–11954. [Cited on page 83.]
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