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Abstract

Artificial intelligence research is focused on developing intelligent systems that can au-
tomatically learn from data and make decisions. Tremendous progress has been made in
the former, with deep learning systems achieving remarkable success and affecting many
aspects of our lives. As a specific case of the latter, planning systems are capable of re-
liable long-horizon decision making in complex environments. Recently, strong interest
has emerged in using learning methods to aid planning systems, with various approaches
that achieve different levels of success. However, limited attention has been paid to how
to adapt planning systems to make the best use of learning methods.

This thesis builds planning systems that are designed to work well with learning methods
to allow for more effective decision making. We exploit the inherent relational structure
of planning actions that is ignored by dominant planning systems. Through this, we
introduce an alternative search space for planning that enables a more focused and
efficient search. We discuss how this ultimately allows planning systems to receive more
guidance from learning systems, and for learning systems to have more information to
work with. We show how to extend any existing planning heuristic to work with our
new search space, and how to learn new heuristics that are specifically designed for it.
This way, we are able to build a learning-for-planning system, LazyLifted, where the
planning component and learning component are designed for each other.

To evaluate LazyLifted, we use both existing competition benchmarks and new bench-
marks designed to challenge planning systems with high branching factors. Our results
show that LazyLifted outperforms existing state-of-the-art learning for planning systems.
Furthermore, LazyLifted outperforms the state-of-the-art planning system LAMA-first,
the first learning-for-planning system to do so.
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Chapter 1

Introduction

1.1 Learning, planning, and learning for planning

The grand challenge of artificial intelligence (AI) is to develop systems that demonstrate
human-like intelligence. AI research can be divided into two primary paradigms: learners
and solvers, and categorised by Geffner (2018). Learners aim to infer knowledge from
data and experiences without an explicit world model, while solvers focus on problem-
solving based on a structured world model.

In the last decade, learners, particularly those based on deep learning, have achieved
remarkable success and become a central focus in computer science. Advances in com-
putational power and methodologies have powered breakthrough systems such as Al-
phaGo for the board game Go (Silver et al., 2016) and ImageNet for computer vision
(Krizhevsky, Sutskever, and Hinton, 2012). More recently, large language models (LLM)
have enabled interactive agents that offer experiences approaching human-like interac-
tion. However, these systems still have limitations, including a lack of guarantees in their
outputs, poor performance on out-of-distribution inputs, and limited transparency.

Solvers, particularly planners, are given a structured task description and seek to gen-
erate a plan — typically a sequence of actions — to achieve the specified goal (Geffner
and Bonet, 2013). Planning systems are generally robust and reliable, promising to solve
tasks provided unlimited time and memory. The core of planning research is to develop
planning systems that support expressive description of planning tasks, such as uncer-
tainty and time, and can solve them efficiently with high quality plans. The competing
goals of expressiveness, efficiency, and quality means there is no one-size-fits-all solution
to planning — a plethora of planning methodologies have been developed, each achieving
a different trade-off (Helmert, 2006; Kurniawati, Hsu, and Lee, 2008; Scala et al., 2016;
Trevizan et al., 2016).

The success of learners has made the idea of integrating them into planning highly
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1 Introduction

appealing. In recent years, a variety of approaches have emerged in the realm of learning
for planning. Roughly categorising, these approaches either learn to directly plan (Toyer
et al., 2020; St̊ahlberg, Bonet, and Geffner, 2022a,b; Drexler, Seipp, and Geffner, 2023;
Wang and Thiébaux, 2024), or learn to indirectly help or guide planners (Gnad et al.,
2019; Shen, Trevizan, and Thiébaux, 2020; Chen, Thiébaux, and Trevizan, 2024; Hao
et al., 2024). However, no system that uses learning in a significant way has yet to
demonstrate itself as competitive with non-learning planners (Taitler et al., 2024). While
this status is due in part to weaknesses in learning systems themselves, it also reflects
the decades of accumulated development and optimisation in non-learning planners. For
example, GOOSE (Chen, Trevizan, and Thiébaux, 2024), a state-of-the-art learning-for-
planning system, learns better heuristic functions than those from non-learning methods.
Yet it is still slightly inferior to the state-of-the-art non-learning planner, LAMA, due to
other techniques employed by LAMA and the speed of evaluating the learned heuristic.

1.2 Planners for learners

In this thesis, we focus on classical planning, which features deterministic, fully ob-
servable environments and a discrete state space. The canonical approach for classical
planning is search in the state space of the planning problem, guided by a heuristic func-
tion. GOOSE simply replaces the heuristic function from one obtained by non-learning
methods to a learned heuristic. In this case, the learner provides a score to each suc-
cessor state of a planning state while the planners uses these scores to decide how to
proceed in the search.

When learners help planners like in GOOSE, in an ideal world, one would imagine a
much more integrated, cooperative system. For example, the learner could help the
planner gradually narrow down from a list of actions, rather than scoring at once all
the actions’ resulting states. This would see more involvement from the learner in the
planning process, while at the same time providing the learner with more information to
work with. The aim of this thesis is to design a planner and learner that work together
more effectively, with the planner being better integrated with the learner and the learner
utilising more information from the planner.

1.3 Contributions

This work focuses on building search-based planning and learning systems with deep
integration. Our ultimate goal is to efficiently solve large classical planning problems.
The resulting learning-for-planning system, LazyLifted, features:

1. Fine-grained search. We introduce a novel formulation of the classical planning
problem into a search problem called partial space. We do so by exploiting the
relational structure of planning actions. Searching in the partial space involves a
reduced branching factor and more frequent opportunities for fine-grained heuristic
guidance, when compared to traditional state space search. Under good heuristic

2



1.3 Contributions

guidance, this ultimately results in a more focused and efficient search. Although
designed for them, partial space search is not restricted to the use of learned
heuristics or classical planning.

2. Graph representations. We design novel graph representations of search nodes of
partial space search. These graphs represent different ways of interpreting what
these nodes mean in the context of search. They are designed to be used to
ultimately produce a feature vector representing the search nodes.

3. Learned actions set heuristics. Using our graph representations and the resulting
feature vectors, we adapt and extend existing methods to learn action set heuristics.
Unlike typical heuristics used in planning, which evaluate a single planning state,
action set heuristics evaluate a set of actions on a state. This is akin to evaluating
all the possible successor states led to by these actions. We learn these action set
heuristics to guide partial space search. We are able to use a number of training
plans on a domain to train an informed and fast heuristic function designed for
partial space search.

4. Extension of non-learning heuristics. Although our focus is on learning, we also
show that any traditional state space heuristic can be extended to an action set
heuristic. This allows us to evaluate the merits of partial space search alone by
using an efficient extension of the traditional hFF heuristic.

To evaluate LazyLifted, we compare against a number of state-of-the-art learning and
non-learning planners. We use the benchmarks from the International Planning Com-
petition 2023 Learning Track (Taitler et al., 2024) and extend it with high branching
factor problems. We show that LazyLifted is competitive with our baselines on normal
classical planning tasks, and outperforms our baselines on hard-to-ground tasks. Ulti-
mately, we show that LazyLifted is overall competitive with non-learning planners, the
first learning-for-planning system to do so.

In additional to the main contributions, we have a number of additional contributions.
Specifically,

1. The LazyLifted planning system. Typically, planning research is implemented on
top of existing planning systems. However, we found implementing partial space
search and action set heuristics requires significant changes to the underlying plan-
ner. As such, we instead developed a new planner from the ground up using
the Rust programming language and following modern best practices. This plan-
ner, LazyLifted, is a lifted planner that is capable of working with large hard-to-
ground planning tasks. We based its design on the existing state-of-the-art in lifted
planning, namely Powerlifted (Corrêa et al., 2020). We implemented LazyLifted
such that it is more performant in terms of search speed than Powerlifted. The
LazyLifted codebase is also designed to be easy to maintain, extend, and use. Al-
together, LazyLifted is a production ready planner that we hope can see real world
use and be a base planner where future planning research can be implemented on

3



1 Introduction

top of.

2. High branching factor benchmarks. Prior to our work, there was no organised
collection of such benchmarks to our knowledge. We developed a set of benchmark
planning tasks for high branching factor planning problems. We did so by following
the rough design of the benchmarks from the International Planning Competition
2023 Learning Track. Our benchmark set, although not large, includes a variety
of problems. We hope this benchmark set can help evaluate future research in this
area more comprehensively.

3. Rank2Plan. As part of our efforts to learn action set heuristics, we extended the
methods proposed in Dedieu, Mazumder, and Wang (2022) for efficiently training
L1-regularised Support Vector Machines (SVM) to RankSVMs for planning. We
implemented our extension in an open-source Python package called Rank2Plan.
We found that this significantly reduced the training time and memory of our
heuristics. This package is generally useful for learning planning heuristics, and
we hope it can be used by the planning community.

1.4 Structure of this thesis

To clearly and thoroughly present our contributions, this thesis is structured as follows:

• Chapter 2 provides background information on classical planning and learning for
planning. We formalise the planning task and explain the main ideas and con-
cepts in heuristic search, the current state-of-the-art in solving classical planning
problems. We also introduce the concept of learning for planning and the current
state-of-the-art in this area, which is based on graph representations and kernels
with classical machine learning techniques.

• Chapter 3 introduces our new search space formulation, partial space search, in
detail. We introduce the concept of a partial action, which represent sets of actions,
and the natural tree structure of partial actions. We use this tree structure to define
partial space search. Moreover, we also discuss how partial space search is more
efficient than the traditional state space search, and what the implications are for
learning methods.

• Chapter 4 introduces the notion of action set heuristics, which evaluate sets of
actions on a state. We discuss how action set heuristics are capable of guiding
partial space search. We show how to automatically translate any traditional state
space heuristic into an action set heuristic, and how to do this efficiently, using the
FF heuristic as an example. More importantly, we discuss graph representations
that can be used to learn action set heuristics, and how we adapt and improve
existing learning methods to learn these heuristics.

• Chapter 5 evaluates our contributions. Here we introduce the engineering side
of our new LazyLifted planner and the Rank2Plan library for efficient training.
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1.4 Structure of this thesis

We also introduce our new set of benchmarks for high branching factor planning
problems. We then evaluate LazyLifted on competition benchmarks from the In-
ternational Planning Competition 2023 learning track and our new benchmarks
We provide a detailed and thorough analysis of the results. We ultimately show
that our contributions achieve their design goals. Specifically, we show that partial
space search is effective on high branching factor tasks, our automatically trans-
lated action set heuristics perform as intended, and our learned action set heuristics
are the new state-of-the-art learned heuristics. We also show that our contributions
work together to outperform the state-of-the-art planner LAMA-first.

• Chapter 6 surveys existing research works relevant to our contributions. We discuss
where our work fits in the existing literature and how it builds upon and differs
from previous works.

• Chapter 7 concludes the thesis. We summarise our contributions and discuss the
implications and limitations of our work. We also discuss future research directions
that can build upon our work.
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Chapter 2

Background

In this chapter we will introduce the necessary background to explain our work. We
will also discuss adjacent topics that are relevant to our work and the state-of-the-art
in the field. We will start by formalising the planning task in Section 2.1, followed by
a discussion on heuristic search approaches in Section 2.2. Then, we will discuss the
state-of-the-art in learning for planning in Section 2.3 by discussing how graphs are used
for learning planning heuristics.

2.1 The Planning Task

In this section we introduce the classical planning task, including a commonly used
formalism based on the Planning Domain Definition Language (PDDL).

In classical planning, one seeks to find a sequence of actions that transition from a given
initial state to a goal state, where the environment is fully observable and deterministic,
and the state and action spaces are discrete (Geffner and Bonet, 2013).

Definition 1 (Planning task). A planning task is a tuple Π = ⟨S, s0, G,A, τ, c⟩ where:

• S is a set of states,

• s0 ∈ S is the initial state,

• G ⊆ S is a non-empty set of goal states,

• A is a set of actions where for each state s ∈ S, As is the set of applicable actions
in s.

• τ : S× A→ S ∪ {⊥} is the transition function, where if a ∈ As then τ(s, a) ∈ S is
the resulting state of applying action a in state s, and ⊥ if a ̸∈ As.

• c : S× A→ R≥0 is the cost function, where c(a) is the cost of applying action a.
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A plan for this task is a sequence of actions π = a1, . . . , an such that their iterative
execution starting at s0 leads to a goal state in G. Specifically, this means there exists
a sequence of states s0, . . . , sn such that for each i from 1 to n, ai is applicable in
the state si−1, and τ(si−1, ai) = si, with sn ∈ G. The cost of a plan is given by
c(π) =

∑n
i=1 c(si−1, ai), and the trace of a plan π is the sequence of states visited,

namely s0, . . . , sn. We say a planning task is solvable if there exists a plan for it, and
unsolvable otherwise. An optimal plan is a plan with the minimum cost among all plans
for a planning task.

2.1.1 The Planning Domain Definition Language

Directly working with the planning task as defined in Definition 1 often yields infeasibly
large state and action spaces. Rather than directly working with it, the planning com-
munity has developed formalisms for more compactly representing planning tasks. The
Problem Domain Definition Language (PDDL) is a commonly used modelling language
for describing planning tasks (Haslum et al., 2019). Here, instead of introducing the
syntax of PDDL, we focus instead on the underlying formalism for the planning task,
which is often called the first-order or lifted planning task (Geffner and Bonet, 2013).
In particular, we focus on the STRIPS fragment of PDDL for this work.

Definition 2 (Lifted Planning Task). A lifted planning task is a tuple Π = ⟨D, I⟩
where D is the planning domain and I is the planning instance. The domain D is a
tuple ⟨P,A⟩ where P is a set of predicates and A is a set of action schemas. The
instance I is a tuple ⟨O, s0, G⟩ where O is a set of objects, s0 is the initial state, and G
is the goal condition.

Each predicate P ∈ P is a symbol that can be instantiated or grounded with objects
from O to form propositions of the form P (o1, . . . , on), where o1, . . . , on are objects from
O and n ∈ Z≥0 is the arity of P . Through grounding, P and O define the set of all
propositions (also called atoms), which encode a state space S where each state is an
assignment of boolean values to each proposition. Often, states are viewed as sets of
propositions that are true in the state.

The initial state s0 is simply an element of S, while the goal condition G is a set of
propositions that must be true in the goal state. Any state that contains G is a goal
state.

The action schemas A define the state transition system. Each action schema A ∈ A
is a tuple ⟨∆(A), pre(A), add(A),del(A)⟩ where ∆(A) is the parameters of A in a fixed
order. The precondition pre(A), add effect add(A), and delete effect del(A) are sets of
propositions instantiated from the parameters and objects ∆(A) ∪ O. Action schemas
are instantiated by substituting the parameters with concrete objects in O, yielding a
ground action a whose precondition, add effect, and delete effects are sets of atoms. The
set of actions A is the set of all possible action instantiations from A. The preconditions
pre(a) define the set of propositions that must be true in the state for the action to
be applicable, while add(a) and del(a) define the set of propositions that are added
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2.1 The Planning Task

Figure 2.1: An example Blocksworld planning task with an example plan, taken from
Slaney and Thiébaux (2001).

and deleted from the state, respectively, when the action is executed. Specifically, the
application of an action a in a state s produces a successor state s′ = (s\del(a))∪add(a).

Unlike the basic STRIPS fragment of PDDL, which assumes all actions have cost 1, for
this work we also use c : A → R≥0 to denote the cost of a particular ground action in
the lifted planning task. In actual PDDL, this is modelled through an extension which
extends action schemas to also model the cost of the action.

The lifted planning task allows for a much more compact representation. Consider the
common example planning task, Blocksworld, where given a set of blocks, the goal is
to move them from a starting stacking configuration to a goal stacking configuration,
as shown in Figure 2.1. To describe Blocksworld using the formulation from Definition
1, one would need to enumerate all possible block configurations, which is infeasible
when there are many blocks. In comparison, using the lifted formalism, one can define
the objects as the blocks, predicates to encode the relationship between the blocks, and
action schemas for moving blocks. This allows for a much more compact representation
of the task.

The lifted planning task also provides much more structure to the planning task. For
example, the action schemas provide a structured view of the action space, where each
action schema defines a set of similar actions applied to different objects. This structure
can be exploited by planning algorithms for more effective reasoning, as is done in our
work. Additionally, its separation of the domain and instance allows for the domain to be
defined once and reused for multiple instances. This is useful for planning problems with
similar structures but with slightly different initial states and goals with different objects.
This domain and instance structure is also useful for learning-based approaches, where
domain knowledge can be learned and reused across different instances (Toyer et al.,
2020; Shen, Trevizan, and Thiébaux, 2020; St̊ahlberg, Bonet, and Geffner, 2022b).
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2.1.2 State-of-the-art in planning

When solving a planning task, one typically aims to either quickly find a plan that
reaches the goal regardless of cost, or to find an optimal plan. The former is called
satisficing planning, while the latter is called optimal planning. Planners for these two
types of planning tasks are called satisficing planners and optimal planners, respectively.

In the world of satisficing planning, the current state-of-the-art planning system is LAMA
(Richter and Westphal, 2010). LAMA is a satisficing planner that uses heuristic search
(see Section 2.2) with multiple heuristics and other techniques to achieve high perfor-
mance on a wide range of planning tasks. Strictly speaking, LAMA is an any-time
planner that produces a plan, and continually seeks to find plans of better quality until
terminated, while LAMA-first is a variant that terminates after finding the first plan. Its
status as the state-of-the-art is clear from its performance in the International Planning
Competition (IPC) 2023 satisficing track (Taitler et al., 2024), where the goal is to not
just find plans, but also high quality plans. Here, it is used as a baseline, outperforming
most participants and achieving a very similar performance to the best participants.
Additionally, LAMA-first is also used as a baseline planner in the agile track, where the
goal is to find plans quickly, and it outperforms all participants in this track as well.

For optimal planning, the state-of-the-art planner is Scorpion (Seipp, 2023). Similar to
LAMA, it uses heuristic search with a variety of techniques to achieve high performance
while guaranteeing optimality. Scorpion comes second in the IPC 2023 optimal track,
losing only to a planner that intelligently combines multiple other planners together
(Drexler et al., 2023).

2.2 Heuristic Search

Planning tasks resemble a search problem on a graph where the nodes are the planning
states and the edges are the actions that transition between states. In this view, plan-
ning mirrors the graph path finding problem where the edge weights are action costs.
Unsurprisingly, search in this graph is the de facto method for solving planning tasks.
However, the state space graph is typically so large that it cannot even be explicitly
encoded in memory. To make the search tractable, heuristic functions are used to guide
the search algorithm to traverse through the graph more effectively. In this section, we
will first introduce basic definitions of what a heuristic function is. We will then discuss
common search algorithms that use these heuristics to solve planning tasks in Section
2.2.1. We will next discuss methods for exploring the state space graph without explic-
itly encoding it in memory in Section 2.2.2. Lastly, we discuss the well-known heuristics
used in planning in Section 2.2.3.

It is important to note that most things we introduce in this section are specific to
dominant search space for classical planning — state space search. Alternative search
spaces also exist for planning, such as plan space search, where one searches through a
space of partially specified plans (Penberthy and Weld, 1992). A main contribution of
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2.2 Heuristic Search

this thesis is a new search space, which we will introduce later in Chapter 3. In the rest
of this chapter, we will avoid repetitively emphasising state space search and just refer
to it as search. However, later on we will make it clear when we are referring to state
space search.

A heuristic function (or simply, a heuristic) for a planning problem is a function of the
form h : S → R ∪ {∞}, where S is the state space of the planning task. The value ∞
can be used to denote deadends, states where no plan can reach the goal. A heuristic
function is estimate of how close a state is to the goal, where a lower value indicates
the state is closer to the goal. Typically, heuristic functions aim to estimate the cost to
transition from a state to a goal state (cost-to-go).

The optimal heuristic h∗ assigns to each state s to cost of the optimal plan from s to a
goal state. An admissible heuristic is one that never overestimates the cost to reach a
goal state. More precisely, a heuristic h is admissible if for all s ∈ S, h(s) ≤ h∗(s). A
heuristic is goal-aware if it assigns the value 0 to all goal states. A heuristic is consistent
if it is goal-aware and h(s) ≤ c(s, a)+h(τ(s, a)), where a is an applicable action in state s.
This means that consistent heuristic respect action costs, and never overestimate them.
A consistent heuristic is always admissible, although the converse is not true. Lastly, a
heuristic h dominates another heuristic h′ is h(s) ≥ h′(s) for all s ∈ S. Intuitively, for
admissible heuristics which always underestimate the cost-to-go, a higher heuristic value
indicates less underestimation, so one would prefer the dominating heuristic.

2.2.1 Heuristic search algorithms

A heuristic search algorithm uses guidance from a heuristic function to explore a graph.
Most such algorithms maintain a frontier of nodes to explore, and expand nodes from
this frontier based on the heuristic value of the nodes. A skeleton of a generic search
algorithm is shown in Algorithm 1. The most commonly used heuristic search algorithms
in planning are A* and Greedy Best First Search (GBFS), as well as their variations. In
this section we will simply refer to heuristic search algorithms as search algorithms.

The A* algorithm provides theoretical guarantees that makes its use prevalent in optimal
planning (Pearl, 1984). We use g to denote the function that maps each node to the
cost of the shortest known path from the start node to that node so far in the search.
Given a heuristic h, the A* algorithm assigns to each node n a f -value that is simply the
sum of h(n) and g(n), and uses a frontier that is a priority queue ordered by f -values.
That is, A* always expands the node with the lowest f -value. Note that in lines 11-12
of Algorithm 1, A* reopens nodes if it finds a shorter path to a node. If h is admissible,
then plans found by A* are optimal. If h is additionally consistent, then A* is guaranteed
to never reopen nodes. Furthermore, given a consistent heuristic, A* is also guaranteed
to expand the least number of nodes among all algorithms of a similar form using the
same heuristic.

There are also a number of variations of A* to achieve different performance character-
istics. To reduce space complexity, one can employ iterative deepening A*, which limits
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Algorithm 1: Skeleton of a generic search algorithm

Data: Planning problem ⟨S, so, G,A, τ, c⟩; heuristic h.
1 OPEN ← ∅
2 s.closed ← ⊥, ∀s ∈ S
3 OPEN.push(s0, f(s0)) /* f depends on the search algorithm */

4 while OPEN ̸= ∅ do
5 s← OPEN.popFront()
6 s.closed ← ⊤
7 if s ∈ G then
8 return plan from s

9 for a ∈ As do
10 t← τ(a, s)
11 if t.closed = ⊤ then
12 continue /* Some algorithms may also reopen t */

13 OPEN.push(t, f(t))

14 return no solution

the depth of the search tree (through f -value) and gradually restarts and relaxes the
limit until a solution is found (Korf, Reid, and Edelkamp, 2001). To improve search
time by sacrificing optimality, weighted A* uses a weight w to redefine the f -value as
f(n) = g(n) + w · h(n), where w > 1. This results in a more greedy search that priori-
tises nodes with low heuristic values more. Given an admissible heuristic, weighted A*
ensures that plans it finds has a cost that is bound by w times the cost of the optimal
plan.

Greedy Best First Search (GBFS) can be considered as weighted A* taken to the extreme.
GBFS uses a f -value that is simply the heuristic value h(n), such that it always expands
the node with the least heuristic value. GBFS provides no optimality guarantees, and
is commonly used in satisficing planning for fast search time.

The algorithms described so far all perform eager evaluation, that is, the heuristic value
of a node is computed as soon as it is added to the frontier. However, such evaluation
can also be deferred to when the node is expanded, resulting in lazy evaluation (Richter
and Helmert, 2009). Since a value of a node is still required to determine the order of
expansions, the value of its parent is used in the frontier. This can provide a speedup
in search time, especially when the number of nodes generated during search is much
larger than the number of nodes expanded. However, lazy evaluation means less useful
information is used to determine the order of expansions, resulting in a trade-off between
number of heuristic evaluations and number of nodes expanded.

There are also additional techniques that aim to provide more information to the search
algorithm beyond heuristics. To help guide the search algorithm to interesting, unex-
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plored parts of the state space, Lipovetzky and Geffner (2012) proposed Width-Based
Search, which employs a novelty measure. Similarly, Preferred operators seek to pri-
oritise some actions (operators) over others. Search algorithms can take advantage of
preferred operators by only expanding nodes from preferred operators. Alternatively,
one can perform a dual-queue approach, one for preferred operator nodes, and the other
for all the nodes, and dynamically adjusting which queue to use based on which one has
been more helpful (Richter and Helmert, 2009; Corrêa and Seipp, 2022). In particular
novelty measures can be used to construct preferred operators (Corrêa and Seipp, 2022).

2.2.2 Grounded versus lifted search

As we discussed, the state space graph of a planning task is typically too large to be
explicitly encoded in memory. This necessitates techniques to explore the state space
without needing to encode the entire graph.

Here we focus our description on the translation process of the Fast Downward planning
system (Helmert, 2006). Fast Downward has been the state-of-the-art classical planning
system for the last two decades, with various techniques being implemented in it over
time. Given a lifted planning task, Fast Downward first grounds the task, i.e., comput-
ing the set of all atoms and actions relevant to in the problem. It then analyses the set
of atoms to translate groups of these binary variables to single multivalued variables.
Afterwards, it performs various forms of additional analysis to compute structures useful
for search, such as a successor generator data structure for computing the set of appli-
cable actions in a state. This way, grounding allows for efficient exploration of the state
space without needing to explicitly encode the state space graph in memory.

For large planning tasks, grounding can still be memory and time intensive. Lifted
planning, where grounding is not performed, is particularly important for solving these
hard-to-ground (HTG) planning tasks. Corrêa et al. (2020) applied techniques from
database theory to compute applicable actions in a planning state. Specifically, they
represent each state as a database, and formulate the task of computing the applicable
actions for a particular action schema as a query on this database. They then compute
all the applicable actions by performing this query for all action schemas. This allows
for exploring the state space of planning tasks without even needing to ground the
task. However, the lifted approach is typically somewhat less efficient than grounded
approaches, since grounding precomputes much of the work that the lifted approach
must do on the fly.

2.2.3 Heuristics

Commonly, the most important factor in whether a heuristic search approach is successful
is the heuristic. In particular, domain-independent heuristics, which can be applied to
any planning domain, receive much of the research attention. This is in contrast to
domain-specific heuristics, which are usually handcrafted for a particular domain and

13



2 Background

hence limited in general utility. We focus this section on providing a survey of domain-
independent heuristics.

The most naive heuristic is simply the zero heuristic, defined by h(s) = 0 for all states
s, which provides no information at all. On the other side of the spectrum we have the
perfect heuristic h∗, which maps every state to exactly its minimum cost to reach the
goal, hence providing perfect information. Computing the perfect heuristic for a certain
state s by definition is the same as solving the planning task with initial state s. More
heuristics therefore lie between the zero and perfect heuristic in terms of informedness.

Examples of a simple domain-independent heuristic is the inadmissible goal counting
heuristic hgc, which maps states to the number of unachieved goals. The goal counting
heuristic can be surprisingly effective due to being easy to compute and relatively well-
informed. Still, we often require stronger heuristics to effectively solve many planning
tasks.

Delete relaxation heuristics

A common approach for constructing heuristics, both domain-independent and domain-
dependent, is relaxation. Relaxation heuristics are based on relaxing certain aspects of
the original planning task such that they become easy to solve directly. Given a state s,
they then map s to the cost of solving the relaxed problem starting at s optimally. This
is particularly useful, as by making the problem easier to solve, they give underestimated
costs and hence are admissible. Relaxation heuristics can also give estimated costs of
solving the relaxed problem, which is not always admissible. This is particularly useful
when even the relaxed problem is hard to solve optimally.

An early domain-independent relaxation, which is very much still useful today, is delete
relaxation. Delete relaxation simply sets the delete effects of all action schemas to be
empty. This way, atoms, once achieved, stay achieved forever, and similarly applicable
actions stay applicable forever.

The perfect delete relaxation heuristic, h+, simply computes the cost to optimally solve
the delete relaxed problem from the input state. Its computation is NP-complete.
Haslum, Slaney, and Thiébaux (2012) computed h+ using disjunctive action landmarks.
A disjunctive action landmark is a set of actions where the application of at least one of
them is necessary for achieving the goal. The heuristic value of h+ can be computed by
iteratively solving minimum cost hitting set problems for increasing sets of disjunctive
action landmarks.

The heuristics hadd and hmax are tractable alternatives to h+ (Bonet and Geffner, 2001).
On top of the delete relaxation, these two heuristics make the additional assumption
on the independence of subgoals. They decompose the goal atoms of the delete relaxed
problem into subgoals, recursively compute the cost to achieve subgoals independently,
then aggregate them together. The two heuristics only differ in that hadd sums the
subgoal costs together, while hmax takes the maximum subgoal cost. The additive ag-
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gregation in hadd is pessimistic, assuming that all the subgoals are entirely independent,
and no action applied in reaching one goal is of any use for reaching others. On the other
hand, the maximum aggregation in hmax is optimistic, assuming that all the subgoals are
reached just by reaching the hardest subgoal. It has been shown hmax is admissible and
dominated by h+, while hadd is inadmissible and dominates h+. Their exact definitions
are given in Definition 3. Here we use the version by Keyder and Geffner (2008) that
considers action costs.

Definition 3 (hadd and hmax). Let Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩ be a lifted planning task, with
A the set of all ground actions. The heuristics hadd and hmax are defined by hadd(s) =
hadd(s,G) and hmax(s) = hmax(s,G), where

hadd(s, g) =


0, if g ⊆ s

mina∈A,p∈add(a)
[
c(a) + hadd(s, pre(a))

]
, if g = {p}∑

p∈g h
add(s, {p}), if |g| > 1

,

and

hmax(s, g) =


0, if g ⊆ s

mina∈A,p∈add(a) [c(a) + hmax(s, pre(a))] , if g = {p}
maxp∈g h

max(s, {p}), if |g| > 1

.

Recall that in Section 2.1.1 we said that states are often viewed as the set of propositions
that are true in the state. Here, g ⊆ s means that all propositions in g are true in s.

The heuristic h+ can also be approximated using the hFF heuristic, which is a better
approximation than hadd (Hoffmann and Nebel, 2001).

Definition 4 (hFF). Let Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩ be a lifted planning task, with A the
set of all ground actions, s the state to compute the heuristic for, and γ : A → R≥0 an
achiever cost function. We assume the problem has been modified such that there is only
one goal atom goal, with a special achieve-goal action, whose precondition is all the
original goal atoms and effect is to add goal.

For each atom p let ap be an action with the least γ value in the set of all actions that
achieve p, i.e., satisfy p ∈ add(a). Let

π(p) =

{
∅, if p ∈ s

{ap} ∪
⋃

q∈pre(ap) π(q), otherwise
.

If we fix ap for all reachable atoms from s and the goal atoms are all reachable, we can
recursively compute a unique solution to π. Then, π(goal) is a set of actions that can
be sequenced to a plan to the delete relaxed problem, and the heuristic value hFF(s) is its
cost.

The achiever cost function measures which action should be preferred for achieving a
particular atom. Hoffmann and Nebel (2001) defined it based on hmax values, while
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Keyder and Geffner (2008) did so using hadd values, namely γ(a) = c(a)+hadd(s, pre(a)).
We use will use the latter definition.

It is worth noting that the delete relaxation heuristics introduced here, namely hadd,
hmax, and hFF, cannot be easily computed in the lifted planning case. We discuss their
lifted computation later this section.

Abstractions, cost partitioning, and landmarks

The delete relaxation heuristics discussed so far, specifically hadd and hFF, remain to
this day some of the most effective heuristics for satisficing planning. Here we discuss
briefly some domain-independent admissible heuristics for optimal planning. As we will
discuss later this section, highly accurate admissible heuristics are not necessarily the
best heuristics to use for satisficing planning.

Abstraction heuristics are computed from abstractions of planning tasks, which are,
at a high level, simplifications of planning tasks. For the same reason that relaxation
heuristics like h+ that compute minimum costs are admissible, abstraction heuristics are
also admissible. Pattern databases (PDBs) is an early abstraction heuristic that abstract
away all but a small part of the planning task, leaving the resulting problem (pattern)
easy to solve by just blind search (Edelkamp, 2001). Patterns are typically combined for
the computation of the canonical heuristic, which requires that the individual patterns
are orthogonal for admissibility (Haslum et al., 2007). This means that each action
cannot affect multiple patterns. Alternatively, merge and shrink (M&S) abstractions
allow constructing a single good abstraction by searching over the space of abstractions
and merging them or shrinking them (Helmert, Haslum, and Hoffmann, 2007). M&S
abstractions are shown to be the most general abstractions, where any abstraction can
be represented as a M&S abstraction. Lastly, Cartesian abstractions, which iteratively
refine abstractions by discovering counterexamples, offer an efficient and fine-grained
refinement and generalise pattern databases (Seipp and Helmert, 2013).

Cost partitioning is a method for additively combining admissible heuristics such that
the combined heuristic remains admissible. Specifically, given n admissible heuristics,
cost partitioning produces n copies of the original planning problem. Each copy contains
a modified cost function, which can differ between copies. The component heuristics are
computed on their respective copy, and the resulting heuristic values are summed for the
overall heuristic value. Katz and Domshlak (2008) showed that if for each action, the
sum of its costs over all copies is a lower bound of the original cost, then the combined
heuristic through cost partitioning is admissible. The distribution of the original action
costs over the copies is called the cost partitioning, which obviously plays an important
role in the quality of the resulting admissible heuristic. The hmax heuristic, which is
often not informative due to being extremely optimistic, can be improved admissibly by
applying cost partitioning to many copies of hmax, leading to the additive hmax heuristics.

We had previously discussed disjunctive action landmarks, which are sets of actions
where one from each set must be applied to reach the goal. Let L be a set of actions and
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L+ their delete relaxation (i.e., with delete effects set to the empty set), we say L+ is a
s-landmark if it is a disjunctive action landmark from the state s in the delete relaxed
problem. The elementary landmark heuristic for a set of actions L is a simple heuristic
that maps each state s to the cost of the cheapest action in L if L+ is a s-landmark, and
otherwise to 0. They are clearly admissible, and the elementary landmark heuristics for
disjunctive action landmarks in the delete relaxed problem can be combined admissibly
through cost partitioning. Karpas and Domshlak (2009) showed that the optimal cost
partitioning for this can be computed in polynomial time.

Helmert and Domshlak (2009) showed close relations between abstraction heuristics,
additive hmax heuristics, and landmark heuristics. Specifically, they showed that these
heuristics can often be compiled into each other in polynomial time. Their results yield
the hLM−Cut heuristic, which is the result of first compiling hmax to a set of disjunc-
tive action landmarks, then combining their elementary landmark heuristics using cost
partitioning. Crucially, they showed that hLM−Cut is admissible and dominates hmax.

Datalog and lifted heuristics

We had previously in Section 2.2.2 discussed the importance of lifted search for solving
large, hard-to-ground planning tasks. A key challenge in lifted planning is the need by
almost all heuristics discussed so far to ground the planning task. Recent developments
have seen the use of Datalog, a logic programming language, to compute the delete
relaxation heuristics efficiently in a lifted way (Corrêa et al., 2021). These lifted imple-
mentations are the state-of-the-art in lifted planning, and have competitive performance
with their grounded counterparts when grounding is possible (Corrêa et al., 2022).

A Datalog rule r has the form P ← Q1, . . . , Qm, for m ≥ 1. Here, P is the head of the
rule, denoted head(r), and Q1, . . . , Qm are the body of the rule, denoted body(r). Each
term P,Q1, . . . , Qm is a predicate1 with some number of argument variables. Given a
set of constants C, Ground(r) is the set of all rules obtained by substituting variables in
r with constants from C.

A Datalog program D = ⟨F ,R⟩ is made up of a set of facts (ground atoms) F and a
set of rules R. Given a Datalog rule r ∈ R where r = P ← Q1, . . . , Qm with variables
vars(r) = {v1, . . . , vn}, its semantics can be written as r∀ = ∀v1, . . . , vn. Q1∧ . . .∧Qm →
P . We use Ground(R) to denote

⋃
r∈RGround(r). The canonical model of the program

D is the maximal setM of ground atoms such that F ∪ {r∀|r ∈ R} |=M. That is, the
canonical model is the set of all ground atoms that can be derived from the facts and rules
of the program. The canonical model of a Datalog program is unique (Abiteboul, Hull,
and Vianu, 1995), and its computation is EXPTIME-complete (Dantsin et al., 2001).

A derivation of a ground atom p from a Datalog program D is a sequence of facts from
F and ground rules from Ground(R), where all the body atoms of each rule in the

1Note that Datalog predicates and atoms are not the same as planning predicates and atoms, even if
their syntax and semantics are highly similar.
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sequence appears earlier as facts or head of rules in the sequence, and where the last
fact or head of rule is p. A derivation for a ground atom p is a proof that p ∈M.

The key to using Datalog for computing delete relaxation heuristics is model a lifted
planning task as a Datalog program. Given a lifted planning task Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩
and a state s, Corrêa et al. (2021) encode the delete relaxation of Π, Π+, as a Datalog
program Ds = ⟨F ,R⟩. The facts F contains all ground atoms in s, while R contains
rules that encode the action schemas A. Specifically, for each action schema A ∈ A
with parameters ∆(A) and precondition pre(A) = {Q1, . . . , Qm}, R contains the action
applicability rule

A-applicable(∆(A))← Q1, . . . , Qm,

and for each add effect P ∈ add(A), R contains the action effect rule

P ← A-applicable(∆(A)).

Helmert (2009) showed that the canonical model of Ds contains exactly the reachable
ground actions and atoms from s in the delete relaxed problem Π+. There, Helmert
used it to ground the lifted problem by computing the canonical model incrementally,
similar to a generalised Breadth First Search. Specifically, the algorithm starts with a
queue Q = F and M = ∅. In each iteration, it pops a fact f from Q. If f is already
inM, it moves to the next iteration. Otherwise, it adds f toM and computes the set
of all ground rules r where body(r) ⊆ M and f ∈ body(r), and adds the head of each
such rule to Q. This algorithm implicitly constructs a derivation for each atom in M.
Furthermore, for each atom p inM, its best achiever is the rule that first added p to Q.
We refer to Helmert (2009) and Corrêa et al. (2022) for an explanation of preprocessing
and optimisations techniques for making this algorithm efficient.

In order to compute delete relaxation heuristics from Ds, Corrêa et al. (2021) modified
it by adding a rule whose head is an auxiliary goal atom goal, and body are the original
goal atoms. They also included a weight for each Datalog rule. In particular, they
assume that all actions from the same action schema have the same cost, and assign the
weight c(A) to the action applicability rule generated for each action schema A ∈ A, and
the weight 0 to all other rules. They then modified the above incremental algorithm to
capture rule weights. Specifically, they order facts in Q by a value v. They set v(p) = 0
for all initial facts p ∈ F , and whenever they add a new fact head(r) for ground rule r,
they set

v(head(r)) = w(r) +

{∑
Q∈body(r) v(Q), if computing hadd

maxQ∈body(r) v(Q), if computing hmax

where w(r) is the weight of the rule r. They then showed that if the goal is reachable,
then v(goal) = hadd(s) or hmax(s), depending on which one they are computing. This
allows them to also early-stop the algorithm once they have computed v(goal).
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Corrêa et al. (2022) further extended the above approach to compute the hFF heuristic.
Specifically, they attach an annotation to each rule in R, where the annotations can be
understood as a Domain Specific Language (DSL). They then compute v(goal) using the
hadd formulation. Once reaching goal, they then backchain to compute the derivation
of goal, and execute all annotations attached to the rules in the derivation. These
annotations add the actions whose ground rule was used to reach goal to a set, and
showed that hFF(s) is the sum of the costs of the actions in this set.

2.2.4 Do heuristics have to represent cost-to-goal?

So far, our discussion on heuristic functions have assumed the idea that heuristics func-
tions should try to estimate the cost to reach the goal from a given state. As argued
in Garrett, Kaelbling, and Lozano-Pérez (2016); Ferber et al. (2022); Chrestien et al.
(2023); Hao et al. (2024); Chen and Thiébaux (2024), this is not necessarily the best tar-
get for satisficing planning, both theoretically and empirically. These works are mostly in
the context of learning heuristic functions rather than constructing domain independent
heuristic functions. Here we summarise some of their discussions on why they choose
alternative targets for their learned heuristic functions, and leave a discussion of how
they do it to Section 2.3 and Chapter 6.

In satisficing planning, planners generally employ the GBFS search algorithm since the
goal is to solve the task quickly and plan quality is not crucial. A key property of GBFS
is that the heuristic is only used to rank the search nodes. Two heuristic functions will
lead to the exact search outcome as long as their relative ordering of search nodes is the
same. Intuitively, it is therefore unnecessarily restrictive to expect heuristics to estimate
the cost-to-goal.

On the other hand, for optimal planning where the A* search algorithm is typically used,
cost-to-goal heuristics are also not necessarily the best. Heuristics that estimate cost-
to-goal accurately or even perfectly (i.e., the perfect heuristic) will give the same value
to many equally good states. This forces A* to have to explore a possibly exponential
number of equally good solutions, as shown in Helmert and Röger (2008). The purpose
of planning is typically to just finding one plan. It may therefore be more efficient to use
an admissible heuristic that biases towards a certain optimal plan and is less accurate,
rather than one that only estimates cost-to-goal.

Lastly, in the context of learning heuristic functions, choosing alternative targets allows
using training information not otherwise available when choosing cost-to-goal as target.
Specifically, given a training plan, using cost-to-goal as target only allows using states on
the training plan trace, as cost-to-goal information is typically expensive for states not
in the training plan trace. Using alternative targets, as done in Garrett, Kaelbling, and
Lozano-Pérez (2016), Hao et al. (2024), and Chen and Thiébaux (2024), allows for using
states off the training plan trace. This is particularly useful as states on the training
plan trace only give indications of what is ideal, while states off the training plan trace
indicate what might not be ideal.
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2.3 Graphs and Planning

In this section we discuss graphs their use in planning, with the ultimate goal of explain-
ing the state-of-the-art WL-GOOSE system for learning planning heuristics. Specifically,
we briefly explore graph neural networks in Section 2.3.1. We then explain in more detail
the Weisfeiler-Lehman kernel in Section 2.3.2 and its use in planning in Section 2.3.3.
Lastly, we discuss the ranking versus regression approaches of training planning heuris-
tics in 2.3.4. We leave a more general discussion of works in learning for planning, much
of which use graphs, to Chapter 6.

2.3.1 Graph neural networks

Graph neural networks (GNNs) are a class of neural networks that operate on graph
data structures. They have gathered significant attention due to the flexibility of graphs
and the rise in popularity and success of neural networks due to developments in parallel
computing and deep learning. GNNs have been used in both tangible applications such as
social networks (Fan et al., 2019) and to solve abstract problems such as the NP-complete
decision Travelling Salesperson Problem (Prates et al., 2019). For this section, we assume
familiarity with neural networks and their training by optimising a differentiable loss
function with backpropagation.

A graph is a tuple G = ⟨V,E⟩ where V is a set of vertices and E ⊆ V × V is a set
of edges. It is undirected if for each edge (u, v) ∈ E, (v, u) is also in E, and directed
otherwise. In the context of GNNs, we often associate feature vectors with vertices and
edges. GNNs learn to compute functions over graphs with these features, independently
of the graph size and structure (Scarselli et al., 2009; Hamilton, 2020). GNNs operate
in a message-passing framework, where each vertex aggregates and updates information
from other vertices in the graph. For more complete overview we refer to Zhou et al.
(2020) for a comprehensive survey of GNNs.

It is important to note that due to the message-passing nature, there are important
limitations to GNNs. Specifically, it has been shown that GNNs cannot distinguish all
pairs of graphs which are not isomorphic, but they can distinguish those distinguishable
by the Weisfeiler-Lehman (WL) algorithm (Morris et al., 2019), which are in turn those
distinguishable by the first-order logic with counting quantifiers and two-variables, C2

(Barceló et al., 2020). We explore this in more detail in the next section.

2.3.2 The Weisfeiler-Lehman kernel

The Weisfeiler-Lehman (WL) algorithm is initially a heuristic test for answering the
graph isomorphism problem.

Definition 5 (Graph isomorphism). The graph isomorphism problem is the problem of
determining whether two graphs G1 = ⟨V1, E1⟩ and G2 = ⟨V2, E2⟩ are isomorphic, i.e.,
there exists a bijection ϕ : V1 → V2 such that (u, v) ∈ E1 if and only if (ϕ(u), ϕ(v)) ∈ E2.
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Algorithm 2: The WL algorithm

Data: A graph G = ⟨V,E⟩ and an injective hash function h which maps an
integer and integer multiset pair to integers.

1 c(0)(v)← 0, ∀v ∈ V
2 for i = 1, . . . do

3 c(i)(v)← h
(
c(i−1)(v),

{{
c(i−1)(u)|u ∈ N (v)

}})
, ∀v ∈ V

4 if c(i) = c(i−1) then

5 return
{{
c(i)(v) | v ∈ V

}}

The graph isomorphism problem is in NP, but it is not known to be in P or NP-complete,
and hence usually given its own complexity class, GI. The WL algorithm is a simple and
efficient algorithm for testing if two graphs are isomorphic. It is a one-sided test in
that when it finds two graphs to be non-isomorphic, they are indeed non-isomorphic,
but it cannot show that two graphs are isomorphic. It does so maintaining colours for
each vertex, and iteratively updating the colours by hashing the colour of vertices and a
multiset of the colours of its neighbours. Its pseudocode is given in Algorithm 2, where N
is the function that maps vertices to their neighbours, i.e., N (v) = {u ∈ V | (v, u) ∈ E}.

It is known that |V | − 1 is a tight bound for the number of iterations the WL algorithm
needs to converge to a stable colouring (Kiefer and McKay, 2020). If the WL algorithm
converges to the different multiset of colours for two graphs, then the graphs are not
isomorphic. However, two non-isomorphic graph may converge to the same multiset of
colours, and hence the WL algorithm cannot distinguish them. It has been shown that
the WL algorithm is able to count substructures representable by first-order logic with
counting quantifiers and two variables, C2 (Cai, Fürer, and Immerman, 1992).

In addition to its use in graph isomorphism, the WL algorithm has been shown to
be a powerful tool for transforming graphs into feature vectors that can be used in
machine learning tasks. Specifically, the WL kernel is a kernel function that transforms
graphs into vectors, whose values are the counts of each colour seen over a fixed number
of iterations of the WL algorithm. These vectors are typically then used to compute
the similarity between graphs, and have been shown to be effective in various machine
learning tasks.

2.3.3 WL features for planning

The WL kernel has been very successfully applied to planning by (Chen, Trevizan, and
Thiébaux, 2024). Specifically, their method involves three steps,

1. Graph construction: They convert planning states to graph representations. Their
graph representations are undirected graphs where vertices are assigned colours
and edges are assigned labels. These colours represent planning related information
about the vertices and edges.
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2. WL kernel : They extend the WL kernel to work with their graph representations.
Their variation allows them to generate fixed length feature vectors for all graphs,
where the vector length is determined from the training data.

3. Learning : They use the WL kernel feature vectors to train a classical machine
learning model to predict the cost-to-goal of planning states. This produces a
planning heuristic. We defer a general discussion of learning planning heuristics
given feature vector representations of planning states to Section 2.3.4.

In more detail, Chen, Trevizan, and Thiébaux (2024) represent a planning state as its
instance learning graph (ILG). The ILG includes vertices for each object in the planning
task and for each atom in the state or goal. Vertices are coloured to indicate their nature,
i.e., is the vertex an object, an atom in the state, an atom in the goal, or an atom in
both. Vertices are connected by edges if the atom involves the object, and the edges are
labelled by the position of that the object appears in the atom. The precise definition
of the ILG is given in Definition 6.

Definition 6 (ILG). Given a planning task Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩, the instance learn-
ing graph (ILG) for a state s ∈ S is a graph G = ⟨V,E, c, l⟩, where,

• V = O ∪ s ∪G.

• E =
⋃

p=P (o1,...,on)∈s∪G{⟨p, o1⟩, . . . , ⟨p, on⟩}.

• c : V → ({ap, ug, ag} × P) ∪ {ob} given by,

c(v) =


ob, if v ∈ O

(ap, P ), if v = P (o1, . . . , on) ∈ s \G
(ag, P ), if v = P (o− 1, . . . , on) ∈ s ∩G

(ug, P ), if v = P (o− 1, . . . , on) ∈ G \ s

.

• l : E → {1, . . . , n}, where n is the maximum number of objects in any atom in
s ∪G, given by,

l(⟨P (o1, . . . , on), oi⟩) = i.

Once converting planning states to their ILGs, Chen, Trevizan, and Thiébaux (2024)
then apply the WL kernel to these ILGs. They extended the WL kernel to account
for the edge labels in their ILGs, by using the edge labels in the hashing function. The
specific algorithm for this is given in Algorithm 3. Here, the resulting multisets of colours
are used as feature vectors, where the value at index i in the vector is the count of the
i-th colour in the multiset. Given a training dataset, the collection of all colours seen
in the training set is used to determine the length of the feature vectors. These feature
vectors are then used to train a machine learning model to predict the cost-to-goal of
planning states.
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Algorithm 3: The WL algorithm, extended to account for edge labels by
Chen, Trevizan, and Thiébaux (2024)

Data: A graph G = ⟨V,E, c, l⟩ with vertex colours and edge labels, an injective
hash function h which maps an integer and a multiset of integer pairs to
integers, and an iteration limit L.

1 c(0)(v)← c(v), ∀v ∈ V
2 for i = 1, . . . , L do

3 c(i)(v)← h
(
c(i−1)(v),

{{
(c(i−1)(u), l(⟨u, v⟩))|⟨u, v⟩ ∈ E

}})
, ∀v ∈ V

4 return
{{
c(i)(v) | v ∈ V, 0 ≤ i ≤ L

}}
An issue with this approach is that colours not seen during training but seen at test time
when using the learned heuristic will not be accounted for in the feature vectors. These
so-called unseen colours can lead to poor generalisation of the learned heuristic. An
additional issue is colour explosion, where the number of colours seen in the training set
increases rapidly with the iteration limit L, resulting in large and sparse feature vectors.
In an attempt to mitigate both issues, the authors proposed in a follow-up work (Chen
and Thiébaux, 2024) to change to the multiset in the input to the WL hashing function
to a set instead. This groups together different inputs that vary only in the count of their
colours, and hence reduces the number of unseen colours and overall colours. Colour
explosion is also dealt with by not including static atoms, i.e., atoms whose value cannot
change, in the ILG.

2.3.4 Ranking versus regression

Once the feature vectors are computed, they are used to train a classical machine learning
model, which represents a heuristic for a particular domain. The training dataset is
a set of training tasks Π1, . . . ,Πm in the same domain, and for each task a training
plan π1, . . . , πm. Each training plan is a sequence of actions a1, . . . , an that solves the
corresponding task by traversing the sequence of states s0, . . . , sn, where s0 is the initial
state and sn is a goal state. Given such training data, Chen, Trevizan, and Thiébaux
(2024) initially trained heuristics through regression, and later trained heuristics through
ranking in Chen and Thiébaux (2024).

Regression heuristic In the regression approach, the heuristic is trained by learning
to map each state in the training plan to its cost-to-goal. Given a sequence of states
s0, . . . , sn from a training plan, their respective regression targets are n, n−1, . . . , 0. This
results in the set of training data {(ϕ(s0), n), . . . , (ϕ(sn), 0)}, where ϕ is the function that
maps states to feature vectors using the WL kernel and ILG. The entire training dataset
D is the collection of all such sets from all training plans.

Given the training dataset D, the regression heuristic is then obtained by training a
classical machine learning model to minimise the mean squared error on the training
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set, i.e.,

argmin
θ

1

|D|
∑

(ϕ(s),g)∈D

(hθ(ϕ(s))− g)2 ,

where hθ is the machine learning model with parameters θ.

In theory, the machine learning model can be any regression model. In practice, Chen,
Trevizan, and Thiébaux (2024) experimented with support vector regression (SVR) with
the dot product kernel and radial basis kernel, as well as Gaussian process regression
(GPR) with the dot product kernel. They found that GPR with the dot product kernel
performed the best on the learning track of the International Planning Competition
(IPC) 2023. Specifically, the regression heuristics they learned outperformed the well-
known FF heuristic, and was able to get close in performance the state-of-the-art LAMA
planner by itself, without the use of extra planning techniques that are employed by
LAMA. Moreover, a major benefit of heuristics learned this way is the training efficiency.
Chen, Trevizan, and Thiébaux (2024) reported that training these regression heuristics
typically only require a few minutes on a single CPU core. Altogether, these results
show that the WL kernel allows obtaining very powerful domain-specific heuristics very
cheaply in a domain-independent fashion.

Ranking heuristic As we had discussed in Section 2.2.4, cost-to-goal is not necessarily
the best target for learning planning heuristics. Various works have argued for a ranking
approach over the regression approach (Garrett, Kaelbling, and Lozano-Pérez, 2016;
Ferber et al., 2022; Chrestien et al., 2023; Hao et al., 2024). In the ranking approach,
the heuristic is trained by learning to rank states in the training plan better than their
predecessors and states off the training plan.

Various ways of generating training datasets for ranking heuristics using plan traces have
been proposed. Here we discuss the approach proposed in (Hao et al., 2024), which is
used in the WL-GOOSE system (Chen and Thiébaux, 2024). This approach was shown
to generate smaller training datasets that resulted in better generalisation of the learned
ranking heuristics.

Given a training plan π = a1, . . . , an and the corresponding sequence of states s0, . . . , sn,
the training dataset for the ranking heuristic consists of tuples of the form ⟨x,x′, δ⟩. Each
such tuple indicates that the feature vector x should be given a value δ lower than that
given to the feature vector x′. The preference for lower values comes from the fact that
planning heuristics are expected to give lower values to better states. Two types of
tuples are generated from the state sequence using the function ϕ that transforms states
to feature vectors, specifically,

1. Predecessors: Each state si with i > 0 is ranked better than its immediate pre-
decessor, with the gap δ being the cost of the action applied in its predecessor in
the training plan. Specifically, for each i > 0, the tuple ⟨ϕ(si), ϕ(si−1), c(ai)⟩ is
generated.
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2. Siblings: Each state si with i > 0 is ranked better than all states s′i, where s′i is a
successor state of si−1 with si ̸= s′i. Here, the training plan only indicates that si
is better than s′i, but not by how much, so the gap δ is set to 0. Specifically, for
each i > 0, the tuple ⟨ϕ(si), ϕ(s′i), 0⟩ is generated for all s′i.

The complete dataset D = {⟨xi,x
′
i, δi⟩ | 1 ≤ i ≤ |D|} is the collection of all such

tuples from all training plans. Given such a dataset, Chen and Thiébaux (2024) obtain
a ranking heuristic by training a variation of a L1-regularised Rank Support Vector
Machine (RankSVM), which is equivalent to solving the following mixed integer linear
program (MILP),

min
w,z

C
∑

zi + ∥w∥1

s.t. zi ≥ 0 ∀i
wT (xi − x′

i) ≥ δi − zi ∀i
wi ∈ {−1, 0, 1} ∀i

Here, w is the weight vector of the RankSVM, z is a vector of slack variables, and
C is a positive regularisation hyperparameter, where a higher value results in weaker
regularisation. The learned ranking heuristic is then given by the function hw(s) =
wTϕ(s).

To our knowledge, no direct comparison between the regression and ranking approaches
using WL features has been published, such comparisons have been made for numeric
planning. Numeric planning is an extension of classical planning with numeric state
variables that appear in action preconditions and effects. Chen and Thiébaux (2024) ex-
tended their WL-GOOSE system to numeric planning, and showed that both regression
and ranking heuristics learned with WL features outperformed existing state-of-the-art
numeric planners. Furthermore, they found that the ranking heuristic outperformed the
regression heuristic, which matches the expectation from various literature on learning
heuristics for planning.
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Chapter 3

A Natural Hierarchy of Action Sets

The planning task, or more generally the task of decision-making, is inherently hierar-
chical. Here we focus on the hierarchical nature of a single action. For example, when
you decide you would like to go out to eat, you may first decide what type of food you
would like to eat, then decide which particular restaurant, and even which dish you
would like to order. Only once you have decided all these, have you actually completed
making the decision to go out to eat. This hierarchy of decisions is not only natural but
also efficient — making a decision at a higher level of abstraction allows ignoring the
details until they are needed. Continuing with the example, once deciding not to eat a
particular cuisine, there is no need to consider any related restaurants or dishes.

Current dominant approaches to classical planning mostly treat individual actions as
entirely independent entities. This is akin to considering all combinations of cuisines,
restaurants, and dishes at the same time. Such a process is deeply in contrast to the
way humans typically make decisions. On a more grounded note, this ignores the way
actions are constructed from action schemas in the Planning Domain Definition Lan-
guage (PDDL) (Haslum et al., 2019), which as we show soon, induces natural relations
on actions. Using it in Section 3.1, we construct a hierarchy of partial actions, which
represent sets of related actions. We show in Section 3.2 how this hierarchy can be used
to guide the search process in a planning system through a novel search space called
partial space search. Then in Section 3.3, we also explain how partial space search al-
lows for a more focused and efficient search. Our motivation for partial space search is
to design a more learning-friendly search process, which we discuss in Section 3.4.

Although our focus is on classical planning, it is important to note that our contributions
in this chapter can be easily extended to more expressive forms of planning. In theory,
any form of planning where actions are instantiated from an action schema using objects
can benefit from our approach with minimal modifications.
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3.1 Partial Actions

The way that humans naturally make decisions is often hierarchical. Such a process, as
we discussed in the example earlier, involves making gradual, small step decisions that
eventually lead to a final decision. The way PDDL models action schemas naturally
models this process. As we explained in Section 2.1, an action schema is a template
for an action with a set of parameters. For example, the action schema for an action
that moves a block may have parameters for the block to be moved, the block’s source,
and the block’s destination. An action is then instantiated from an action schema by
replacing each parameter with an appropriate object. This instantiation process induces
a natural hierarchy on sets of actions, which we discuss next using partial actions.

A partial action models an intermediate step in the process of instantiating an action
from an action schema, where some parameters have been instantiated. At the same
time, we also view partial actions as a set of related actions that agree on the parameters
that have been instantiated. Formally, we define a partial action as follows:

Definition 7 (Partial action). A partial action is an action schema with some (including
none and all) of its parameters instantiated. We typically denote a partial action in the
form A(o, ), where A is the action schema, o is the object that instantiates the first
parameter, and “ ” denotes an uninstantiated parameter. Where clear from context, we
also directly denote the same partial action as A(o). Furthermore, we use the special
partial action None to denote the partial action where not even the action schema has
been chosen.

For this work, we will assume there is a fixed order of parameters in an action schema
and that partial actions have a prefix of the ordered parameters instantiated. In practice,
we use the order in which the parameters are defined in the PDDL representation. In
theory, any fixed order can be used, and different orders induce different hierarchies,
some of which may be more appropriate. For example, it likely makes more sense to
first decide cuisine then restaurant, rather than the other way around. We leave the
exploration of different orders for future work.

The fixed order of parameter instantiation results in the formation of a tree of partial
actions for any given planning domain task, as defined below:

Definition 8 (Partial action tree). The partial action tree of a lifted planning task is
a tree where each node is a partial action, and the root node is None. The children of
None are the partial actions that are action schemas with no parameters instantiated.
The children of any other partial action A(o1, . . . , oi, , . . . , ) are the partial actions of
the form A(o1, . . . , oi, oi+1, , . . . , ) for all possible objects oi+1 that can instantiate the
next parameter. The leaves of the tree are the partial actions that are fully instantiated
actions.

An example of a partial action tree is shown in Figure 3.1. To help refer to partial actions
at different levels of the tree, we introduce the notion of specificity. The specificity of a
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Figure 3.1: Example of a partial action tree for a Blocksworld task with objects a and b.
The node colours indicate specificity, with darker colours indicating higher
specificity.

node is its depth in the partial action tree, e.g., the specificity of None is spec(None) = 0,
and the specificity of a partial action with k parameters instantiated is k + 1.

As we mentioned, a partial action ρ is a representation of the ground actions that
agree on the action schema and the parameters that have been instantiated. This is
equivalent to saying that ρ represents the leaf (ground actions) of the partial action tree
in its subtree. We use Aρ to denote this set of ground actions. For example, in Figure
3.1, the partial action putdown( ) represents the set of ground actions Aputdown( ) =
{putdown(a),putdown(b)}. Recall that we use As to denote the set of applicable actions
in a state s — we will additionally use Aρ

s to denote the intersection of As with Aρ, i.e.,
the set of ground actions represented by the partial action ρ that are applicable in state
s. Furthermore, we say that a partial action ρ is applicable in a state s if Aρ

s ̸= ∅. Given
these definitions, we can introduce some basic properties of partial actions:

Proposition 1. Given a lifted planning task, there are finitely many partial actions and
the partial action tree is finite.

Proof. Since the number of objects is finite and the number of parameters in an action
schema is finite, there are finitely many ways to instantiate a parameter. Therefore,
there are finitely many partial actions. Since the number of partial actions is finite, the
partial action tree is also finite.

Proposition 2. For any partial action ρ and ρ′ such that ρ is an ancestor of ρ′ in the

partial action tree, Aρ′ ⊆ Aρ and Aρ′
s ⊆ Aρ

s for all states s.

Proof. Since Aρ and Aρ′ are the sets of leaves in the subtree of ρ and ρ′ respectively,
the first part of the proposition is immediate. The second part follows from the first

part and the definition of Aρ
s and Aρ′

s being the intersection of As with Aρ and Aρ′

respectively.

Proposition 3. For any partial action ρ with children ρ1, . . . , ρn, the set Aρ is the union
of the sets Aρ1 , . . . ,Aρn. Furthermore, for any state s, the set Aρ

s is the union of the sets
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Aρ1
s , . . . ,Aρn

s . Lastly, ρ is applicable in state s if and only if at least one of its children
is applicable in state s.

Proof. The first part of the proposition follows from the definition of Aρ as the leaves
in the subtree of ρ. The second part follows from the first part and the definition of Aρ

s

as the intersection of As with Aρ. The last part follows from the second part and the
definition of the applicability of a partial action in a state.

The above propositions show that partial actions form a natural hierarchy of sets of
actions through the partial action tree. This hierarchy can be used to allow for refining
from the more abstract to the more concrete. Specifically, we can use it to refine the
set of applicable actions in a state, i.e., those represented by None, to more specific sets
of actions, by simply walking down the partial action tree to applicable children. This
is the basis of our novel approach to search in planning, which we discuss in the next
section.

3.2 Partial Space Search

In traditional state space search, search nodes represent states, and the search process
simply explores the state space by expanding states with their successor states. State
space search is, strictly speaking, a translation of the planning task into a search problem,
whose solution is plan. Given a task Π, we will refer to the state space search problem
as S3(Π).

In state space search, each successor state is generated by applying an applicable action
to the current state. This is how state space search ignores the hierarchical nature of
actions, as it treats all actions as independent entities.

Through partial actions, we have introduced a hierarchy of action sets in the form of a
partial action tree. Using it, we can guide the search process to gradually refine the set
of applicable actions in a state by walking down the tree. This is exactly what we do in
our novel search problem formulation called partial space search:

Definition 9 (Partial space search). Given a lifted planning task Π, the partial space
search of Π is a search problem PS2(Π) where search nodes are pairs of the form ⟨s, ρ⟩,
where s is a state in S and ρ is a partial action. The search process starts at the root
node ⟨s0,None⟩, where s0 is the initial state of Π. The successor nodes of each node
⟨s, ρ⟩ is given by

• If ρ is not fully instantiated, then the successor nodes are ⟨s, ρ′⟩ for all partial
actions ρ′ that are children of ρ in the partial action tree and applicable in state s.

• If ρ is fully instantiated, then the successor nodes are ⟨s′,None⟩, where s′ is the
state resulting from applying the ground action represented by ρ to state s.
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A goal node of PS2(Π) is a node of the form ⟨s,None⟩ where s is a goal state of Π.
The resulting plan from reaching such a goal node is the sequence of ground actions
represented by fully instantiated partial actions along the path from the root node to the
goal node.

Given the partial space search of a planning task, we seek to use it to solve the planning
task by finding a path from the root node to a goal node using a search algorithm. The
search algorithm can be any standard search algorithm, such as A* search or greedy
best-first search (GBFS). The key difference is that any heuristic used in the search
algorithm should be able to evaluate the state and partial action pairs, rather than just
states in traditional state space heuristic search. We discuss this in detail in Chapter 4.

Example 1. Consider the Blocksworld task with objects a, b, and c. Suppose we are in
the state s0 where a is stacked on top of b, and blocks b and c are on the table. The goal
is to have all three blocks on the table. Using partial space search, we would have the
initial search node n0 = ⟨s0,None⟩.

1. The successor nodes of n0 are n1 = ⟨s0, unstack( , )⟩ and n′
1 = ⟨s0, pickup( )⟩,

representing the two applicable action schemas in s0. Suppose we choose to expand
n1, based on guidance from a heuristic.

2. The only successor node of n1 is n2 = ⟨s0, unstack(a, )⟩, since a is the only block
that can be unstacked in s0. We will expand n2.

3. Again, n2 only has one successor, being n3 = ⟨s0, unstack(a, b)⟩. We will expand
n3.

4. Since the partial action in n3 is fully-instantiated, we will generate the successor
state s1 of applying the ground action unstack(a, b) to s0. The resulting state s1
is where a is held, with b and c on the table. We will then generate the successor
node n4 = ⟨s1,None⟩.

5. The successor nodes of n4 are n5 = ⟨s1, putdown( )⟩ and n′
5 = ⟨s1, stack( , )⟩,

representing the two applicable action schemas in s1. Suppose we choose to expand
n5.

6. The only successor node of n5 is n6 = ⟨s1, putdown(a)⟩, since a is the only block
that can be put down in s1. We will expand n6.

7. Since the partial action in n6 is fully-instantiated, we will generate the succes-
sor state s2 of applying the ground action putdown(a) to s1. This generates the
successor node n7 = ⟨s2,None⟩. We will expand n7.

8. n7 is a goal node, as s2 is a goal state. The search terminates with the found plan
unstack(a, b), putdown(a).

Below we show soundness and completeness for partial space search, and how it relates
to state space search.

31
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Lemma 1. Given a lifted planning task Π, the set of plans that can be found by the
partial space search of Π is equal to the set of plans that can be found by the state space
search of Π.

Proof. We first show that the set of plans found by partial space search is a subset of
those found by state space search. Let π = a1, . . . , an be a plan found by the state space
search of Π where each ai is a ground action. Let s0, . . . , sn be the sequence of states
where s0 is the initial state of Π and si is the state resulting from applying ai to si−1

for i > 0. We show that there is a path from the root node ⟨s0,None⟩ to the goal node
⟨sn,None⟩ in the partial space search of Π that is equivalent to π.

Specifically, let ki be the number of parameters of the action schema of the action ai.

For each i, let ρji be the partial action with specificity j such that Aρji contains ai, where

j ranges from 0 to 1+ ki. Such a ρji is unique as the partial action tree is a tree, and all
partial actions with specificity j are at the same depth, so only one can be an ancestor of
ai. Furthermore, ρji is applicable in state si−1 as ai is applicable in state si−1. Moreover,

⟨si−1, ρ
j
i ⟩ is a successor node of ⟨si−1, ρ

j−1
i−1 ⟩ in the partial space search of Π by definition of

partial space search. Lastly, ⟨si−1, ρ
1+ki
i ⟩ is the predecessor node of ⟨si,None⟩. Therefore,

the sequence of nodes ⟨s0,None⟩, ⟨s0, ρ11⟩, . . . , ⟨sn−1, ρ
1+kn
n ⟩, ⟨sn,None⟩ is a path in the

partial space search of Π, and the sequence of ground actions ρ1+k1
1 , . . . , ρ1+kn

n equals π.

The reverse direction of showing that the set of plans found by the partial space search
is a superset of those found by the state space search is even easier. Suppose π is a plan
found by the partial space search of Π. Then the sequence of ground actions represented
by the fully instantiated partial actions along the path from the root node to the goal
node is clearly a plan that can be found by the state space search of Π.

Theorem 1. Partial space search is sound and complete for solving planning tasks.

Proof. Since the state space search of a planning task is sound and complete, so is the
partial space search of the same planning task by the above lemma.

In practice, the partial space search problem PS2(Π) of many tasks often involve many
expansions where there is only one successor node. To save need for unnecessary opera-
tions and heuristic evaluations, we repeatedly expand such nodes until obtaining multiple
successor nodes. For instance, in Example 1, n1 would expand directly into n5 and n′

5,
skipping n2, n3, and n4.

3.3 Efficiency of Partial Space Search

Partial space search aims to perform a more focused search by exploiting the hierarchy of
partial actions. For instance, if a particular action schema is not useful in a given state,
it is unnecessary to evaluate each of its instantiations individually, as required in state
space search. Partial space search eliminates the need for such individual expansions—if
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Figure 3.2: Example of the expansion tree of a state s0 for partial space search (left) and
state space search (right). Dashed lines indicating possible successor nodes
that require evaluations, while solid lines indicate expanded nodes. The
decisions on which state to expand are made using an informed heuristic.

the action schema is irrelevant, the corresponding partial space search node will not be
expanded.

Consider the example in Figure 3.2. By employing partial space search, the search pro-
cess determines that action schemas A2 and A3 are unnecessary, thus avoiding their
expansion. This allows it to bypass evaluating all the actions produced by the instanti-
ations of A2 and A3. Compared to state space search starting from the same node, this
represents a significant reduction in the number of evaluations required. This is the key
advantage of partial space search over state space search—offering a more efficient and
focused search process.

However, the efficiency of partial space search comes with trade-offs. As shown in Figure
3.2, partial space search may need to expand multiple nodes to determine the correct
action in state s0, while state space search only requires expanding one. This is a
defining property of partial space search: it transforms the state space tree by reducing
its branching factor while increasing its depth, breaking down each original search step
into multiple smaller ones.

The efficiency of partial space search depends on how well the planning task’s actions
can be broken down. For example, consider an action schema with three parameters,
where there are n1, n2, and n3 choices for each parameter. State space search would
require evaluating all n1n2n3 possible actions, while partial space search—guided by a
heuristic—may only need to evaluate n1 + n2 + n3 partial actions. In cases where n1

and n2 are small (e.g., both equal to one), partial space search would be less efficient,
as the actions do not factor well. However, even in such scenarios, the additional cost
is limited to evaluating only a few more nodes. On the other hand, when actions are
nicely factored, the potential gains are substantial.

To further illustrate this, consider the toy domain VisitSome, where a robot must visit
specific locations in an unbounded n-dimensional grid. When the robot is at location
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Figure 3.3: The VisitSome toy domain, see text for a detailed description of the domain.
Here we show a 2-dimensional example where the robot can move in one
action to any location within distance 2 (under the uniform norm L∞) of its
current location (indicated by grey shading). The orange shading indicates
the goal locations the robot must visit.

l = (x1, . . . , xn), it can move in a single action to any location l′ = (y1, . . . , yn) where
xi − k ≤ yi ≤ xi + k for all i, with some fixed k. The only action schema in this domain
has 2n parameters: the first n parameters determine l, and the last n determine l′. In
state space search, the number of applicable actions in any state is (2k + 1)n, as this
represents the number of possible locations the robot can move to1. In partial space
search, with an informed heuristic, the branching factor for the first n parameters is 1,
while for the last n parameters it is 2k+1. Thus, the total branching factor and number
of evaluations needed is n(2k+1). For even small values of n and k, this can result in a
significant reduction. For example, with n = 3 and k = 2, the branching factor reduces
from 125 to 15.

In summary, partial space search enables a more directed and efficient search process
by avoiding the evaluation of many irrelevant actions early on. The extent of efficiency
gains depends on the structure of the planning task, but even in the worst case, the
additional cost is minimal. Conversely, when actions are well-factored, the potential
gains can be significant.

3.4 Why Does This Matter for Learning?

So far, our discussion of partial space search has focused solely on the search process,
setting aside the main motivation for this work: designing a more learning-friendly
planning component. In this section, we explain why partial space search is exactly what
we had set out to achieve. Specifically, we argue that partial space search is a learning-
friendly search process that leverages the learning component more and provides more

1Note that we count the robot’s current location as one of the possible locations, allowing it to stay in
one place indefinitely.
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for the learning component to learn from.

Partial space search decomposes the search process into smaller steps, where well-
informed heuristics can eliminate poor choices early. While this benefits both learning
and non-learning heuristics, learning heuristics benefit more for several reasons:

1. Informedness versus speed trade-off: Search heuristics must balance between
being informative and being computationally efficient. Partial space search in-
creases the potential reward for being informative, allowing such heuristics to more
effectively guide the search process. This shifts the trade-off between speed and
accuracy towards the latter, benefiting learning heuristics in particular. Recent
advances in machine learning, particularly deep learning, have led to increasingly
powerful and computationally expensive models. Partial space search accommo-
dates these slower but more accurate heuristics, making better use of the learning
component.

2. Easier adaptation: Traditional state space heuristics are often designed specifi-
cally for state space search, as we had discussed in Section 2.2.3. Despite our pro-
posed methods in Chapter 4 for automatic translation, such translated heuristics
are not truly designed for partial space search. In contrast, methods for learning
heuristics are generally more flexible. In theory, the methods discussed in Section
2.3 can be applied to learn heuristics for any search space as long as there is an
appropriate graph representation of search nodes. This flexibility allows learning
heuristics to adapt more easily to partial space search compared to traditional
heuristics.

3. More training data: Chapter 4 discusses the methods we use to generate training
data for learning heuristics for partial space search. By breaking the search process
into smaller steps, partial space search generates more training data from the same
training inputs when compared to state space search. Although more training
data is not inherently better, and its quality is difficult to quantify, we show in
our empirical evaluations that the additional training data provided by partial
space search is beneficial for learning better heuristics. Specifically, heuristics
learned from datasets generated by partial space search outperform those learned
from datasets generated by state space search, even if both are used with state
space search. In other words, partial space search provides more for the learning
component to learn from.

In conclusion, partial space search can improve the efficiency of the search process and
enhances the effectiveness of the learning component. By supporting slower and more
accurate heuristics and providing more training data, partial space search is a learning-
friendly search space that allows for more effective decision-making.
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Chapter 4

Action Set Heuristics

To make partial space search truly effective, having strong heuristics functions is a
necessity. As introduced in Section 2.2, heuristic functions map search nodes to real
numbers that estimate the quality of search nodes. There, we had focused on state space
heuristics where search nodes represent planning states. Partial space search, however,
requires heuristics that can evaluate search nodes that are state and partial action pairs.
In this chapter, we define and discuss how to obtain such heuristics. Specifically, in
Section 4.1, we define action set heuristics — a more general form of the heuristics we
need for partial space search, which can evaluate search nodes that are state and action
set pairs. These heuristics are suitable for partial space search as given a state, partial
actions represent sets of applicable actions on that state. In Section 4.2, we explain how
to automatically translate any existing state space heuristic to an action set heuristic
and the drawbacks associated with this translation. In particular, we discuss how to
efficiently translate the hFF heuristic. In Section 4.3, we discuss how to represent state
and action set pairs as graphs, which be used to generate feature vectors through graph
kernels, as introduced in Section 2.3.3. Lastly, given these feature vectors, we discuss
how to train action set heuristics in Section 4.4.

4.1 Definition

Our goal in this section is to define heuristics to guide partial space search. Given a
state s and a partial action ρ, we had discussed in Section 3.1 that ρ is a representation
of the set of ground and applicable actions Aρ

s . This representation helps simplify our
discussion and motivates our definition of action set heuristics.

Definition 10 (Action set heuristic). An action set heuristic is a function h : S×2A →
R ∪ {∞}. Given a state s and a set of actions Λ, h(s,Λ) estimates the quality of the
actions Λ when applied in the state s. It is generally expected, although not strictly
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required that:

• any inapplicable action in Λ is ignored, i.e., h(s,Λ) = h(s,Λ ∩ As);

• if s is a dead-end state, or if all the actions in Λ are inapplicable in s, then
h(s,Λ) =∞.

As a shorthand, for any partial action ρ, we denote h(s,Aρ
s) as h(s, ρ).

The definition of action set heuristics is intentionally general. It allows action set heuris-
tics to be used for any search space that consider set of actions like partial space search.
To our knowledge, partial space search is the only such search space. However, we
hope future research will explore other search spaces that can benefit from action set
heuristics.

The above definition is in fact so general that we have made no comment on what it
really means to estimate the quality of a set of actions. Different interpretations of what
this means will lead us to obtaining different action set heuristics, as we will explore in
the rest of this chapter. However, it is worth discussing here a particular class of action
set heuristics. Specifically, given a state space heuristic h and a set of actions Λ, we
can consider the values of h on the states reachable by applying the actions in Λ in the
state s. This way, we can define an action set heuristic h′ that estimates the quality of
a set of actions Λ in a state s as an aggregation of these values from h. This simple
translation from state space heuristics to action set heuristics defeats the purpose of
action set heuristics. Our goal here is to evaluate the set of actions at once — evaluating
them one by one means we may as well go back to state space search.

It is clear that action set heuristics can be used to guide heuristic search algorithm in
partial space search. It is important to note that action set heuristics can also be used
to guide state space search. Specifically, given a state s and an action set heuristic h,
we can obtain a state space heuristic h′ by defining h′(s) = h(s,As) = h(s,None). Here
None is the special partial action at the root of the partial action tree we had defined in
Section 3.1. This is a useful property, allowing us to evaluate the quality of action set
heuristics both in state space search and partial space search. This way, we can then
evaluate the impact of action set heuristics with that of partial space search in isolation.

4.2 Automatic Translation from State Space Heuristics

As we previously mentioned, naive translation of state space heuristics to action set
heuristics is not efficient. However, we can still automatically obtain efficient action set
heuristics from state space heuristics. We do so by viewing the heuristic value of a state
and action set pair as the quality of the state with the immediately applicable actions
restricted to the action set. This gives us the family of restriction heuristics.

Definition 11 (Restriction heuristic). For a lifted planning task Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩,
given a state space heuristic h, a state s, and a set of actions Λ, the Λ-restricted task
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Figure 4.1: Illustration of the task transformation for the restriction heuristic. Here, we
seek to compute the restriction heuristic hrs(s, {a2, a5}). See text for more
detail.

ΠΛ is Π with the modifications:

1. an additional predicate ϵ, which takes no parameters and is false in the initial state,
is added to the set of predicates P;

2. for each action schema A ∈ A, the extra precondition ϵ is added;

3. for each ground action a ∈ Λ, the additional add effect ϵ is added. In terms of the
lifted task, this means adding fully instantiated action schemas corresponding to
these ground actions to the set of action schemas A. These added fully instantiated
action schemas have ϵ not as a precondition, but as an add effect.

Then, the restriction heuristic hrs is the action set heuristic defined by hrs(s,Λ) taking
the value of h(s) on the task ΠΛ. We say that hrs is the restriction of h.

The task transformation for the restriction heuristic is illustrated in Figure 4.1. The
task transformation here forbids the immediate application of actions a1, a3, and a4, as
indicated by their colour. However, restriction heuristics do not restrict action applica-
bility beyond the immediate actions, as indicated by the lack of greying out after a2 or
a5 has been applied. The heuristic value hrs(s, {a2, a5}) is then the value of h(s) on the
transformed task.

4.2.1 Efficient computation of the restriction of the FF heuristic

Restriction heuristics are a relatively straightforward way to automatically translate any
state space heuristic to an action set heuristic. However, there are potential challenges
with this translation, in particular with respect to its efficient computation. Many
interesting state space heuristics require some form of preprocessing of the planning
task. For example, we had seen in Section 2.2.3 that the lifted computation of the
FF heuristic requires preprocessing of the planning task into a Datalog program and
for transformations to be applied to this program to make the computation efficient.
The restriction heuristic brings challenges here. Specifically, the planning task that the
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translated state space heuristic h is applied to is dependent on the action set Λ. This
means that, naively, the preprocessing step must be done for each action set Λ that we
wish to evaluate. Given the potential large number of actions and hence action sets,
preprocessing for each possible action set is clearly infeasible.

We can overcome this challenge by noting that in Definition 11, only the third modi-
fication to the planning task is dependent on the action set Λ. This modification only
involves adding ground actions for each action in Λ. This means that we can potentially
preprocess the task Π with the first two modifications, and then at evaluation time
consider the third modification. How exactly this can be done is dependent on the par-
ticular state space heuristic. Here, we discuss how to efficiently compute the restriction
heuristic for the hFF heuristic.

Since our goal is to work with large and challenging planning tasks, we focus on the
lifted computation of the restriction of the FF heuristic, based on the lifted computation
introduced in Section 2.2.3 from Corrêa et al. (2022). This way, our method can be
applied to any planning task, rather than just those that can be grounded.

Specifically, to compute the restriction hFFrs of the FF heuristic, we first perform prepro-
cessing of the planning task Π with the first two modifications as described in Definition
11. This yields a Datalog program. Then, given a state s and an action set Λ, we add
temporary ground rules to the Datalog program for each action in Λ, corresponding to
the third modification. For each such ground action, we add a rule that adds the ϵ
predicate to the state when the action is applied. We then run the Datalog program on
the state s, and obtain the value of the FF heuristic on the transformed task. This way,
we can efficiently compute the restriction of the FF heuristic for any state and action
set pair.

4.2.2 Drawbacks of restriction heuristics

Restriction heuristics provide an automatic way to obtain action set heuristics from state
space heuristics. In terms of our overall goal of obtaining strong action set heuristics,
they provide a lower bound on the quality of action set heuristics that we can obtain.
However, there are some drawbacks to restriction heuristics, which motivate the need
for more sophisticated methods to obtain action set heuristics, both learning and non-
learning based.

An ideal property for an action set heuristic to have is that it should reward refining a set
of actions down to just the good actions. Restriction heuristics do not have this property.
Specifically, given a state space heuristic h, a state s, and two set of actions Λ1 and Λ2

such that Λ1 ⊂ Λ2, the task ΠΛ1 is a harder version of the task ΠΛ2 . This is because the
former task forbids more actions than the latter. Consequently, depending on the nature
of h, we will likely have hrs(s,Λ1) ≥ hrs(s,Λ2). That is, restriction heuristics generally
do not reward action set refinement.

This is not something that cannot be overcome. Specifically, it is possible to reduce the
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cost of actions in Λ, with the discount being stronger for smaller action sets than larger
ones. This way, we can reward action set refinement for action-cost aware heuristics. In
practice, we find that this did not benefit hFFrs empirically in very limited experiments.
We leave further investigation as future work.

Moreover, the generality of restriction heuristics means that they also ignore the entire
point of action set heuristics — the action set. The task transformation simply compiles
them away. This means that restriction heuristics are not able to capture that often,
there is structure to the action set. For example, when action set heuristics are used to
guide partial space search, the action set is induced from a partial action, which means
that the actions in the action set are related in some way. Restriction heuristics do not
capture this structure. This motivates the need for action set heuristics that are truly
aware of the action set.

4.3 Graph Representations

Given our mission of developing a strong and integrated learning for planning system,
and the drawbacks discussed in Section 4.2.2, it is only natural that we turn to learning-
based methods to obtain action set heuristics. In this section, we introduce two novel
graph representations for state and action set pairs. These two graph representations
reflect different views on what the action set means. As we had seen in Section 2.3.3,
we can immediately map these graph representations to feature vectors using the WL
kernel with method introduced in Chen, Trevizan, and Thiébaux (2024). We will discuss
how to use these graph representations to learn action set heuristics in Section 4.4.

Both of our graph representations are based on the Instance Learning Graph (ILG) from
Chen, Trevizan, and Thiébaux (2024). As such, they share similar properties as the ILG.
Specifically, they are undirected graphs where nodes and edges are coloured. Feature
vectors are obtained from these graphs by running the Weisfeiler-Lehman kernel and
collecting the count of each colour in the graph as these colours are updated over the
iterations of the WL algorithm. Only the colours seen during training time are used
to generate feature vectors, those not seen are ignored when generating feature vectors
for test instances. To avoid extremely large feature vectors, it is important to avoid
colour explosion, where large numbers of colours are introduced over the iterations of
the WL algorithm, as this can lead to intractably large feature vectors. Like Chen and
Thiébaux (2024), when aggregating neighbours in the WL kernel, we use a set instead
of the traditional multiset to avoid colour explosion.

Similarly, we make the same decision as Chen, Trevizan, and Thiébaux (2024) and Chen
and Thiébaux (2024) to ignore static atoms in our graphs. However, unlike their work,
we will use the colour of object nodes to represent some basic static information while
keeping the number of colours low. Specifically, given a lifted planning task Π, we say
a predicate is static if it does not appear in the effect of any action schema. We are
particularly concerned with static predicates of arity 1. In both of our graphs, for each
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Figure 4.2: Example of an Action-Object-Atom Graph (AOAG) for a Blocksworld in-
stance. Here, there are three blocks a, b, and c, with a and c on the table
and b being held. The goal is to place b on a. Here the action set Λ includes
all applicable actions instantiated from the stack action schema.

object o in the domain, we will give it a colour Po that represents the static predicates of
arity 1 that are true for o. This way, we are able to capture some basic static information
in our graphs.

4.3.1 Action-Object-Atom Graph

Our first graph representation reflects the view that the actions in an action set are
related through the objects that they act on. This leads to a straightforward extension of
the Instance Learning Graph introduced in Section 2.3.3, where we additionally include
nodes that represent the elements of the action set. We call this graph the Action-
Object-Atom Graph. Its definition is given below, and an example is shown in Figure
4.2.

Definition 12 (Action-Object-Atom Graph). Given a state s and a set of actions Λ in
a lifted planning task Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩, the Action-Object-Atom Graph(AOAG)
depends on the action set Λ. If Λ contains only a single action a, then the AOAG is
the ILG for the resulting state of applying a to s with static predicate colouring of object
nodes described previously. Otherwise, if Λ = As, then the AOAG is simply the ILG for
the state s with static predicate colouring of object nodes discussed above.

When neither of the two above special cases apply, the AOAG is the graph ⟨V,E, c, l⟩
where:

• the vertices are those in the ILG with the addition of the nodes representing actions
in Λ, i.e., V = O ∪ s ∪G ∪ Λ;

• the edges are those in the ILG with the addition of edges connecting actions in Λ
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to the objects used to instantiate them, i.e.,

E =

 ⋃
p=P (o1,...,ok)∈s∪G

{⟨p, o1⟩, . . . , ⟨p, ok⟩}


∪

 ⋃
a=A(o1,...,ok)∈Λ

{⟨a, o1⟩, . . . , ⟨a, ok⟩}


• the vertex colouring function c is similar to that of the ILG. Specifically, for all
o ∈ O, c(o) = Po where Po is the set of static predicates of arity 1 that apply to o;
for all p = P (o1, . . . , ok) ∈ s ∪G, its colour is the same as in the ILG, i.e.,

c(p) =


(ap, P ), if p ∈ s \G
(ag, P ), if p ∈ s ∩G

(ug, P ), if p ∈ G \ s

and for all a = A(o1, . . . , ok) ∈ Λ, its colour is simply A.

• The edge labelling function l is again similar to that of the ILG. Specifically, for
all ⟨p, oi⟩ ∈ E where p ∈ s ∪ G and oi ∈ O, l(⟨p, oi⟩) = i, and for all ⟨a, oi⟩ ∈ E
where a ∈ Λ and oi ∈ O, l(⟨a, oi⟩) = i.

The AOAG is a natural extension of the ILG of a shallow encoding of the actions in the
action set. By connecting the actions to their instantiating objects, the graph indirectly
establishes relationships on how they may change the state. By colouring the action
nodes with colours representing their action schema, the resulting learned heuristic can
potentially capture the structure of the action schema.

It is worth explaining the special cases when the action set Λ is just a single action or
the set of all applicable actions As. Here, the AOAG devolves into the ILG of either the
current state or the resulting state of applying the single action. This highlights the fact
that different graph representations may be used together, as long as their colours are
compatible. Here, since the AOAG is an extension of the ILG, their colours can be used
together. By using this property in these special cases, we are able to directly represent
what the action set means at the state level, and thereby save the need to introduce
additional nodes for the action set. For example, in the case where Λ = As, we know
that the action set is as large as it could be in the state s, and hence we can directly use
the ILG of s.

4.3.2 Action Effect Graph

Our second graph representation is a deeper encoding of the actions in the action set
than the AOAG. Specifically, we view that these actions each represent an option of how
to change the state. Some effects of these actions may be shared by all of them, and are
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Figure 4.3: Example of an Action Effect Graph (AEG) for a Blocksworld instance. Here,
there are three blocks a, b, and c, with a and c on the table and b being held.
The goal is to place b on a. Here the action set Λ includes all applicable
actions instantiated from the stack action schema.

hence guaranteed to happen. Other effects only exist in some of these actions, and are
hence optional. This leads to our second graph representation, the Action Effect Graph.
Its definition is given below, and an example is shown in Figure 4.3.

Definition 13 (Action Effect Graph). Given a state s and a set of actions Λ in a lifted
planning task Π = ⟨⟨P,A⟩, ⟨O, s0, G⟩⟩, the Action Effect Graph(AEG) depends on the
action set Λ. If Λ is the set of all applicable actions As, then the AEG is the ILG for
the state s with static predicate colouring of object nodes described previously.

Otherwise, we consider the following sets of atoms:

• the set of necessary add effects necadd(Λ), defined by necadd(Λ) =
⋂

a∈Λ add(a);

• the set of necessary delete effects necdel(Λ), defined by necdel(Λ) =
⋂

a∈Λ del(a);

• the set of optional add effects optadd(Λ), defined by optadd(Λ) =
⋃

a∈Λ add(a) \
necadd(Λ);

• the set of optional delete effects optdel(Λ), defined by optdel(Λ) =
⋃

a∈Λ del(a) \
necdel(Λ).

To define the AEG, we will use the state s′ given by applying all the necessary effects
to s, i.e., s′ = (s \ necdel(Λ)) ∪ necadd(Λ). For simplicity, we will also assume that
optdel(Λ) ⊆ s′ and that optadd(Λ) ∩ s′ = ∅. These assumptions should hold for any
well-defined planning task. The delete effects of any action in Λ should not delete atoms
not in the state s, and the add effects of any action in Λ should not add atoms already
in the state s. Moreover, the effects of any particular action should not both add and
delete the same atom. It can be shown that our assumptions are a direct consequence of
these conditions.

Then, the AEG is the graph ⟨V,E, c, l⟩ where:

• The vertices are those in the ILG of s′ with the addition of nodes representing the
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optional effects. Formally,

V = O ∪G ∪ s′ ∪ optadd(Λ).

Note that except for the objects, all other vertices are atoms.

• The edges are given by connecting atoms to their argument objects, i.e.,

E =
⋃

p=P (o1,...,ok)∈G∪s′∪optadd(Λ)

{⟨p, o1⟩, . . . , ⟨p, ok⟩}.

• The vertex colouring function c : V → 2P ∪ ({a,u, oa, od}×{g, ng}×P) is given by
first mapping all object nodes to the set of static predicates of arity 1 that apply to
them, and then for all atom nodes p = P (o1, . . . , ok), colouring them as (α, β, P ).
The α component is determined by

α =


a, if p ∈ s′ \ optdel(Λ)
u, if p ∈ G \ (s′ ∪ optadd(Λ))

oa, if p ∈ optadd(Λ)

od, if p ∈ optdel(Λ)

Here “a” stands for achieved, “u” stands for unachieved, “oa” stands for optional
add, and “od” stands for optional delete. An illustration of how α is determined
is given in Figure 4.4.

Compared to the α component, the β component is simpler. Specifically, β is g if
p ∈ G and ng otherwise. Together, the α and β components determine which set
of atoms p belongs to.

• The edge labelling function l is similar to that of the ILG. For all ⟨p, oi⟩ ∈ E where
p ∈ G ∪ s′ ∪ optadd(Λ) and oi ∈ O, l(⟨p, oi⟩) = i.

By making the distinction between necessary and optional effects, the AEG is able to
capture the structure of the action set in a more detailed manner than the AOAG. This
is particularly useful in the case of partial space search, since the action sets induced by
partial actions typically have a structure where some effects are shared by all actions,
due to some parameters being fixed.

It is again worth discussing the special cases for the AEG. When the action set Λ is the
set of all applicable actions As, the AEG, like the AOAG, devolves into the ILG of the
state s. Additionally, when the action set contains just a single action, all effects of the
action are necessary. This way, the AEG naturally devolves into the ILG of the resulting
state of applying the action, without the need to introduce a special case. Thus, the
AEG has the same behaviour as the AOAG in these special cases.
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Figure 4.4: Venn diagram illustrating how the α variable in the AEG definition is de-
termined. The set of atoms is constructed following the assumption that
optdel(Λ) ⊆ s′ and optadd(Λ) ∩ s′ = ∅.

4.4 Training for Partial Space Search

Given the graph representations of state and action set pairs, we can now obtain feature
vectors from state and action set pairs using the WL kernel. In this section, we discuss
how to train action set heuristics using these feature vectors. Like in Section 2.3.4, we
will discuss how to obtain action set heuristics both using regression and ranking as the
heuristic target.

Before diving in, it is important to note that although the heuristics we obtain in the
end are action set heuristics, the training process is done through partial space search.
This means that the action set heuristics may be specialised to partial space search. In
our use case where we do intend to use these heuristics for partial space search, this is
an advantage. However, in other potential use cases of action set heuristics, this may
be a drawback. We leave it to future work to investigate whether specialising action set
heuristics for a particular use case has significant impacts on their performance in other
use cases.

Similar to the training process for state space heuristics, we will assume that our training
data consists of a set of lifted planning tasks Π1, . . . ,Πn on the same planning domain,
with corresponding training plans π1, . . . , πn. Each such plan is a sequence of actions
πi = a1, . . . , a|πi| that solves the task Πi by starting at the initial state s0 and visiting
the states s1, . . . , s|πi|, where s|πi| is a goal state. Such a plan represents a sequence of
expansions in state space search. For our use case of partial space search, we decompose
each action ai into a sequence of partial actions of increasing specificity ρi,1, . . . , ρi,ni .
Here ρi,k is the partial action of specificity k − 1 that is a parent of ai in the partial
action tree, with ρi,1 = None and ρi,ni = ai. This way, we obtain a sequence of state
and partial action sequence pairs

⟨s0, (ρ1,1, . . . , ρ1,n1)⟩, . . . , ⟨s|πi|−1, (ρ|πi|,1, . . . , ρ|πi|,n|πi|
)⟩.

46



4.4 Training for Partial Space Search

Example 2. Consider the Blocksworld plan π = unstack(a, b), putdown(a) that starts
in the state s0 where a is on b, first picks up a yielding the state s1 where a is held,
and then places a down yielding the goal state s2 where a is on the table. The resulting
sequence of state and partial action sequence pairs is

⟨s0, (None,unstack( , ),unstack(a, ),unstack(a, b))⟩,
⟨s1, (None,putdown( ),putdown(a))⟩.

Note that in partial space search, we would actually directly expand the node ⟨s0, unstack(a, b)⟩
into ⟨s1, putdown(a)⟩ because we skip over nodes that are unique successors. We do not
do this when generating training data. This is because 1) we obtain more training data
this way, 2) it simplifies the training process, and 3) similar nodes may be unique suc-
cessors in some tasks (e.g., training tasks) but not in others (e.g., test tasks), ignoring
them in our training data may lead to suboptimal heuristics.

4.4.1 Regression

Using the state and partial action sequence pairs described above, we first discuss how
to train a heuristic using regression. Given a state s and a partial action sequence
ρ1, . . . , ρn, where the cost to reach the goal from s by following the training plan is c,
we obtain a regression training dataset. Specifically, we uniformly distribute the cost γ
of the ground action ρn amongst the partial actions, yielding the dataset,{

(ϕ(s, ρ1), c), (ϕ(s, ρ2), c−
1

n
γ), . . . , (ϕ(s, ρn), c−

n− 1

n
γ)

}
.

Here, ϕ is the function that maps a pair of state and partial action first into their graph
representations (either AOAG or AEG), then into a feature vector using the WL kernel.
Each element of this dataset is a pair of a feature vector and their regression target,
which is the cost to reach the goal from the state and partial action pair. Note that by
construction ρ1 is always None and ρn is always a ground action. Going from ρ1 to ρn
represents gradually refining the action set from all applicable actions to just ρn, and
hence the cost of reaching the goal from ρ1 to ρn is decreasing.

Our complete dataset D is then the union of such datasets for all state and partial action
sequence pairs in the training plans. We then train a standard regression model using
this dataset to minimise the mean squared error,

L(θ) =
1

|D|
∑

(x,y)∈D

(y −Hθ(x))
2 ,

where Hθ is the regression model (i.e., our action set heuristic) with parameters θ. In
theory, Hθ can be any regression model. In practice, we use the same Gaussian Process
Regression model as in Chen, Trevizan, and Thiébaux (2024).

47



4 Action Set Heuristics

Example 3. We continue from Example 2. We assume that the cost of each action
is 1. Given the state and partial action sequence pairs from the example, our complete
regression dataset D consists of the following elements(

ϕ(s0,None), 2

)
,

(
ϕ(s0,unstack( , )),

7

4

)
,(

ϕ(s0, unstack(a, )),
3

2

)
,

(
ϕ(s0, unstack(a, b)),

5

4

)
,(

ϕ(s1,None), 1

)
,

(
ϕ(s1,putdown( )),

2

3

)
,(

ϕ(s1, putdown(a)),
1

3

)
.

4.4.2 Ranking

We have discussed the importance of ranking-based heuristics in Section 2.3.4. Here,
we discuss how to train a ranking-based action set heuristic from the state and partial
action sequence pairs. Our dataset will consist of tuples of the form ⟨x,x′, σ, δ⟩. Such
a tuple represents the relation that the heuristic should rank the feature vector x lower
than x′ by a gap of at least δ, with the importance of this relation being σ. Here by gap,
we mean that if a heuristic value of α is given to x′, then the value given to x should
be at most α − δ. In this section we will show how to generate such tuples for training
action set heuristics.

Given a state s and a sequence of partial actions ρ1, . . . , ρn, we produce four types of
tuples:

1. Layer predecessors, which rank later partial actions (higher specificity) better
than earlier partial actions (lower specificity). Specifically, let the state before s
be s′ and the ground action applied in s′ to reach s be a′, then we produce the
tuples

{⟨ϕ(s, ρ1), ϕ(s′, a′), 1, σlp⟩}

∪
n⋃

i=2

{⟨ϕ(s, ρi), ϕ(s, ρi−1), 1, σlp⟩},

where ϕ is the same function as in the regression case, and σlp is the importance
value for all layer predecessor tuples.

2. Layer siblings, which rank partial actions in the sequence better than other
partial actions with the same specificity but not in the sequence. Specifically, for
each i = 1, . . . , n and for each ρ′, where ρ′ is an applicable partial action in s of
specificity spec(ρi) that is not in the sequence, we produce the tuple,

⟨ϕ(s, ρi), ϕ(s, ρ′), 0, σls⟩,
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where σls is the importance value for all layer sibling tuples. Here the gap is 0 as
we only know that the partial actions are no worse than their siblings, but not by
how much.

3. State predecessors, which rank the state s better than the previous state s′, and
rank the partial actions in the sequence better than the state s (represented by
the feature ϕ(s,None)). Specifically, we produce the tuples

{⟨ϕ(s,None), ϕ(s′,None), 1, σsp⟩}

∪
n⋃

i=2

{⟨ϕ(s, ρi), ϕ(s,None), 1, σsp⟩},

where σsp is the importance value for all state predecessor tuples. Note that since
ρ1 = None, the state predecessor tuples have a lot in common with the layer
predecessor tuples. They act similarly to the skip connections commonly seen in
neural network architectures.

4. State siblings, which rank the fully instantiated partial action ρn better than
other ground actions that are applicable in s. Specifically, let As be the set of all
applicable actions in s, then for each a ∈ As that is not ρn, we produce the tuple

⟨ϕ(s, ρn), ϕ(s, a), 0, σss⟩,

where σss is the importance value for all state sibling tuples. Here the gap is 0 as
we only know that ρn is no worse than the other actions, but not by how much.

These four types of tuples from all state and partial action sequence pairs in the training
plans form our complete dataset D. Note that by including state siblings and predeces-
sors, our dataset is effectively a superset of the dataset proposed in Hao et al. (2024) for
training state space heuristics. There, they generated similar tuples for training state
space heuristics. Given that they train state space heuristics, they only used tuples
between each state and its predecessor state (i.e., our state predecessors) and between
sibling states (i.e., our state siblings).

Given our complete dataset D = {⟨xi,x
′
i, σi, δi⟩}, we learn a linear model by solving the

following linear program,

min
w,z

C
∑
i

σizi + ∥w∥1

s.t. zi ≥ 0 ∀i
wT (xi − x′

i) ≥ δi − zi ∀i

Here, the vector w is the weight vector of the linear model, C is the regularisation
parameter, and z is a vector of slack variables for each constraint generated from the
ranking tuples. Note that this linear program is a variant of the standard RankSVM
model (Joachims, 2002) with L1 regularisation. Note that ∥w∥1 is not itself a linear
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function. However, it can be trivially encoded in a linear program through the use of
a common trick. Specifically, we introduce a new variables w+ and w−, and add the
constraint w+,w− ≥ 0. This way, we use w+ − w− as w, and encode its L1-norm as
w+ +w−.

Note also that the importance hyperparameters σlp, σls, σsp, and σss are important for
training heuristics that generalise well. Typically, the resulting dataset is imbalanced,
which may not yield good heuristics. We use these hyperparameters to manage the
contribution of each type of tuple to the training process, and to ensure that the resulting
heuristic generalises well.

Example 4. We again continue from Example 2. Given the state and partial action
sequence pairs from example, we generate the layer predecessors tuples,

⟨ϕ(s0,unstack( , )), ϕ(s0,None), 1, σlp⟩,
⟨ϕ(s0,unstack(a, )), ϕ(s0,unstack( , )), 1, σlp⟩,
⟨ϕ(s0,unstack(a, b)), ϕ(s0, unstack(a, )), 1, σlp⟩,
⟨ϕ(s1,None), ϕ(s0,unstack(a, b)), 1, σlp⟩,
⟨ϕ(s1,putdown( )), ϕ(s1,None), 1, σlp⟩,
⟨ϕ(s1,putdown(a)), ϕ(s1,putdown( )), 1, σlp⟩;

and the layer sibling tuples,

⟨ϕ(s1,putdown( )), ϕ(s0, stack( , )), 1, σlp⟩,
⟨ϕ(s1,putdown(a)), ϕ(s0, stack(a, )), 1, σlp⟩;

and the state predecessors tuples,

⟨ϕ(s0, unstack( , )), ϕ(s0,None), 1, σsp⟩,
⟨ϕ(s0, unstack(a, )), ϕ(s0,None), 1, σsp⟩,
⟨ϕ(s0, unstack(a, b)), ϕ(s0,None), 1, σsp⟩,
⟨ϕ(s1,None), ϕ(s0,None), 1, σsp⟩,
⟨ϕ(s1, putdown( )), ϕ(s1,None), 1, σsp⟩,
⟨ϕ(s1, putdown(a)), ϕ(s1,None), 1, σsp⟩;

and the single state siblings tuple,

⟨ϕ(s1,putdown(a)), ϕ(s1, stack(a, b)), 1, σss⟩.
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Chapter 5

Evaluation

In Chapter 3 we had introduced partial space search, a novel search space with reduced
branching factor that is particularly well-suited for learning for planning. In Chapter 4,
we then discussed how to obtain both learned and automatically translated action set
heuristics for guiding partial space search. In this chapter, we first discuss in Section
5.1 the new planning system, LazyLifted, where we implemented our contributions. We
discuss the efficiency, maintainability, and testing of this planning system, and how it
supports the PDDL language. We then discuss in Section 5.2 the benchmark domains
that we used to evaluate LazyLifted. Here, we use both existing competition domains
from the International Planning Competition, and new domains designed to test plan-
ning system under high branching factor conditions. In Section 5.3, we discuss our
experimental methodology, including hardware and software used, training and testing
instances, baselines, and the metrics used to evaluate the planning systems. Finally, in
Section 5.4, we present the results of our experiments and analyse them in detail to fully
understand the empirical value of our contributions.

5.1 Implementation of the LazyLifted Planning System

Typically, planning research is implemented by extending existing mature and well-
optimised planning systems. For classical planning, this is likely the Fast Downward
planning system (Helmert, 2006), which is widely used and actively maintained. As
examples, the planners LAMA (Richter and Westphal, 2010) and Scorpion (Seipp, 2023),
and the learning for planning system GOOSE (Chen, Trevizan, and Thiébaux, 2024) are
all based on Fast Downward.

A major limitation of Fast Downward is that it always grounds the lifted planning
task. As discussed in Section 2.2.2, some planning tasks can be hard to ground and
require alternative approaches. For this, the lifted planning system Powerlifted has
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been developed (Corrêa et al., 2020). From an architectural perspective, Powerlifted is
largely based on Fast Downward. This gives it a solid performant foundation, but also
means it inherits various technical debts from Fast Downward in addition to its own
limitations. Most prominently, Powerlifted does not support negative preconditions, a
common feature in many planning domains. Moreover, Powerlifted inherits an old and
arcane translator for parsing PDDL files into an internal representation.

In this thesis, our goal is to ultimately develop a scalable learning for planning system
using partial space search and action set heuristics. The scalability requirement meant
that we would like to use a lifted planning system that supports large and hard to ground
planning tasks. However, the implementation of partial space search also meant that we
would need to develop much of the planning system from scratch. In other words, the
benefits to basing our implementation on an existing planning system is limited.

Given these considerations, we developed a new planning system called LazyLifted (LL).
As its name suggests, LazyLifted is a lifted planning system whose architecture is based
on Powerlifted. However, LazyLifted is a Rust rewrite of Powerlifted that is more mod-
ern, maintainable, and scalable. In other words, LazyLifted is production-ready, and
we believe new planning research work should seriously consider LazyLifted as where
they implement their work. Throughout this chapter, we do not aim to provide a com-
prehensive overview of LazyLifted, but instead to highlight its key features. In Section
5.1.1, we discuss the efficiency and scalability of LazyLifted. In Section 5.1.2, we dis-
cuss the work we have done to make LazyLifted more maintainable. In Section 5.1.3,
we discuss how the critical components of LazyLifted are tested to ensure correctness.
In Section 5.1.4, we discuss the PDDL subsets supported by LazyLifted and how this
support is achieved. Lastly, in Section 5.1.5, we discuss a dependency of LazyLifted that
we developed to train action set heuristics efficiently.

5.1.1 Efficiency and Scalability

The forefront goal of any planner is to be efficient and scalable. Consequently, we im-
plemented LazyLifted with a focus on performance. The main way we achieved this is
by basing our implementation on Powerlifted, which is itself based on Fast Downward.
This provides a solid foundation for LazyLifted and inherit the benefits of many of the
performance related work done in these systems. We additionally implement several per-
formance improvements. These improvements are based on profiling LazyLifted on real
planning tasks and identify unnecessary computation. The flamegraph1 tool provided
significant help in identifying rooms for improvement and was very easy to use. Here
we discuss the important performance improvements we made to LazyLifted over the
existing planning systems, and evaluate their impact empirically.

Cached unpacking. As a memory optimisation, both Powerlifted and Fast Downward
uses two memory representations of planning states. The first is an unpacked represen-

1Available at https://github.com/flamegraph-rs/flamegraph.
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tation that is easy to access and manipulate, but expensive on memory. The second is
a packed representation that is much more memory efficient. This requires a packing
and unpacking step when switching between the two representations. In LazyLifted, we
inherit these two memory representations. However, we identified that in certain tasks,
the unpacking step can occur so frequently that it consumes around 30% of the total
runtime. To alleviate this, we add a simple Least Recently Used (LRU) cache to store a
mapping from the packed representation to the unpacked representation for up to 1000
states. Whenever we unpack a state, we first check if it is in the cache and if so, we
use the unpacked representation from the cache without performing the unpacking step.
Profiling on a few tasks shows that this simple change almost removes the unpacking
overhead entirely. The implementation of this is made easy through the lru library2.

Small vectors. In various parts of the codebase, an important data structure is a
small vector containing a few small integers. An example occurrence of this is the
representation of ground atoms, which involves a vector of integers representing the
objects in the atom. In Rust, the default memory representation of a vector is a pointer
to a heap-allocated array, which can mean many tiny allocations for small vectors. To
alleviate this, we use the SmallVec library3 to store the first few elements of the vector
alongside the pointer directly. Thanks to the small size of these vectors in most cases,
this usually removes the need for a heap allocation entirely.

Internment. Internment is a technique to reduce memory usage by storing a single
copy of each unique value. This is most useful when the values are immutable, and it is
expected that many copies of the same value will be created. Such is exactly the case
with many of the small vectors we had just discussed. As such, we used the internment
library4 to store only the unique small vectors and reuse them when needed. This
reduced the memory usage of LazyLifted significantly, and also improves performance
by making it easy to compare small vectors, since it is now just a pointer comparison.

Altogether, these performance improvements make LazyLifted more efficient both in
speed and memory usage. We evaluate their impacts by running LazyLifted and Power-
lifted with the exact same algorithm and heuristics and comparing their respective run
times and memory usage. The complete detail of our experimental methodology and
benchmark domains are discussed in the later sections, but we present the results now
for coherence.

Figure 5.1 shows the results of LazyLifted and Powerlifted on our complete benchmark
set. As a guide for understanding the results, points on the top-left favour LazyLifted
and points on the bottom-right favour Powerlifted. Note that Powerlifted fails to solve
many tasks due to its lack of support for negative preconditions.

2Available at https://github.com/jeromefroe/lru-rs.
3Available at https://github.com/servo/rust-smallvec.
4Available at https://github.com/droundy/internment.
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Figure 5.1: Comparison of LazyLifted and Powerlifted on our complete benchmark set
with both using Greedy Best First Search (GBFS) with the FF heuristic on
state space search. The run time results in seconds are shown on the left,
and the memory usage results in megabytes (MB) are shown on the right.
If a planner fails to solve a task, its time is set to the maximum limit of
1800 seconds. LazyLifted only reports memory usage if it runs for at least
10 seconds, we do not show memory usage when it does not report it.

It is apparent from the runtime results that LazyLifted is generally noticeably more
performant than Powerlifted with a few exceptions on the floortile domain. However,
LazyLifted is not always more memory efficient than Powerlifted. We believe this means
additional room for memory optimisation in LazyLifted, in particular by investigating
the memory optimisations done in Powerlifted and implementing them in LazyLifted.
We leave this as future work. However, this does not mean the internment optimisation
is not useful. Anecdotally, we had observed that the internment optimisation was able
to reduce the memory usage of LazyLifted by up to 80%. This in turn allowed it to solve
many large problems where it would previously have run out of memory.

5.1.2 Maintainability

We aim for LazyLifted to be an easy base planner for future research work to be im-
plemented in. As such, this means that the code should be easy to understand, extend,
and modify. Generally, this means following best practices in software engineering. Spe-
cific to planning, maintainability is made easier by following the general architecture
of the existing Powerlifted and Fast Downward planners, which many other researchers
are already familiar with. However, we also make deviations to their architecture when
beneficial, this in particular is made possible by using type system features in Rust.

Unlike Powerlifted, LazyLifted intentionally avoids using implementation inheritance.
There has been argument in support of this design decision for decades, with a notable
example being the “Gang of Four” design patterns book (Gamma et al., 1994), which
argued for “program to an interface, not an implementation” and “composition over
inheritance”. Rust in fact enforces this by not having implementation inheritance at
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all. Instead, Rust provides traits (similar to interfaces in Java) and enums (similar to
sum types in functional programming languages) to achieve the same goals. In our
experience, this has made the codebase much easier to understand and extend.

Another key aspect of maintainability is the use of modern tooling. Rust has a rich
ecosystem of tools that help with code quality. For example, the clippy tool5 provides
lints that help catch common mistakes and improve code quality. The rustfmt tool6

automatically formats the code to a consistent style, which is particularly useful in a large
codebase with many contributors. The cargo tool7 automatically manages dependencies
and builds the codebase, which makes it easy to get started with LazyLifted. This is
especially in contrast to many C++ based projects where dependency management and
building in uncommon platforms can be very challenging. LazyLifted uses all these tools
to ensure a high quality codebase that is easy to maintain. Compared to their C++
counterparts, these tools generally offer a better user experience and are more reliable.

5.1.3 Testing

A key problem with many planning systems is that there is limited testing in their
codebase. This is not only an issue for correctness, but also an obstacle for future
research work. Changes required for new research work cannot be confidently made if
there are no unit tests to ensure that the changes do not break existing functionality. In
LazyLifted, we aim to have a comprehensive test in critical components of the codebase.
This includes the PDDL parser, and the core successor generation algorithm. Correctness
of these components ensures that the plans generated are correct. The test coverage of
the successor generator components are shown in Figure 5.2, which shows that we have
achieved a high level of test coverage in these components. The tests for the Parser
are written in the form of doctests, which serve as both documentation and tests, but
unfortunately are not detected by the coverage tool.

5.1.4 PDDL Support

The PDDL language is the de facto standard for describing planning tasks. It contains
a rich set of features that can be used to describe a wide variety of planning tasks. Most
planners tend to support a subset of PDDL, which they focus on. An unfortunate choice
in Powerlifted is its lack of support for negative preconditions in action schemas, which
are a relatively common feature in classical planning domains.

LazyLifted supports all PDDL features that Powerlifted supports, and additionally sup-
ports negative preconditions. This is achieved by compiling the negative preconditions
away at run time through introducing additional predicates that represent the negation
of existing predicates.

5Available at https://github.com/rust-lang/rust-clippy.
6Available at https://github.com/rust-lang/rustfmt.
7Available at https://github.com/rust-lang/cargo.
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Figure 5.2: Test coverage of critical components of LazyLifted. The three numerical
columns are function, line, and region coverage respectively.

5.1.5 The Rank2Plan Dependency

In order to train the action set heuristics we had introduced in Chapter 4, we developed
a Python library that is used as a dependency for LazyLifted. This library is called
Rank2Plan, and is used to more generally train L1-regularised RankSVMs, which are
exactly the models we use for training ranking heuristics.

Rank2Plan does so by using constraint and column generation techniques introduced in
Dedieu, Mazumder, and Wang (2022). We direct interested readers to this paper for a
more detailed explanation of the techniques used. The library is a rewrite of their code to
be easier to use and more maintainable. It also adds specialised support for RankSVMs,
where their work focused on the more general Support Vector Machine (SVM) case.

In addition to this, we also implemented support for using Bayesian optimisation (Snoek,
Larochelle, and Adams, 2012) to tune the hyperparameters of the RankSVM. Bayesian
optimisation is a powerful technique for optimising expensive black-box functions, which
is exactly the case for tuning the hyperparameters of the RankSVM. We implemented
this efficiently reusing work done in previous hyperparameter trials in future trials.

We do not have thorough experimental results for Rank2Plan. Anecdotally, prior to
using Rank2Plan, our training process could take up to 20 hours with a memory usage
close to 28 GB. With Rank2Plan, the training process takes around up to 4 hours with a
memory usage less than 20 GB. This is a significant improvement, particularly in time,
and allows us to perform our experiments more efficiently.

5.2 Benchmark Domains

To evaluate our contributions, we use two sets of benchmark domains. The first set
(IPC23-LT) is the benchmarks used in the International Planning Competition (IPC)
2023 Learning Track (Taitler et al., 2024). The second set (HBF) is a set of domains
we have designed to test planning systems under high branching factor conditions. We
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Figure 5.3: An example of a Blocksworld instance, taken from Slaney and Thiébaux
(2001). This is the exact same figure as Figure 2.1.

describe these two set of benchmarks in Sections 5.2.1 and 5.2.2 respectively. After
describing them, we then discuss the characteristics, such as branching factor, of these
domains in Section 5.2.3.

5.2.1 International Planning Competition Domains

The International Planning Competition (IPC) is a series of competitions seeking to
evaluate the state-of-the-art in planning. The latest competition, IPC 2023, featured
a learning track specifically for learning for planning systems. This track featured a
set of ten classical planning benchmark domains. For each domain, there are a set of
training and testing instances. The training instances are designed to be used to train
the learning for planning system, and the testing instances are used to evaluate how well
these systems are able to generalise. Each test set is additional split into three groups:
easy, medium, and hard. The easy group is roughly the same difficulty as the training
instances, with the medium and hard groups being increasingly more difficult. In this
section we describe the ten domains used in the IPC 2023 Learning Track. We leave a
discussion of their sizes and difficulties to Section 5.2.3.

Blocksworld Blocksworld is a well-known planning domain consisting of a set of blocks
stacked to form towers. Blocks can be picked up and then placed either on other blocks
or on the table. The goal is to form a set of towers with a specific configuration of blocks.
Amongst the variants of Blocksworld, the IPC 2023 Learning Track uses the 4-operation
variant of Blocksworld, where feature four action schemas:

• pick-up a block from the table, when there is no block on top of it and no block
is currently held;

• put-down a block on the table, when the block is currently held;

• stack a block on top of another block, when the block is currently held and there
is no block on top of the block to be stacked on;
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• unstack a block from the top of another block, when no block is currently held
and there is no block on top of the block to be unstacked.

A simple strategy to solve any Blocksworld instance is to simply first place all blocks to
the table, then stack them in the correct order. This strategy provides an upper bound
on the difficulty of the domain and shows that every task can be solved. However,
finding better plans can be challenging, in particular as solving Blocksworld optimally
is NP-hard (Gupta and Nau, 1992). A more comprehensive study of the Blocksworld
domain, including efficient algorithms for solving it satisficingly and optimally, can be
found in Slaney and Thiébaux (2001).

Childsnack The Childsnack domain concerns planning to make and serve sandwiches
to a group of children, some of whom may be allergic to gluten. It features three groups
of action schemas:

• Sandwich making, with one action schema for making a sandwich, and another
one for making a gluten-free sandwich;

• Sandwich serving, with one action schema for serving a sandwich, and another one
for serving a gluten-free sandwich;

• Moving sandwiches, with one action schema to placing a sandwich on a tray, and
another for moving the tray.

The goal of the domain is to serve sandwiches to the children. The action schemas are
defined in a way that a gluten-free sandwich cannot contain any gluten contents, and a
sandwich that is not gluten-free cannot be served to a child who is allergic to gluten.

This domain has two main difficulties. The first is the high degree of symmetry in this
domain, since many sandwich ingredients, children, and sandwiches are equivalent from
a planning perspective. These equivalences create a vast number of states and actions
that are effectively the same, but planners that are not symmetry aware must reason
through them separately. The second difficulty is the long-horizon nature of sandwich
making and serving — a planner could easily decide to many non-gluten-free sandwiches,
leaving insufficient ingredients to make gluten-free sandwiches for the allergic children.
Such a mistake would only reveal itself after many actions have been taken, making it
hard to correct.

Ferry Ferry is a domain where a ferry must transport cars between a number of lo-
cations. The cars each start at a particular location, and must be transported each to
a specific destination. The ferry can only carry a single car at a time, and can move
from any location to any other location in a single action. An example of this domain
is shown in Figure 5.4.

Ferry is a reasonably easy domain, thanks to the fact that the ferry can move between
any two locations in a single action. This removes the path finding element of the
domain — the ferry can always just load any car that is not at its destination and move
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Figure 5.4: An example of a Ferry instance.

it to its destination. A potential challenge to planners from this domain is that large
problem instances can result a very large space of reachable states and make this task
hard-to-ground or memory consuming.

Floortile Floortile is a domain where a number of robot needs to move on a grid of
tiles and paint these tiles to either black or white. Each robot can only paint the tile
directly above or below it and can only move to an adjacent tile. The goal is to paint
the tiles in a specific pattern.

Miconic Miconic is a domain where an elevator must determine how to best move
between a number of floors to pick up and drop off passengers. The elevator can move
between any two floors in a single action, pickup passengers not at their destination,
and drop off passengers at their destination. The goal is to move all passengers to their
destination floors. It is very similar in nature to the ferry domain, with the key difference
being that the elevator can hold any number passengers at a time, unlike the ferry which
can only hold one car at a time.

Rovers The Rovers domain is a simplified version of problems that confronted NASA
for their Mars exploration missions. It involves several rovers (e.g., the Opportunity
rover seen in Figure 5.5) that must traverse the Mars surface. Each rover is equipped
with a set of equipment, which it can use to gather data and transmit it back to a
lander. Each rover can only traverse of certain terrain types, meaning different parts of
the planet are only accessible to certain rovers. Data transmission is also constrained
by the visibility of the lander from the waypoints.

Satellite Like Rovers, Satellite is also a domain simplified from the satellite obser-
vation scheduling problem by NASA. In this domain, a number of satellites are each
equipped with a set of instruments. Instruments should be calibrated to observe spe-
cific targets. The satellites can only observe targets when they are pointing in the right
direction.

Sokoban The Sokoban domain is based on a classic video game where a player has to
push boxes around a warehouse to their target locations. The warehouse is a square grid
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Figure 5.5: The Opportunity rover, one of the rovers used in the Mars exploration mis-
sions.

Figure 5.6: An example of a Spanner instance with 5 spanners, 3 nuts, and 3 locations,
from Chen (2023)

with walls that box or player cannot pass through. In each step, the player can either
move to an adjacent cell or push a box in the direction of the move. Since boxes cannot
be pulled, deadends exist in this domain, where a box is stuck in a corner and cannot
be moved to its target location. Research has shown that this problem is PSPACE-
complete (Culberson, 1997), even if there are no walls in the warehouse (Hearn and
Demaine, 2005).

Spanner The Spanner domain involves an agent (Bob) who must move within a one-
way corridor, pickup spanners, and use these spanners to tighten nuts. The nuts are
located on a gate at the end of a corridor. Each spanner can only be used to tighten one
nut. The goal is to tighten all nuts on the gate. An example is shown in Figure 5.6.

This domain is particularly challenging for delete relaxation heuristics, as they cannot
model the fact that a spanner can only be used once.
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Transport The Transport domain involves a number of trucks that must navigate
a graph of locations to transport packages to their destinations. Each truck has a
capacity limit of how many packages it can carry. The main challenges of this domain
are managing the capacity limits and the path finding problem of navigating the graph.

5.2.2 High Branching Factor Domains

The domains used in the IPC 2023 Learning Track provide a good variety of tasks to
test learning for planning systems. However, in this thesis we are particularly interested
in examining the performance impacts of partial space search in planning tasks with
high branching factors. To this end, we have designed a set of new domains with high
branching factors.

Blocksworld Large Generally, planning tasks do not include objects that are irrele-
vant to the goal. However, a desirable property for planners is the ability to effectively
work with information irrelevant to the goal. Correspondingly, there has been a growing
trend in planning research to learn models that can automatically produce planning task
descriptions given, for example, visual traces of plans (Xi, Gould, and Thiébaux, 2024).
These systems may not always learn to filter out irrelevant information.

As such, we have designed a varied set of tasks for the Blocksworld domain where there
are many blocks that are irrelevant to the goal. These large blocks induce a large
branching factor in general. To effectively complete these tasks, a planner must be able
to either ignore the irrelevant blocks or deal with the branching factor induced by them.

Transport Sparse, Dense, and Fully Connected Another interesting thing to
investigate is the impact of the graph structure on the Transport on branching factor
and consequently the performance of planning systems. By density of a graph, we mean
the ratio of the number of edges to the number of possible edges. A sparse graph has a
low density, a dense graph has a high density, and a fully connected graph is where all
possible edges are present. As the density of a graph increases, the branching factor of
the Transport planning task increases as the trucks can move to more locations in one
step. In the Transport domain, since there are also many trucks, the branching factor
is roughly the number of trucks times the average degree of the locations in the graph.

Given this, we have designed three variants of the Transport benchmark set with sparse,
dense, and fully connected graphs. Let V be the number of locations in the graph, then
the maximum possible number of edges is V (V − 1). We ensure the graph is always
connected by having at least V − 1 edges. For the sparse graph, the number of edges is
between V − 1 and 1.5(V − 1). For the dense graph, the number of edges is between 0.5
and 0.8 of the maximum possible. Lastly, for the fully connected graph, the number of
edges is the maximum possible.
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Warehouse Warehouse is the only new domain that we introduce that does not exist
before to our knowledge. In this domain, there are blocks stacked together to form
towers, similar to Blocksworld. Unlike Blocksworld, where an arm is used to move the
blocks, in Warehouse blocks on top can be moved between towers in a single action.
Moreover, there is a limit on the maximum number of towers. The goal of Warehouse is
remove exactly a subset of blocks, i.e., taking them out of the warehouse.

The Warehouse domain is designed to have a high branching factor. In particular, since
blocks can be moved between towers in a single action, the branching factor is quadratic
to the number of towers. This allows us to investigate how well planners are able to
effectively navigate this form of high branching factor.

5.2.3 Domain Characteristics

We use this section to analyse the characteristics of the domains we have in our bench-
mark sets. For each domain, there are 90 to 100 training instances and 90 test instances.
The test set is additionally divided into three splits: easy, medium, and hard. In gen-
eral, the training instances and easy test instances are roughly on the same scale. The
medium and hard test instances then increase rapidly in size and hence difficulty. To
describe the test set sizes, we use two metrics: the number of key objects and the branch-
ing factor. The former provides an intuitive indication of the size of the task, while the
latter provides an indication of the computation demand of the tasks. Branching factor
is particularly interesting due to our contribution of partial space search. We would like
to investigate how partial space search handles tasks with varying branching factors.

Although branching factor is an intuitive concept, its measurement can be tricky. We
measure branching factor as the number of state evaluations per state expansion in state
space search. This is a good approximation of how much work planners need to do
on average when expanding a single state. For any given task, the branching factor is
influenced by the part of the search space explored and therefore differs for different
heuristics and search algorithms. We use the FF heuristic and Greedy Best First Search
(GBFS). Given that the FF heuristic is relatively good, this provides a relatively good
approximation of the branching factor of the tasks that would be encountered in practice.

The results for the number of key objects and branching factor for the domains in our
benchmark sets are shown in Table 5.1. It is worth noting that even some IPC domains,
such as Childsnack and Satellite, have high branching factors. On the other hand, the
high branching factor domains we have added consistently have high branching factors.

It is particularly worth noting that the transport domains in the HBF set have branching
factors that increase with respect to graph density, as we had expected. It is also
important to point out that the high branching factor in Childsnack is mostly due to the
high degree of symmetry in the domain. This means that unlike most high branching
factor cases, in Childsnack the high number of options faced by planners lead to small
number of unique states.
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Table 5.1: Description of test sets for each benchmark domain and size and branching
factor. We only show the number of key objects when describing size. See
text for explanation on branching factor.

Set Domain Split Key Object Sizes Branching Factor

IP
C

2
0
2
3
L
T

blocksworld
test (easy) 5 to 30 blocks 1.71 to 6.29
test (medium) 35 to 150 blocks 4.57 to 21.73
test (hard) 160 to 500 blocks 19.71 to 60.96

childsnack
test (easy) 4 to 10 children, 4 to 15 sandwiches 1.76 to 18.11
test (medium) 15 to 40 children, 15 to 60 sandwiches 1680.71 to 26287.00
test (hard) 50 to 300 children, 50 to 450 sandwiches Expansion failurea

ferry
test (easy) 2 to 20 cars, 5 to 15 locations 1.83 to 5.31
test (medium) 10 to 100 cars, 20 to 50 locations 5.38 to 9.14
test (hard) 200 to 1000 cars, 100 to 500 locations 20.50 to 223.50

floortile
test (easy) 3 by 3 to 4 by 6 grid, 1 to 3 robots 1.89 to 3.47
test (medium) 10 by 10 to 13 by 19 grid, 4 to 13 robots 5.61 to 73.17
test (hard) 25 by 25 to 28 by 34 grid, 15 to 28 robots 82.58 to 212.42

miconic
test (easy) 1 to 10 passengers, 4 to 20 floors 1.60 to 11.39
test (medium) 20 to 80 passengers, 30 to 60 floors 17.43 to 38.74
test (hard) 50 to 500 passengers, 80 to 200 floors 45.36 to 146.48

rovers
test (easy) 1 to 4 rovers, 4 to 10 waypoints 3.77 to 30.15
test (medium) 5 to 10 rovers, 15 to 90 waypoints 19.13 to 548.21
test (hard) 15 to 30 rovers, 100 to 200 waypoints 338.36 to 726.00

satellite
test (easy) 3 to 10 satellites 10.00 to 103.75
test (medium) 15 to 40 satellites 199.45 to 1182.23
test (hard) 50 to 100 satellites 1890.33 to 3532.00

sokoban
test (easy) 8 by 8 to 13 by 13 grid, 1 to 4 boxes 1.25 to 2.83
test (medium) 20 by 20 to 50 by 50 grid, 5 to 35 boxes 1.20 to 1.97
test (hard) 60 by 60 to 100 by 100 grid, 4 to 80 boxes 1.40 to 2.02

spanner
test (easy) 1 to 5 nuts, 4 to 10 locations 1.14 to 1.87
test (medium) 15 to 50 nuts, 15 to 45 locations 1.11 to 3.24
test (hard) 50 to 250 nuts, 50 to 100 locations 3.62 to 44.37

transport
test (easy) 3 to 6 vehicles, 5 to 15 locations 5.00 to 79.56
test (medium) 10 to 20 vehicles, 20 to 40 locations 27.35 to 612.02
test (hard) 30 to 50 vehicles, 50 to 100 locations 143.04 to 1669.00

H
B
F

blocksworld-large
test (easy) 500 to 703 blocks, 1% in goal 102.05 to 159.17
test (medium) 720 to 960 blocks, 0.9% in goal 124.50 to 161.33
test (hard) 940 to 1221 blocks, 0.8% in goal 113.00 to 158.67

transport-sparse
test (easy) 3 to 6 vehicles, 7 to 15 locations 3.71 to 13.76
test (medium) 10 to 20 vehicles, 20 to 40 locations 10.15 to 68.31
test (hard) 30 to 50 vehicles, 50 to 100 locations 71.39 to 195.62

transport-dense
test (easy) 3 to 6 vehicles, 7 to 15 locations 7.00 to 39.79
test (medium) 10 to 20 vehicles, 20 to 40 locations 105.65 to 551.28
test (hard) 30 to 50 vehicles, 50 to 100 locations 854.42 to 1653.00

transport-full
test (easy) 3 to 6 vehicles, 7 to 15 locations 14.80 to 53.20
test (medium) 10 to 20 vehicles, 20 to 40 locations 180.21 to 687.43
test (hard) 30 to 50 vehicles, 50 to 100 locations 1401.13 to 1879.50

warehouse
test (easy) 10 to 100 boxes in 4 to 40 towers 7.33 to 1178.54
test (medium) 100 to 150 boxes in 40 to 60 towers 1413.64 to 1962.33
test (hard) 150 to 200 boxes in 60 to 80 towers 1623.00 to 2079.50

aIn Childsnack test (hard) instances, the branching factor is so high that the planner failed to expand
any state on any instance.
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5.3 Experimental Methodology

We aim to empirically evaluate how well our contributions perform in practice. This
ultimately means answering two questions: how well can they solve large and complex
planning tasks, and how good are the plans they produce. For our learned action set
heuristics, the first question is additionally requires us to understand how well they can
generalise to tasks much larger than the training instances. To answer these questions,
we will need to run experiments on our previously described benchmark sets.

5.3.1 Baselines

The baseline planning system we compare against are the current state-of-the-art in
satisficing planning, LAMA-first, the current state-of-the-art in learning for planning,
GOOSE, and the current state-of-the-art in lifted planning, Powerlifted. The details of
these systems are as follows:

• As we had discussed in Section 2.1.2, LAMA-first is a variant of the LAMA planner
that returns the first plan found. It outperformed all other planners in the IPC
2023 agile track.

• GOOSE is the learning for planning system that exploits the methods we had
described in Section 2.3. GOOSE allows the use of multiple possible underly-
ing planning systems, including Fast Downward and Powerlifted, and supports
both classical planning and numeric planning8. We had also implemented the key
classical planning component of GOOSE in LazyLifted. We expect our implemen-
tation to perform on par with or better than the original GOOSE implementation.
Therefore, we use our own implementation of GOOSE as a fair baseline.

Beyond having multiple implementations, GOOSE also has many possible con-
figurations that control the hyperparameters and training method used. We use
the recommended configuration from the GOOSE repository9 to evaluate against
the best version of GOOSE. Specifically, we train a ranking heuristic using three
iterations of the WL algorithm with the Instance Learning Graph and the Linear
Program formulation of the ranking problem with regularisation hyperparameter
C = 1. This is exactly what we had described in Section 2.3.3.

• Powerlifted is a lifted planner that is based on the FF heuristic with additional
heuristic search techniques. Like with GOOSE, we use the recommended config-
uration from the Powerlifted repository10 to evaluate against the best version of
Powerlifted.

By using the best versions of these state-of-the-art planners, we aim to provide a fair

8Numeric planning is an extension of classical planning with numeric state variables that actions can
depend on and change.

9Available at https://github.com/DillonZChen/goose
10Available at https://github.com/abcorrea/powerlifted.
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comparison of our contributions against the best that is currently available. This is
important as it allows us to understand how much our contributions improve over the
current state-of-the-art.

5.3.2 Training and Testing Instances

As mentioned in previous sections, our benchmark set contains training instances that
are roughly on the same scale as the easy test instances. This is to allow us to understand
if both GOOSE and our learning systems are at least able to learn how to solve similar
tasks to the easy test instances. The medium and hard test instances then allow us to
examine if they are able to generalise to more difficult tasks.

Both GOOSE and our learning systems use training plan traces that demonstrate how
the training instances can be solved. For the IPC 2023 Learning Track domains, we
use the same training plan traces as used by GOOSE in Chen, Trevizan, and Thiébaux
(2024). For the high branching factor domains, we use the same methodology as used in
Chen, Trevizan, and Thiébaux (2024) to generate training plan traces. Specifically, we
run the Scorpion optimal planner on the training instances and use the resulting optimal
plans as training plan traces. For both the Blocksworld Large and Warehouse domains,
the Scorpion planner solves none or very few training instances. In these cases, we use
LAMA-first to generate the training plan traces.

5.3.3 Hardware and Software

All of our experiments are run on a cluster with Intel Xeon 3.2 GHz CPU cores. When
training heuristics for GOOSE and our learned action set heuristics, we use a single core
with 32 GB of memory with a time limit of 24 hours. When running a planning system
on a test instance, we use a single core with 8 GB of memory with a time limit of 30
minutes. These settings are chosen to be consistent with various existing works such as
Chen, Trevizan, and Thiébaux (2024) and the IPC 2023 Learning Track (Taitler et al.,
2024).

We examine a number of combinations of our contributions. For search space, we ex-
amine both state space search and partial space search. For the choice of the action set
heuristics, we examine both the action set version of the FF heuristic and the learned
action heuristics from our two graph representations, namely AOAG and AEG. For each
graph representation, we train two action set heuristics, one using regression and one
using ranking. Altogether, this results in five choices of action set heuristics. Like we had
discussed, action set heuristics can be used for both state space search and partial space
search. This means that we examine a total of ten combinations of our contributions11.
Such an extensive examination is necessary to cover the full range of possibilities and
understand how well our contributions perform in practice.

11Note that the FF heuristic with state space search is not actually our contribution, but we still examine
it, mainly to observe how the FF heuristic performs with partial space search when compared with
state space search.
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To name these combinations, we use the following notation: <search space>-<graph

representation>-<heuristic type>. Search space is either PS2 for partial space
search, or S3 for state space search. For the FF heuristic, we omit the graph repre-
sentation and use FF as the heuristic type. For learned action set heuristics, the graph
representation is either AOAG or AEG, and the heuristic type is either GPR or LP. Here,
GPR refers to regression using Gaussian Process Regressor and LP refers to ranking using
our linear program formulation. We will now refer to each of these as a LazyLifted
configuration.

Our learned action set heuristics additionally have a number of hyperparameters. Specif-
ically, for regression based heuristics, we use four iterations of the WL algorithm to
generate feature vectors and Gaussian process regression with a linear kernel and an α
constant of 10−7. For ranking based heuristics, we use two iterations of the WL algo-
rithm to generate feature vectors and generate the training data set using importance
parameters of σlp = 0.5, σls = 2.0, σsp = 0.5, and σss = 1.0. We use the Rank2Plan
library to efficiently and automatically tune the regularisation hyperparameter C for
the RankSVM in our ranking based heuristics, resulting in domain-specific auto-tuned
C values. During this tuning process, we hold largest 20% of training instances as a
validation set, and use the remaining 80% for training. Once the hyperparameters are
tuned, we train the final ranking heuristic on the full training set.

For the warehouse domain, the high branching factor even on the training set resulted
in an overwhelming number of layer and state sibling tuples in our ranking datasets. To
alleviate this, our importance hyperparameters for Warehouse are σlp = 2.0, σls = 1.5,
σsp = 2.0, and σss = 0.5.

The above hyperparameters are all chosen based on results of preliminary experiments.
We do not perform a full hyperparameter search for these hyperparameters, as this would
be computationally expensive. However, we believe that the hyperparameters chosen are
reasonable and provide a good starting point for our experiments.

5.3.4 Metrics

When evaluating the performance of various planning systems, we are mainly concerned
with two metrics: coverage and plan quality. Coverage is the number of tasks solved by a
planning system within our 30 minutes time limit. It describes how effective a planning
system is at solving tasks. Plan quality is also important to us, as one would clearly
prefer better plans. In our case, plan quality is particularly interesting as our training
plans are optimal except on the Blocksworld Large and Warehouse domains. We would
then hope that the learning for planning systems (i.e., GOOSE and our learned action
set heuristics) are able to produce plans that are close to optimal.

Coverage is trivial to measure, but to measure plan quality we need a metric. We base
our metric on that used in the IPC 2023 Learning Track. There, they obtained reference
plans for each task in the test set and measured the plan quality of the plans produced
by the planning systems against these reference plans. Specifically, they measured the
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quality score of a plan as Cref/C, where C is the cost of the plan produced by the
planning system and Cref is the cost of the reference plan. The cost of a planner is then
the sum of the quality scores of the plans it produces. In our case, we use the best
plan found by any of the planning systems we examine as the reference plan. This is
a reasonable choice, allowing us to compare the quality of the plans found by all the
planning systems we examine. We call the resulting metric the quality score.

5.4 Results

In this section we present and analyse our experimental results. Before doing so, we first
discuss in Section 5.4.1 the key questions we seek to answer using these results and our
anticipated outcomes. We then present the results in Section 5.4.2 and analyse them
in light of these questions, examining if reality matches our expectations. We will also
discuss some additional questions and insights that arise from the results. Lastly in
Section 5.4.3, we will discuss our results in detail in a domain by domain basis.

5.4.1 Key questions and anticipations

The most important question we seek to answer is how well our contributions perform,
as measured by coverage and plan quality. This leads to a few more specific questions
regarding each of our individual contributions:

• How well does partial space search perform compared to state space search when
using the same underlying heuristic (e.g., the FF heuristic)? We anticipate that
partial space search is likely not beneficial on tasks with low branching factors, such
as Sokoban. Partial space search is designed to factorise the branching factor of
planning tasks, and on low branching factor tasks this only introduces unnecessary
overhead. However, this overhead should not be significant, and we do not expect
partial space search to perform significantly worse than state space search on low
branching factor tasks. On the other hand, we anticipate that partial space search
will perform significantly better than state space search on tasks with high branch-
ing factors. This is because partial space search is exactly designed to handle high
branching factor tasks, and we expect it to be able to do so effectively.

• How good is automatic translation from state space heuristics to action set heuris-
tics, as exemplified by the FF heuristic? We do not have clear anticipations for
this question. However, if the translation is good, we anticipate that the action set
version will mostly reflect the performance characteristics of partial space search
when compared with the original version using state space search. This is because
a good translation means the heuristic preserves the same accuracy, in which case
the only difference is the search space.

• How good are the learned action set heuristics? To address this question requires
us to examine the performance of the learned action set heuristics using state space
search, thereby removing the effect of partial space search. We anticipate that the

67



5 Evaluation

learned action set heuristics will be highly effective even with partial space search.
This is because they are based on the same methodology as the ILG heuristics used
by GOOSE, which is the current state-of-the-art in learning for planning. We also
somewhat anticipate that the learned action set to outperform GOOSE, as they
are trained using a larger training dataset thanks for partial space search.

• How good are the plans found by learned action set heuristics? This is particularly
interesting, as the training plans for the learned action set heuristics are optimal
except on the Blocksworld Large and Warehouse domains. We anticipate that the
learned action set heuristics will also produce high quality plans thanks to their
training on optimal plans.

• How does partial space search affect plan quality? We merely propose this as a
key question, as we do not have clear anticipations for it. This is an important
question because partial space search breaks down the search process into smaller
steps, and it is not clear how this affects the quality of the plans produced.

5.4.2 Overview

We present the coverage and quality score of the planning systems we examine in Ta-
bles 5.2 and 5.3, respectively. These tables provide a comprehensive view of how well
our contributions perform in comparison to the state-of-the-art baseline planners, and
ultimately answer the key questions we had just posed.

How well do our contributions perform compared to the state-of-the-art base-
line planners? This is the most important question we seek to answer. We can see
from Table 5.2 and Table 5.3 that our learned action set heuristics trained through rank-
ing are the best performing configurations amongst all our configurations, and we focus
on them in our analysis.

In terms of coverage, we see that on the IPC 23 Learning Track domains, our learned
action set heuristics with state space search outperform all systems except for LAMA-
first. This is a significant improvement over the existing state-of-the-art in learning for
planning, GOOSE, and in lifted planning, Powerlifted. This is a good indication of
the performance of our systems. On the high branching factor domains, our learned
action set heuristics with partial space search perform better than all baselines. This
highlights the synergy of partial space search and learned action set heuristics, as we had
anticipated. Altogether, PS2-AOAG-LP is the best performing system. It outperforms
GOOSE by around 25% and LAMA-first by around 5%. This is a landmark achievement,
as it is the first learning for planning system to outperform LAMA-first.

In terms of quality score, similar trends continue. Our learned action set heuristics
perform well on the IPC23 LT set with state space search and on the high branching
factor domains with partial space search. The quality score of S3-AEG-LP outperforms
all baselines on the IPC 23 Learning Track domains, and the quality score of PS2-
AOAG-LP outperforms all baselines on the high branching factor domains. This is a

68



5.4 Results

Table 5.2: Coverage of various planning systems. The best score for each row is high-
lighted in bold. The top three unique scores for each row are highlighted in
different shades of green with darker being better.
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blocksworld 60 86 37 29 90 75 89 74 24 84 42 89 46
childsnack 35 37 0 16 38 15 37 16 14 15 9 9 13
ferry 68 90 0 60 88 75 90 81 49 87 69 90 58
floortile 11 2 9 10 1 2 1 2 6 1 1 1 1
miconic 90 90 81 77 90 90 90 90 68 90 90 90 90
rovers 69 40 53 28 32 32 34 27 34 26 31 34 27
satellite 89 39 0 49 53 47 39 12 50 41 57 29 24
sokoban 40 27 34 32 27 29 27 29 29 24 26 27 26
spanner 30 71 30 30 71 68 71 73 30 72 68 72 60
transport 66 35 53 36 50 28 53 21 38 54 34 54 31

sum IPC coverage 558 517 297 367 540 461 531 425 342 494 427 495 376

H
B
F

blocksworld-large 7 40 2 0 18 0 35 0 0 48 0 74 0
transport-sparse 62 30 58 31 37 14 41 21 31 58 30 64 31
transport-dense 66 31 52 39 51 31 59 27 36 57 33 57 30
transport-full 66 33 0 42 61 42 63 37 41 60 52 55 32
warehouse 30 15 90 35 27 88 58 88 54 49 79 79 58

sum HBF coverage 231 149 202 147 194 175 256 173 162 272 194 329 151
sum total coverage 789 666 499 514 734 636 787 598 504 766 621 824 527
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Table 5.3: Quality score of various planning systems rounded to integers. The best score
for each row is highlighted in bold. The top three unique scores for each row
are highlighted in different shades of green with darker being better.
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blocksworld 36 83 21 13 89 65 88 64 12 82 35 88 40
childsnack 22 37 0 12 38 15 37 16 8 14 9 9 11
ferry 57 87 0 55 86 71 89 79 33 86 67 90 53
floortile 10 2 9 9 1 2 1 2 4 1 1 0 1
miconic 73 89 77 76 89 89 89 89 55 81 84 82 84
rovers 66 23 51 25 17 17 18 12 30 13 15 16 12
satellite 86 28 0 47 41 26 26 3 43 25 33 17 9
sokoban 35 19 28 26 19 23 19 23 23 11 18 14 17
spanner 30 62 30 30 60 59 60 70 30 61 59 61 55
transport 63 30 46 29 43 16 42 14 26 43 25 41 22

sum IPC quality 477 459 262 322 482 382 469 372 264 419 347 418 303

H
B
F

blocksworld-large 7 32 2 0 11 0 25 0 0 37 0 60 0
transport-sparse 59 24 48 20 23 6 27 13 21 38 18 47 18
transport-dense 62 27 45 30 46 19 49 17 24 36 27 46 24
transport-full 63 30 0 38 56 33 51 29 32 40 46 41 29
warehouse 30 6 89 35 14 82 54 82 54 17 68 57 40

sum HBF quality 220 118 184 124 150 141 205 141 131 168 160 251 111
sum total quality 698 578 446 445 632 523 675 513 394 587 506 669 414
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good indication that our learned action set heuristics are able to produce high quality
plans, as we had anticipated.

Are our methods outperforming the state-of-the-art baselines only because
of our added high branching factor benchmarks? No, this is not the case. We
can see that our learned action set heuristics are highly competitive with the LAMA-first
on the IPC 23 Learning Track domains in terms of coverage and even outperform it in
terms of quality score. Moreover, we outperform GOOSE on both metrics on the IPC
set and vastly outperform Powerlifted.

Our added high branching factor benchmarks are also not a bias towards our own meth-
ods. Instead, existing benchmarks from the IPC 23 Learning Track are tasks that base-
lines like LAMA-first can solve reasonably well. That is, they are potentially biased
towards the baselines. Our added benchmarks simply help us explore outside the capa-
bilities of the baselines. As we discussed when introducing these benchmarks, they each
explore slightly different capabilities. Blocksworld-large explores the ability to deal with
irrelevant information, the transport variants explore the impact of graph density on
branching factor, and warehouse explores the ability to deal with extreme high branch-
ing factor tasks. Our results show that our learned action set heuristics are able to
handle all of these tasks effectively.

How well does partial space search perform compared to state space search
when using the same underlying heuristic? To answer this question we need to
compare the LazyLifted configurations using state space search (in the middle of the
tables) to the configurations using partial space search (to the right of the tables). We
can see that partial space search is generally not beneficial on the IPC 23 Learning Track
domains. This is what we had anticipated — the low branching factor of these domains
means that partial space search provides limited benefit while introducing unnecessary
overhead. This trend holds for both coverage and quality, with a general decrease in
both of these metrics by 10 to 20 percentage points. On the other hand, partial space
search is generally beneficial on high branching factor tasks, offering improvements both
in coverage and quality. This matches exactly what we had anticipated. Overall, we can
conclude that partial space search achieves its design goal of improving performance on
high branching factor tasks while maintaining reasonable performance on low branching
factor tasks.

It is also interesting to note that the performance of partial space search when com-
pared with state space search is dependent on the underlying heuristic. Specifically,
stronger heuristics like AOAG-LP and AEG-LP work better with partial space search
than weaker heuristics. That is, their performance when using partial space search is
closer to their performance when using state space search for IPC 23 Learning Track
domains, and they benefit more on high branching factor tasks. This also matches with
our discussions in Section 3.4, where we discussed that partial space search moves the
speed versus informedness trade-off towards informedness, and therefore works better
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Figure 5.7: Comparison of branching factor (top) and number of nodes evaluated (bot-
tom) for partial space search versus state space search, under our best two
heuristics (AOAG-LP to the left and AEG-LP to the right). The x-axis is
for state space search and y axis is for partial space search. The x = y line
is shown in the diagonal. Points below it favour partial space search, points
above it favour state space search.

with more informed heuristics. This is a good indication that partial space search works
as intended.

To provide more insight, we also directly examine the number of nodes evaluated during
the search process and the branching factor of the tasks, when using partial space search
versus state space search. We examine these for our best two heuristics, AOAG-LP and
AEG-LP, in Figure 5.7. These plots show that partial space search produces a significant
reduction in branching factor (nodes evaluated divided by nodes expanded) over state
space search. However, partial space search also requires more node expansions, since
it breaks a single search step into multiple steps. This is why the advantage is less
clear when examining only nodes evaluated, and partial space search even leads to more
evaluations on some domains. However, on most domains, particularly those with high
branching (warm colours in the plot) factor, partial space search is able to reduce the
number of evaluations, thereby saving search effort.
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How good is the automatic translation from state space heuristics to action
set heuristics, as exemplified by the FF heuristic? We answer this question
by comparing the S3-FF configuration against the PS2-FF configuration. This allows
us to examine how well the FF heuristic preserves its performance when translated to
an action set heuristic. Again, the results match our anticipations. The FF heuristic
performs slightly worse with PS2 than with S3 on IPC 23 Learning Track domains,
but the difference is not significant. As we had discussed, we attribute much of this
reduction in performance to partial space search, not to the translation process. On
the other hand, the FF heuristic performs slightly better with PS2 than with S3 on
high branching factor tasks. This is a good indication that our translation process is
effective, as the FF heuristic is able to take advantage of partial space search to improve
its performance on high branching tasks through the translation process.

How good are the learned action set heuristics? As we had discussed, our learned
action set heuristics are the best performing configurations amongst all our configura-
tions. In fact, when used with state space search, they outperform the state-of-the-art
learned heuristic by GOOSE, which they are based on. This is an indication that we
had learned stronger heuristics than the state-of-the-art in learning for planning. This
is particularly interesting, as these heuristics are not exposed to action related features
when performing inference in state space search, and instead they use essentially the
same graph representations as GOOSE. As such, we view this as indication that our
training process is effective. Specifically, this suggests that training even state space
heuristics as action set heuristics with partial space search is beneficial, possibly due to
the larger training dataset that partial space search provides, as shown in Table 5.4.

How good are the plans found by learned action set heuristics? Since the
quality score is a summarisation of both coverage and the quality of the individual plans,
we can observe the latter by examining quality scores in context of coverage. Under this
analysis, we observe that our learned action set heuristics produce high quality plans
especially when used with state space search. For example, S3-AEG-LP has the highest
quality score on the IPC set, despite having a slightly lower coverage than LAMA-first.
This indicates that it finds high quality plans when it is able to solve tasks.

However, our learned action set heuristics do not seem to produce high quality plans
specifically for transport and its variants. This is likely due to the path finding nature
of these domains. Our learned heuristics are based on the WL algorithm, which cannot
reason well about path finding as the WL algorithm focuses on the local information
within graph representations. This is a limitation of WL based heuristics in general, not
a limitation of our learned heuristics specifically — GOOSE also exhibits this limitation
as it is based on the same methodology.

How does partial space search affect plan quality? We again answer this question
by viewing the quality scores in context of coverage. This time we compare the plan
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Table 5.4: Training data size for each domain when generating ranking datasets using
state space search (S3) versus partial space search (PS2), along with the ratio
of partial space search to state space search.

Domain S3 PS2 PS2/S3

blocksworld 6237 14525 2.33
childsnack 9687 18877 1.95
ferry 11882 22036 1.85
floortile 28943 116668 4.03
miconic 21404 35217 1.65
rovers 18673 64685 3.46
satellite 59999 145636 2.43
sokoban 7657 37584 4.91
spanner 3283 14057 4.28
transport 13509 33304 2.47
blocksworld-large 118882 164968 1.39
transport-sparse 9865 32733 3.32
transport-dense 21577 47918 2.22
transport-full 36970 66932 1.81
warehouse 192665 237826 1.23

qualities of the same heuristics with state space search versus partial space search. We
observe that partial space search generally seems to lead to slightly lower quality plans.
This is likely a result of the fact that partial space search breaks down the search process
into smaller steps. We hypothesise that it is harder for planners to consistently make
good decisions when the search process is broken down into smaller steps, and small
mistakes can accumulate over time into lower quality plans.

How much computational resource do our action set heuristics take to train?
Thanks to the Rank2Plan library we had developed, most of our action set heuristics
take a few minutes and 1-2 GB of memory to train. The most computationally expensive
models take up to a few hours and 10-20 GB of memory to train. This is a very efficient
training process, especially when compared to modern deep learning models that can
take days to train.

5.4.3 Per domain analysis

Here we analyse our results in more detail on a domain by domain basis. We examine
the coverage and quality score of the planning systems we examine on each domain, and
discuss the key insights that arise from these results.
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Table 5.5: Results for the blocksworld domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Easy 30 30 30 29 30 30 30 29 24 30 30 30 30
Medium 27 29 7 0 30 27 29 29 0 30 11 29 15
Hard 3 27 0 0 30 18 30 16 0 24 1 30 1
Total 60 86 37 29 90 75 89 74 24 84 42 89 46

Q
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y Easy 19.7 28.8 17.8 13.0 29.5 27.4 29.4 26.4 11.8 29.3 26.6 29.6 27.1

Medium 14.8 27.9 3.4 0.0 29.5 22.9 28.5 24.9 0.0 29.2 7.8 28.8 11.9
Hard 1.2 26.0 0.0 0.0 29.7 14.6 29.7 12.8 0.0 23.6 0.8 29.8 0.8
Total 35.6 82.7 21.2 13.0 88.6 64.9 87.6 64.2 11.8 82.2 35.2 88.1 39.8

Table 5.6: Results for the blocksworld-large domain. The best score for each row is
highlighted in bold. The top three unique scores for each row are highlighted
in different shades of green with darker being better.
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Medium 0 10 0 0 3 0 6 0 0 11 0 25 0
Hard 0 1 0 0 0 0 0 0 0 13 0 19 0
Total 7 40 2 0 18 0 35 0 0 48 0 74 0

Q
u
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y Easy 7.0 21.0 1.9 0.0 9.0 0.0 19.1 0.0 0.0 14.9 0.0 18.2 0.0

Medium 0.0 9.6 0.0 0.0 2.5 0.0 5.5 0.0 0.0 10.2 0.0 23.7 0.0
Hard 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 0.0 18.0 0.0
Total 7.0 31.6 1.9 0.0 11.5 0.0 24.6 0.0 0.0 37.3 0.0 59.8 0.0

75



5 Evaluation

Blocksworld and Blocksworld Large

We discuss Blocksworld and Blocksworld Large together due to their inherent connection.
An overview of their results is shown in Table 5.5 and 5.6. It is clear that in terms of
coverage, our action set heuristics learned from ranking (AOAG-LP and AEG-LP) lead
to the best performing systems, whether using state space search or partial space search.
This is reflected in terms of both coverage and quality score. This is a good indication
that our systems are able to both solve tasks efficiently and product high quality plans
in the same time.

It is also interesting to observe the difference in planner performances between the
Blocksworld and Blocksworld Large domains. On Blocksworld, state space search and
partial space search perform similarly, while on Blocksworld Large, partial space search
is significantly better. This corresponds exactly to the capability of partial space search
to handle high branching factor tasks. Moreover, it is also interesting to observe that
high performing systems on Blocksworld Large tend to produce low quality plans, judg-
ing by the drop in value from coverage to quality score. It is interesting to investigate
the cause of this, given that our systems tend to produce the best plans on Blocksworld.
We do not believe this is due to using the satisficing LAMA-first instead of the optimal
Scorpion as the training plan generator for Blocksworld Large, as it produces very high
quality plans for the instances it does solve.

We can make further observations through the planning time results from our experi-
mental logs. Looking at Blocksworld, it is clear that our methods are not able to solve
small instances as quickly as baselines, however, the time they need to solve problems
increases much slower than the baselines as the problem size increases. This is what
allows them to ultimately outperform the baselines. On the other hand, on Blocksworld
Large, our methods are the only ones able to solve many instances and hence obviously
have the shortest planning times. However, the planning time fluctuates significantly
between instances, suggesting unstable performance. Nonetheless, they are the only
systems capable of solving many instances, which is important in its own right.

Childsnack

An overview of the results for Childsnack is shown in Table 5.7. It is worth noting
that Powerlifted (PWL) cannot solve any instances because it cannot deal with the
negative action schema preconditions in this domain. These results indicate that our
strongest baseline is GOOSE, and that our systems produce similar results in terms
of both coverage and quality score to GOOSE. This is unsurprising, given that our
methods are based on those used in GOOSE. Nonetheless, our systems are able to
outperform GOOSE slightly in terms of both metrics. The detailed plan costs results
from our logs validate again that our systems and GOOSE produce similar high quality
plans. However, the planning time results from our logs show that both GOOSE and
our systems are noticeably slower than LAMA-first in solving Childsnack instances, even
though we solve more instances overall. This suggests that our methods are more robust,
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Table 5.7: Results for the childsnack domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Easy 18.7 29.9 0.0 11.9 29.8 14.7 29.9 16.0 8.2 14.4 8.6 8.9 11.0
Medium 3.0 7.0 0.0 0.0 8.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0
Hard 0.6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 22.3 36.9 0.0 11.9 37.8 14.7 36.9 16.0 8.2 14.4 8.6 8.9 11.0

but less agile, than LAMA-first.

Another important observation on Childsnack is that partial space search performs sig-
nificantly worse than state space search, even when using the same heuristic. We hypoth-
esise this is a consequence of shortsightedness caused by partial space search. Specifically,
by partial space search breaking down each search step into multiple smaller steps, the
search process looks a smaller amount ahead when making decisions. This is particularly
detrimental in Childsnack, possibly due to the high potential for reaching deadends if
one does not look far enough. This suggests that partial space search is not always better
than state space search, and that it is important to consider the nature of the task when
choosing between the two. Nonetheless, it is worth noting that Childsnack is the only
domain where partial space search performs significantly worse than state space search.
Perhaps dedicated dead-end avoiding methods can help alleviate the problem and make
partial space search generally stronger than state space search.

Ferry

An overview of the results for Ferry is shown in Table 5.8. Again, Powerlifted (PWL)
cannot solve anything because it cannot deal with negative preconditions. These results
indicate the strength of our system on Ferry, both in terms of coverage and quality. It is
worth noting that the original GOOSE implementation does not perform as well as we
present on Ferry. Our implementation of GOOSE is lifted, allowing it to handle much
larger tasks that the original implementation would have struggled with. Nonetheless,
our systems are able to solve all tasks like GOOSE, and produce slightly better plans
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Table 5.8: Results for the ferry domain. The best score for each row is highlighted in
bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Hard 6.8 28.3 0.0 0.0 27.2 14.0 29.8 21.1 0.0 26.5 8.7 30.0 0.0
Total 57.2 86.7 0.0 55.2 86.0 71.4 89.2 78.7 32.7 85.6 67.4 89.8 53.1

according to plan cost results.

Looking at the planning time results in our logs, we see that our systems repeat the trend
from Blocksworld. That is, we are not as quick as LAMA-first to solve small instances,
but our planning time scales much better with problem size. This is again what allows
us to outperform LAMA-first. Moreover, our systems produce much better plans than
LAMA-first.

Floortile

An overview of the results for Floortile is shown in Table 5.9. In general, all systems
struggle with Floortile. In particular, the learning based systems (GOOSE and our
systems that are not FF) struggle more with Floortile. This suggests that our weakness
comes from the fundamental WL based methodology that we and GOOSE use.

Miconic

An overview of the results for Miconic is shown in Table 5.10. These results largely
reflect the same patterns as the results on Blocksworld and Ferry, except that Miconic
appears to be a much easier domain for all systems. Most systems solve all tasks, and
most learning based systems produce high quality plans. The plan cost results in our
logs confirm this. It is worth noting though that partial space search seems to lead to
slightly worse plans, though the difference is not significant. The planning time results
show that LAMA-first is much quicker than other systems to solve Miconic tasks. This
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5.4 Results

Table 5.9: Results for the floortile domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.

Baseline New

Metric Test Set
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e Easy 11 2 9 10 1 2 1 2 6 1 1 1 1

Medium 0 0 0 0 0 0 0 0 0 0 0 0 0
Hard 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 11 2 9 10 1 2 1 2 6 1 1 1 1

Q
u
al
it
y Easy 10.2 1.9 8.9 9.0 0.6 1.6 0.6 1.7 4.3 0.6 0.8 0.4 0.8

Medium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 10.2 1.9 8.9 9.0 0.6 1.6 0.6 1.7 4.3 0.6 0.8 0.4 0.8

Table 5.10: Results for the miconic domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.

Baseline New

Metric Test Set
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e Easy 30 30 30 30 30 30 30 30 30 30 30 30 30

Medium 30 30 30 30 30 30 30 30 30 30 30 30 30
Hard 30 30 21 17 30 30 30 30 8 30 30 30 30
Total 90 90 81 77 90 90 90 90 68 90 90 90 90

Q
u
al
it
y Easy 25.7 29.4 29.3 29.5 29.4 29.5 29.4 29.5 25.9 27.0 27.3 26.6 27.2

Medium 23.4 29.8 28.2 29.5 29.8 29.7 29.8 29.8 23.3 27.0 28.5 27.3 28.6
Hard 23.6 29.8 19.2 16.7 29.8 29.5 29.8 30.0 6.3 27.4 27.9 27.8 28.3
Total 72.7 89.1 76.7 75.8 89.1 88.7 89.1 89.2 55.5 81.4 83.8 81.7 84.1
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5 Evaluation

Table 5.11: Results for the rovers domain. The best score for each row is highlighted in
bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Easy 30 30 30 27 30 30 30 27 30 26 30 30 27
Medium 29 10 22 1 2 2 4 0 4 0 1 4 0
Hard 10 0 1 0 0 0 0 0 0 0 0 0 0
Total 69 40 53 28 32 32 34 27 34 26 31 34 27

Q
u
al
it
y Easy 28.4 18.7 28.6 23.9 16.1 15.7 16.6 11.9 26.5 13.2 15.0 14.7 11.7

Medium 28.1 4.7 21.7 0.8 0.8 1.4 1.7 0.0 3.2 0.0 0.4 1.6 0.0
Hard 9.9 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 66.4 23.3 51.3 24.7 16.9 17.1 18.3 11.9 29.7 13.2 15.4 16.3 11.7

suggests that our systems offer a different trade-off between speed and quality than
LAMA-first.

Rovers

An overview of the results for Rovers is shown in Table 5.11. These results indicate that
our systems are generally weaker than our baselines on Rovers. This likely suggests a
weakness in our methodology that is worth future investigation. The plan cost results in
our logs show that when we do find a plan, it is of reasonably high quality. However, the
planning time results in our logs give the same indication as coverage, that our systems
are generally weaker than our baselines on Rovers.

Satellite

An overview of the results for Satellite is shown in Table 5.12. Powerlifted does not solve
anything as it cannot deal with the negative preconditions in this domain. These results
indicate that our systems are again weaker than LAMA-first on Satellite but perform
better than GOOSE. The plan cost results in our logs show that the quality of the plans
we produce are also weaker than LAMA-first. Moreover, the planning time results from
our logs show that when we do find a plan, we usually do so slower than LAMA-first.
These results altogether indicate that our systems are weak on Satellite. However, on the
bright side, we improve upon the results from GOOSE on Satellite. This suggests that
our methodologies are actually beneficial on GOOSE, but the WL based methodology
we inherit from GOOSE is fundamentally weak on Satellite.
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5.4 Results

Table 5.12: Results for the satellite domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.

Baseline New

Metric Test Set
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e Easy 30 27 0 30 30 30 29 12 30 30 30 28 24

Medium 30 12 0 19 23 17 10 0 20 11 27 1 0
Hard 29 0 0 0 0 0 0 0 0 0 0 0 0
Total 89 39 0 49 53 47 39 12 50 41 57 29 24

Q
u
al
it
y Easy 28.1 18.7 0.0 28.3 22.7 16.7 20.7 3.3 26.5 19.4 18.6 16.4 8.5

Medium 28.4 9.7 0.0 18.6 18.3 9.2 5.8 0.0 16.3 5.8 14.4 0.5 0.0
Hard 29.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 85.5 28.4 0.0 46.9 41.0 26.0 26.5 3.3 42.8 25.2 33.0 17.0 8.5

Sokoban

An overview of the results for Sokoban is shown in Table 5.13. Like with Satellite, these
results show that our systems are weaker than our baselines, namely LAMA-first and
Powerlifted. However, the weakness is not as strong as on Satellite, and we slightly
outperform GOOSE. The plan cost results in our logs show that we are able to find
reasonably competitive plans when using state space search, but plan quality suffers
under partial space search. The planning time results show that our systems have a
very high variance in planning time. However, all of these properties are shared with
GOOSE, suggesting that our contributions do not harm performance on GOOSE, and
the weaknesses are inherent to the WL based methodology we inherit from GOOSE.

Spanner

An overview of the results for Spanner is shown in Table 5.14. These results indicate
that GOOSE and our learning based systems are much stronger than the other systems.
This suggests, opposite to Satellite and Sokoban, that the WL based methodology we
inherit from GOOSE is very strong on Spanner. The plan cost results in our logs show
that our systems are able to produce betters plans than GOOSE. The planning time
results further show that our systems are able to solve Spanner tasks slightly quicker
than GOOSE. Altogether, these results show that our systems are able to improve upon
the state-of-the-art in learning for planning on Spanner.
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5 Evaluation

Table 5.13: Results for the sokoban domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Medium 10 0 4 2 0 0 0 0 1 0 0 0 0
Hard 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 40 27 34 32 27 29 27 29 29 24 26 27 26

Q
u
al
it
y Easy 25.4 18.7 24.3 24.8 18.7 22.7 18.7 23.4 21.8 11.5 18.4 13.8 17.3

Medium 9.2 0.0 3.7 1.4 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0
Hard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 34.6 18.7 28.0 26.3 18.7 22.7 18.7 23.4 22.6 11.5 18.4 13.8 17.3

Table 5.14: Results for the spanner domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.

Baseline New

Metric Test Set
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e Easy 30 30 30 30 30 30 30 30 30 30 30 30 30
Medium 0 30 0 0 30 30 30 30 0 30 30 30 29
Hard 0 11 0 0 11 8 11 13 0 12 8 12 1
Total 30 71 30 30 71 68 71 73 30 72 68 72 60

Q
u
al
it
y Easy 30.0 27.0 30.0 30.0 25.9 26.2 25.9 26.7 30.0 25.9 26.1 25.9 26.1

Medium 0.0 26.2 0.0 0.0 25.7 25.9 25.7 30.0 0.0 25.7 26.4 25.7 27.7
Hard 0.0 8.8 0.0 0.0 8.7 6.5 8.7 13.0 0.0 9.7 6.7 9.7 1.0
Total 30.0 62.0 30.0 30.0 60.3 58.6 60.3 69.7 30.0 61.4 59.2 61.4 54.7
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5.4 Results

Table 5.15: Results for the transport domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Easy 30 30 30 30 30 28 30 21 30 30 29 30 30
Medium 30 5 23 6 20 0 23 0 8 22 5 24 1
Hard 6 0 0 0 0 0 0 0 0 2 0 0 0
Total 66 35 53 36 50 28 53 21 38 54 34 54 31

Q
u
al
it
y Easy 27.5 25.7 27.0 23.9 26.0 16.4 24.8 13.9 20.6 24.6 22.6 24.5 21.8

Medium 29.4 4.1 19.2 5.2 16.8 0.0 17.4 0.0 5.3 17.0 2.1 16.1 0.3
Hard 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0
Total 62.9 29.8 46.2 29.1 42.8 16.4 42.2 13.9 25.9 43.3 24.7 40.6 22.1

Transport and its variants

We analyse all four transport related domains together due to their inherent connection.
Overviews of their results are shown in Table 5.15 to 5.18. These results show that
our systems generally improve upon the results obtained by GOOSE on the transport
related domains. This indicates that our contributions are effective on these domains.
Moreover, our systems are able to achieve competitive results with LAMA-first on the
transport related domains, indicating strong overall performance. However, as the plan
cost results in our logs show, our systems are not able to produce plans of similar quality
to LAMA-first on large instances. Moreover, the planning time results show that our
systems are generally slightly slower than LAMA-first to solve transport related tasks.
Nonetheless, our contributions improve upon GOOSE, which they are based on, on the
transport domains.

It is also interesting to observe the impact of graph density on the effectiveness of plan-
ning systems on transport domains. We are particularly interested in comparing state
space search and partial space search here, to see how density affects the effectiveness
of partial space search. We can see that on transport sparse, partial space search is sig-
nificantly better than state space search. As density increases, the advantage of partial
space search diminishes. This is contrary to the naive expectation that partial space
search would do better on denser graphs due to the higher branching factor. We hy-
pothesise partial space search does well on sparser graphs due to the average distance
that needs to be traversed being higher, as indicated by the reduction in plan costs for
denser transport domains. This ultimately means that the high branching factor on
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5 Evaluation

Table 5.16: Results for the transport-sparse domain. The best score for each row is
highlighted in bold. The top three unique scores for each row are highlighted
in different shades of green with darker being better.
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Easy 30 30 30 29 30 14 30 21 29 30 27 30 30
Medium 30 0 27 2 7 0 11 0 2 27 3 30 1
Hard 2 0 1 0 0 0 0 0 0 1 0 4 0
Total 62 30 58 31 37 14 41 21 31 58 30 64 31

Q
u
al
it
y Easy 27.4 24.0 26.7 18.7 18.9 6.1 18.5 12.5 19.4 20.6 17.3 20.7 17.1

Medium 29.3 0.0 20.9 1.7 4.5 0.0 8.5 0.0 1.3 17.0 1.0 22.5 0.4
Hard 2.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 3.7 0.0
Total 58.7 24.0 48.3 20.4 23.4 6.1 27.0 12.5 20.7 38.1 18.3 46.8 17.5

Table 5.17: Results for the transport-dense domain. The best score for each row is
highlighted in bold. The top three unique scores for each row are highlighted
in different shades of green with darker being better.

Baseline New

Metric Test Set
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e Easy 30 30 30 30 30 30 30 27 30 30 30 30 30

Medium 30 1 22 9 21 1 27 0 6 27 3 25 0
Hard 6 0 0 0 0 0 2 0 0 0 0 2 0
Total 66 31 52 39 51 31 59 27 36 57 33 57 30

Q
u
al
it
y Easy 27.4 25.7 26.5 23.1 26.0 18.9 26.3 16.7 20.4 21.0 25.1 25.7 24.3

Medium 28.7 1.0 18.3 7.1 19.7 0.4 21.2 0.0 4.0 14.9 2.0 19.9 0.0
Hard 6.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.9 0.0
Total 62.1 26.7 44.8 30.2 45.8 19.3 48.9 16.7 24.3 36.0 27.1 46.4 24.3
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5.4 Results

Table 5.18: Results for the transport-full domain. The best score for each row is high-
lighted in bold. The top three unique scores for each row are highlighted in
different shades of green with darker being better.
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Easy 30 30 0 30 30 30 30 30 30 30 30 30 30
Medium 30 3 0 12 30 12 27 7 11 30 22 25 2
Hard 6 0 0 0 1 0 6 0 0 0 0 0 0
Total 66 33 0 42 61 42 63 37 41 60 52 55 32

Q
u
al
it
y Easy 27.2 27.6 0.0 27.1 26.4 25.0 25.0 24.8 22.8 17.8 27.8 24.2 27.5

Medium 29.3 2.9 0.0 10.9 28.4 8.0 21.5 4.4 8.8 21.9 18.5 16.6 1.4
Hard 6.0 0.0 0.0 0.0 0.9 0.0 4.7 0.0 0.0 0.0 0.0 0.0 0.0
Total 62.5 30.5 0.0 38.0 55.6 33.0 51.1 29.2 31.7 39.7 46.3 40.9 28.9

denser graphs is paid less often, and the advantage of partial space search diminishes.
On sparser graphs, the branching factor is still not low, and at the same time plans are
longer, so the advantage of partial space search is more pronounced.

Warehouse

An overview of the results for Warehouse is shown in Table 5.19. These results indicate
that our systems vastly outperform LAMA-first and GOOSE, and are competitive with
Powerlifted on Warehouse. This indicates the overall strength of our systems. The plan
cost results in our logs show that our systems are able to produce competitive plans
on Warehouse. The planning time results show that our systems are generally slower
than Powerlifted to solve Warehouse tasks. This indicates that there is still room for
improvement in our systems on Warehouse, however they already mark a major step
forward in learning for planning on this domain.

It is interesting to note that partial space search actually performs worse than state space
search on Warehouse. This is not what one may anticipate due to the high branching
factor on Warehouse. However, as the plan cost results indicate, almost all tasks on
Warehouse can be solved in short plans, so the branching factor is actually not paid very
often. This is likely why partial space search does not offer an advantage on Warehouse.
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Table 5.19: Results for the warehouse domain. The best score for each row is highlighted
in bold. The top three unique scores for each row are highlighted in different
shades of green with darker being better.
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Easy 30 13 30 28 21 30 24 30 30 29 26 30 27
Medium 0 2 30 7 6 30 18 30 24 18 26 29 15
Hard 0 0 30 0 0 28 16 28 0 2 27 20 16
Total 30 15 90 35 27 88 58 88 54 49 79 79 58

Q
u
a
li
ty

Easy 30.0 3.7 29.3 27.9 8.9 28.8 22.1 28.8 29.9 10.7 21.9 25.1 20.7
Medium 0.0 2.0 29.8 7.0 5.0 27.6 17.0 27.8 23.9 5.5 19.9 18.8 10.5
Hard 0.0 0.0 29.4 0.0 0.0 25.9 14.5 25.8 0.0 0.7 26.1 12.9 9.0
Total 30.0 5.7 88.6 34.9 13.9 82.3 53.6 82.4 53.9 16.9 67.9 56.8 40.3
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Chapter 6

Related Work

Our focus is in the field of learning for planning. With the success of deep learning
techniques in the last decade, a large body of work has emerged in learning for planning.
Nevertheless, to our knowledge, our work is still novel in that it is the first to consider
how learning and planning components can be better integrated together, rather than
just how learning can be used to help planning. As we had discussed in previous chapters,
this is theoretically important and highly beneficial in practice.

To better describe the place and novelty of our work in literature, we provide a general
overview of the field of learning for planning. We will categorise the field into four main
areas: learning heuristics for planning, learning generalised policies for planning, other
methods to aid planning with learning, and planning model design with learning. We
will discuss these areas in the next four sections. Our work is most related to the first
area as we learn heuristics for guiding partial space search.

Our contribution of partial space search is designed to take advantage of learning systems,
but is not restricted to learning methods. More broadly, it is related with other works
that aim to reduce the search space of planning tasks. We will discuss these works in
the last section of this chapter.

6.1 Learning Heuristics for Planning

Learning heuristics for planning is perhaps the most researched area in learning for
planning. To our knowledge, all existing works in this area learn state space heuristics,
whereas as we introduced the notion of action set heuristics and learned action set
heuristics. Still, state space heuristics and action set heuristics are deeply related, as the
state space heuristics can be translated to action set heuristics, and action set heuristics
can be directly used as state space heuristics. In other words, we learn a more general
form of heuristics than existing literature.
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6 Related Work

The earliest work on learning heuristics through neural networks that we are aware of
is by Ernandes and Gori (2004). They learned heuristics to solve the n-puzzle problem,
where the goal is to move a set of tiles in a grid to reach a goal configuration. They
used a neural network to learn a heuristic by encoding the state of the grid as a feature
vector. Later on, Yoon, Fern, and Givan (2008) extracted features from the relaxed plan
obtained when computing the hFF heuristic and used it to train a heuristic. Samadi,
Felner, and Schaeffer (2008) learned heuristics whose input features are values of multiple
existing heuristics, and use a neural network to combine these heuristic values together.
They also modified the loss function to penalise heuristic over-estimations more, thereby
making the resulting heuristic closer to an admissible one.

Beyond the initial interest in learning heuristics for planning, some recent works have
focused on learning domain independent heuristics. In our case, our learned action set
heuristics are trained in a domain-independent way, but the resulting heuristics are do-
main specific. Works on learning domain independent heuristics focus on learning a single
heuristic that can be used in any domain, in particular ones not seen during training. The
first work to do so by Gomoluch et al. (2017) uses handcrafted features from planning
tasks and values of the hFF and heca heuristic (Helmert and Geffner, 2008). However,
their evaluation is only on a small number tasks and their performance gain over the
hFF heuristic is marginal. STRIPS-HGN (Shen, Trevizan, and Thiébaux, 2020) is the
first work to learn domain-independent heuristics from scratch and showed promising
results where it is more informed than hmax on certain domains. More recently, (Chen,
Thiébaux, and Trevizan, 2024) learned domain-independent heuristics using graph neu-
ral networks and showed that their learned heuristics are more much more informed
than STRIPS-HGN, although still being significantly weaker than the hFF heuristic. To
our knowledge, this is the state-of-the-art in learning domain-independent heuristics.
Our work is different from these works in that we learn domain-specific heuristics in a
domain-independent way. Unlike these works, our heuristics need to be trained for each
domain, and cannot be used in unseen domains. However, our learned heuristics are
much more informed than the hFF heuristic, and consequently significantly ahead of the
state-of-the-art in learning domain-independent heuristics.

Returning to learning domain-specific heuristics, bootstrapping is also a common idea
studied in a number of works. Roughly, bootstrapping means to start with a weak
heuristic function and iteratively improve it. The first work to do so is Arfaee, Zilles, and
Holte (2011), where they start with a weak heuristic h0 and used it to providing training
samples to learn a new heuristic h1. They then repeat this process, iterating between
training sample generation and learning from new samples until obtaining a sufficiently
strong heuristic. More recently, Ferber et al. (2022) performed bootstrapping with neural
networks in three ways: (1) a similar method to Arfaee, Zilles, and Holte (2011) but
with different state representations and deeper neural networks, (2) bootstrapping to
estimate search space size, and (3) bootstrapping with approximate value iteration, a
common technique in reinforcement learning. A major limitation of these works is that
their learned heuristic functions are not only domain-specific, but also instance-specific.
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In other words, their learned heuristics are not generalisable to new instances of the
same domain. Leapfrogging is an extension of bootstrapping to allow for generalisation
to new instances with a domain. Karia and Srivastava (2021) used leapfrogging to train
neural networks that predict, at the same time, a heuristic value and a ground action
to apply. These ideas are all interesting and represent how a learned heuristic can be
iteratively improved. However, their performance all lag behind state-of-the-art classical
planners like LAMA-first. Our contributions are empirically much stronger than these
works, and our methods are not necessarily in conflict with these ideas. It is interesting
to consider how bootstrapping and leapfrogging can be combined with our learned action
set heuristics to further improve planning performance.

A key reason why leapfrogging and bootstrapping are theoretically interesting is that
they allow generation of training samples in an unsupervised way from an existing heuris-
tic function. Like we had discussed in Section 2.3.4, training heuristics through ranking
also allows the use of much more training samples. We will not repeat the discussion
on these ideas here, but it is important to note that prior works ((Garrett, Kaelbling,
and Lozano-Pérez, 2016; Chrestien et al., 2023; Hao et al., 2024; Chen and Thiébaux,
2024)) have all discussed learning heuristics through ranking and achieved different lev-
els of empirical success. Our works builds upon their ideas. Specifically, our way of
training heuristics builds upon the latest work by Chen and Thiébaux (2024), and ex-
tends it to train action set heuristics and use importance values for our training sam-
ples. Implementation-wise, our Rank2Plan library (introduced in Section 5.1.5), makes
it computationally easier to train heuristics through ranking.

Lastly, we want to note that there is a wide variety of works that we have not covered yet,
from which we would like to highlight a few. Francès et al. (2019) learned, for a few simple
domains, potential heuristics (Pommerening et al., 2015) that they manually proved to
be descending and dead-end avoiding (Seipp et al., 2016). These heuristics are therefore
guaranteed to find a plan for their domains in polynomial time with greedy search.
Outside classical planning, Chen and Thiébaux (2024) extended the WL method (Chen,
Trevizan, and Thiébaux, 2024) to account for continuous state variables and learned very
informed heuristics for numeric planning. These works represent interesting directions
of research for learning heuristics, namely obtaining guarantees on the heuristic and
extending learning to more expressive forms of planning beyond classical planning.

6.2 Learning Generalised Policies for Planning

A policy for a planning task is a function π that maps states in S to ground actions in
A. Typically, policies are used to directly traverse the state space of a planning task by
simply always applying the action that the policy suggests. The hope is that by doing
this, we eventually reach a goal state. A generalised policy is a policy that is defined
for states on all tasks under a certain domain. A number of works have studied learning
generalised policies for planning. Before discussing these works, we note that any state
space heuristic can also be used to define policies, where one simply always return the
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action that leads to the successor state with the lowest heuristic value.

The most pioneering work in learning generalised policies for planning is ASNets (Toyer
et al., 2020). ASNets is a graph neural network where the graph consists of ground
atoms and actions. It is able to generalise within a domain by having update functions
in the GNN that only depend on action schemas and predicates. ASNets were shown
to be able to learn policies that can solve arbitrarily large tasks in a domain. ASNets
have also been extended to numeric planning, yielding state-of-the-art results (Wang
and Thiébaux, 2024). Around the same time, Groshev et al. (2018) learned policies for
Sokoban and the travelling salesperson problem (TSP) using graph neural networks.

More recently, St̊ahlberg, Bonet, and Geffner (2022a) learned optimal general policies
using graph neural networks, subject to constraints on the domain. Later, St̊ahlberg,
Bonet, and Geffner (2022c) used a similar approach to learn general policies that are
not optimal, but in an unsupervised way.

6.3 Other Methods to Aid Planning with Learning

Various interesting ideas have also been developed to aid planning with learning. These
methods are related to our work in that they are in the reverse direction of our contribu-
tion of partial space search, which aids learning by adapting planning to make the best
use of learning methods.

A simple idea for this is to learn to predict an ideal planner for solving task, since usually
not a single planner is ideal for all tasks. Katz et al. (2018) is one such system that learns
to predict the ideal planner for a task. They do so by training a convolutional neural
network on the adjacency matrix representation of a graph representation of the planning
task. Later, (Ma et al., 2020) built on their work by using graph neural networks instead
and also introduced adaptive scheduling, where the chosen planner is changed mid-task
if it exceeds a time limit. All these methods rely on the underlying planner, and are as
performant as the planners they are applied to.

(Gnad et al., 2019) also learned to partially ground planning tasks. They use various
classical machine learning techniques to predict parts of the problem that need to be
grounded. This way, they reduce the search space and grounding time of the planner.
Since their method does not guarantee grounding all parts of the problem that are
necessary, they incrementally ground larger parts of the problem if the planner fails to
find a plan. As shown in the International Planning Competition 2023 (Taitler et al.,
2024), their method actually ends up reducing the overall performance of the planner.

PLOI (Silver et al., 2021) takes an alternative approach of learning to predict which
objects are irrelevant to solving the planning task at hand. As seen in our blocksoworld-
large domain, not all objects are necessary to solve a task, and PLOI uses a GNN to
score the usefulness of each object. They incrementally plan with larger sets of objects
until a plan is found. Their method works with large number of objects but few of

90



6.4 Planning Model Design with Learning

them relevant to the goal. This achieves similar results to partial space search on the
blocksoworld-large domain. However, their method has the drawbacks that PLOI is
specialised to dealing with irrelevant objects and causes incompleteness in the search
space. Partial space search, although not necessarily as effective as PLOI on mitigating
the impact of irrelevant objects, is more general and preserves completeness.

6.4 Planning Model Design with Learning

A key challenge in applying planning in practice is the difficulty and error-prone nature
of designing planning models. Model design is usually done by hand, and it can be easy
to make errors that cause the domain to not model the real world as intended. It is also
easy to not account for unseen obstacles in the real world. The ultimate result that the
obtained plans from these incorrect models cannot be actually applied in the real world
with the intended results. Learning methods can be used to aid in safe planning model
design by automatically learning the model from data.

Examples of works in this direction include Stern and Juba (2017) and Juba, Le, and
Stern (2021), where they learned action models from example plans. Their work has
also been extended to work with stochastic world models (Juba and Stern, 2022) and
numeric world models (Mordoch, Stern, and Juba, 2023).

It is also possible to learn world models from other sources of data. (Bonet and Geffner,
2020) learned world models from the structure of the state space. They do so by using
a SAT theory encoding of the world model controlled by a number of hyperparameters.
They then learned the hyperparameters that satisfy the structure of the state space while
leading to the simplest planning model. More recently, Xi, Gould, and Thiébaux (2024)
learned planning models through visual traces of plans in a neuro-symbolic approach.

6.5 Search Reduction Techniques

Search reduction techniques are methods that aim to reduce the search space of plan-
ning tasks, or more broadly, reduce the amount of computation needed to search for a
solution. These methods are related to our work in that partial space search fits the
broad definition of search reduction techniques — it does not reduce the search space,
but factorises it in a way that allows for more efficient search.

A common search reduction technique is the use of deferred heuristic evaluation with
preferred operators. This is in particular the main search reduction technique used in
the state-of-the-art LAMA planner (Richter and Westphal, 2010). We had introduced
deferred evaluation (lazy search) in Section 2.2.1, where the heuristic value of a search
node is not computed until the node is expanded, and instead the priority value of
search nodes in the search queue is the heuristic value of the parent node. This reduces
the number of heuristic evaluations needed to find a plan when there are more nodes
generated than expanded. Preferred operators are ground actions (operators) that are
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deemed particularly useful in a state. In LAMA, these are computed as side products
of computing heuristic values. States that are reached by applying preferred operators
are expanded earlier. Preferred operators are very synergistic with deferred evaluation.
States reached by preferred operators are generally better, and expanding them earlier
means we often never have to evaluate many states that are not reached by preferred
operators, since they are only generated but not expanded. In practice, this is very
effective, as shown by the success of LAMA. However, partial space search is a more
general method for dealing with branching factor that does not require dedicated ways
for computing preferred operators. Moreover, it is entirely feasible to apply deferred
evaluation with preferred operators with partial space search, given ways to generate
preferred transitions in partial space search.

There have also been a wealth of search reduction techniques that actually reduce the
size of the search space. In many planning tasks, many actions can be interleaved
independently, resulting in a blowup in the branching factor of the state space. Partial
order reduction techniques exploit this property to select only a subset of the applicable
actions in a state while preserving completeness of the search process. We refer to
the papers Chen and Yao (2009) and Wehrle and Helmert (2012, 2014) for more detail
on these techniques. Symmetry reduction techniques exploit the symmetric nature of
planning tasks, identifying symmetric actions or states and pruning them away. We
refer to the papers Fox and Long (1999); Pochter, Zohar, and Rosenschein (2011), and
Domshlak, Katz, and Shleyfman (2012) for more detail on these techniques. Lastly,
planning problems have also been translated to problems called the Petri net reachability
(unfolding) problems, which recognises the independent subproblems and allows for their
separate resolution Hickmott et al. (2007).

Research interest in Petri net for planning has died out in recent years. However, a
similar technique called star-topology decoupled search, or simply decoupled search, has
been developed in recent years and gathered significant research interest (Gnad and
Hoffmann, 2018). Breaks planning tasks into components, with a central component
and multiple leaf components. Leaf components can only interact via the central com-
ponent. Decoupled search thereby factorises the planning task such that one only has to
consider the dependency of leaf components on the centre component, but not between
leaf components. This ultimately allows for reduction in the search space of planning
tasks (Speck and Gnad, 2024). Decoupled search has been shown to be related to Petri
net unfolding, and dominate each other under different conditions (Gnad and Hoffmann,
2019).

Our work of partial space search is generally compatible with the above search reduction
techniques. Partial space search is ultimately a tree-factoring on the action space. In
general, partial space search can be applied after performing search space reduction, to
further factorise the resulting actions.

Lastly, we want to discuss a specific search reduction technique proposed for solving
constraint satisfaction problems, due to its similarity to our work. Botea and Bulitko
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(2022) introduces tiered state expansion. There, they focus on solving constraint satis-
faction problems where states are defined by a finite set of variables with a finite discrete
domain each. Their states are instantiations of zero or more variables, and successors
of states are obtained by instantiating one more variable. Moreover, legal states need
to satisfy a number of constraints on state variables. Whenever expanding a state, they
classify the successors into two tiers: tier-1 successors are those that are preferred (i.e.,
have high reward), and tier-2 successors are those that are not preferred. They then
only immediately add tier-1 successors and a special placeholder successor to the search
queue. When the placeholder successor is expanded, it is replaced by the tier-2 succes-
sors. This way, they reduce the branching factor of the search space. Moreover, by the
time tier-2 successors are expanded, constraint propagation can hopefully prune away
many of them.

Their method is similar to partial space search in that they group actions together, while
partial space search factorises actions into action sets (partial actions) in a tree structure.
Their method is akin to a merge of partial space search and deferred evaluation with
preferred operators, applied to constraint satisfaction problems. However, their work
only discusses how to classify successors into tiers for a specific problem, the Romanian
Crossword. Our work is much more general in that it can be applied to any classical
planning task.

Nonetheless, their idea of grouping actions into tiers and expanding lower tiers later is
interesting. It is possible to imagine this idea being applied to planning, where action set
heuristics are used to give heuristic values to tiered sets of actions. This is an interesting
direction for future work.
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Chapter 7

Conclusion

This chapter summarises the work and contributions of this thesis, discusses its limita-
tions, and suggest a wide number of directions for future work.

7.1 Contributions

The goal of this work is to build a planning system that not only uses learning, but
where the learning and planning processes are integrated in a way that they work better
together. We have made a number of contributions towards this goal from both the
learning and planning perspectives.

From the planning perspective, we have developed the new search space, partial space
search, that allows for a more focused and efficient search process. Partial space search
is able to reduce the branching factor of the search space significantly and is particularly
well-suited for high branching factor tasks. In doing so, partial space search is designed
for the performance profiles of learned heuristics, which are more accurate but potentially
slower. Moreover, partial space search allows the generation of larger training datasets
for learning heuristics, which is fundamental for the success of learning heuristics. In
order to guide partial space search, we formalised the notion of action set heuristics,
which are heuristics that estimate the quality of a set of actions in a state, rather than
just the state itself.

From the learning perspective, we have introduced how to learn action set heuristics using
graph representations. We showed how to leverage partial space search to generate large
training datasets and how to use these training datasets to efficiently learn powerful
action set heuristics. Experiments showed that these learned action set heuristics are
the strongest learned heuristics to date, even if not used with partial space search.

We integrated our above contributions into a new planning system, LazyLifted, that
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uses learned action set heuristics and partial space search together. We showed that
empirically LazyLifted outperforms the state-of-the-art planning systems under various
categories, specifically GOOSE for learning-for-planning, Powerlifted for lifted planning,
and most importantly, LAMA-first for classical planning in general. Our strong empir-
ical results validate that integrating learning and planning can lead to more effective
planning.

We also have additional contributions. In terms of action set heuristics, we showed how
to automatically translate any existing state space heuristic to an action set heuristic
and how to do so for the FF heuristic efficiently. In terms of software engineering, we
have developed the performant and maintainable LazyLifted planning system, which will
be open-source and available for use by the community. In terms of training, we have
developed a new Python library, Rank2Plan, for training planning heuristics through
ranking. And lastly, in terms of benchmarks, we have developed a number of benchmarks
for examining learning for planning systems on high branching factor tasks.

7.2 Limitations

Our work is not perfect. The most important limitation of our work is the requirement
by partial space search for specialised action set heuristics. This makes it harder to inte-
grate partial space search into existing planning systems and employ existing techniques
with it, since most such techniques are designed for state space search. Although we
have developed a method to automatically translate state space heuristics to action set
heuristics, state-of-the-art planning approaches employ more sophisticated techniques.
We have not explored how these techniques can be adapted to work with partial space
search. We have also not explored how prominent state space heuristics can be adapted
to work with partial space search in a more organic way that is more computationally
efficient and informed.

Another limitation of our work is the relatively poor performance of our systems on
certain tasks such as rovers and satellite. We believe that this is due to the limited
expressivity of our features for training action set heuristics. We can only run the
WL algorithm for a fixed number of iterations, and due to computational reasons this
number is typically small. This limits the complexity of features we obtain from the WL
algorithm, and hence the performance of our learned heuristics. Nonetheless, planning
methods usually have different strength and weaknesses, and it is hard to develop a
single planning system that is strong on all tasks.

It is important to also address the domain specific nature of our training method. We
obtain heuristics by training on a set of training problems on a fixed domain, and the
obtained heuristic can only be applicable within the domain. It is worth noting however,
that we had discussed works such as Chen, Thiébaux, and Trevizan (2024), that have
learned domain-independent heuristics. In principle, their methods are compatible with
our methods.
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7.3 Future Work

Our work marks a major step in the field of integrating learning and planning. We have
made the first step in exploring how planning and learning can work better together
for more effective planning. However, there are many opportunities for further research,
both continuing the work we have started and exploring new directions. For the rest of
this section, we will discuss these opportunities for future work in order of increasing
complexity and importance to the field of planning.

7.3.1 Additional engineering

Like we had discussed, our implementation of the LazyLifted planning has been in general
well-engineered and even outperforms the state-of-the-art Powerlifted planning in terms
of search speed. However, there are still additional ways to make the implementation
more efficient and accessible.

Specifically, we had discussed in Section 5.1.1 that our implementation is still not as
memory efficient as similar planners. Additional work can be put in to make the imple-
mentation more memory efficient, in particular by investigating what existing techniques
can be applied to our implementation.

Additionally, we had discussed in Section 5.1.2 that maintainability and ease of use are
important design goals for our implementation. We can further improve the maintain-
ability of our implementation by adding more documentation and tests, and by making
the code more modular and extensible. Moreover, given our implementation is already
reasonably efficient, we can also focus on turning our implementation into a library form
that can be more easily integrated into other projects. This would in particular mean
that future research work can more easily build on top of our implementation by using
the library, rather than having to implement on the basis of our code.

7.3.2 Additional techniques surrounding partial space search

We have developed partial space search and made the first step in adapting existing
planning techniques, namely heuristics, to work with it. However, there are many more
planning techniques that can be adapted to work with partial space search. For example,
we have not explored how to adapt preferred operators like techniques to work with
partial space search. Future work can explore how to adapt these techniques to work
with partial space search, and how to design new native techniques, such as dedicated
and non-learned action set heuristics, that work well with partial space search.

7.3.3 Theoretical analysis

Previous works in learning for planning, such as Chen, Trevizan, and Thiébaux (2024)
and St̊ahlberg, Bonet, and Geffner (2022a), have devoted considerable attention on the
theoretical nature of their contributions. Due to time constraints, we have not explored
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deeply the theoretical properties of our work. In particular, we only showed the basic
correctness of partial space search, but did not have theoretical results surrounding the
performance of partial space search. We also did not explore the expressivity limitations
of our graph representations at all like prior works (e.g., Chen, Trevizan, and Thiébaux
(2024)) had. Future work can explore these aspects. We expect this to be a minor work,
in particular as there already exist results on the expressivity of graph based learning
(Morris et al., 2019; Barceló et al., 2020) and these results have been applied in planning
(Chen, Trevizan, and Thiébaux, 2024).

A more interesting work than exploring the theoretical limits of our work, however, is to
explore how we can adapt our methods to achieve high theoretical limits, which should
hopefully translate to better performance in practice. This may mean modifying our
graph representations to be more expressive, or modifying the process by which we learn
heuristics from graph representations.

7.3.4 Continuous learning

Our methods, and the existing state-of-the-art methods for learning planning heuristics,
all train heuristics in a single-step manner. That is, they train heuristics once and then
use them for the rest of the planning process. However, it is possible that the heuristics
can be improved further if they are trained iteratively, or that they are able to gradually
learn and improve as they are applied to more and more problems.

We had discussed in our related works (Section 6.1) methods to iteratively improve
learned heuristics through techniques such as bootstrapping and leapfrogging. It is
interesting future work explore how they can be best applied to our methods, and how
effective they are in practice.

Learning while planning is perhaps a more open question than iterative learning. Ideally,
learned heuristics should be able to take of advantage of experiences from all past plan-
ning problems that it was either trained on or used on. To our knowledge, no existing
work in planning has explored how to do this. Future work can potentially start simply
adding plans generated by the current learned heuristic to the set of training plans, and
then retraining on the larger set of training plans. This is a simple starting point that
is likely inefficient in practice.

In general, we believe continuous learning to be a promising direction for future work
with a lot of potential work to be done. Successful continuous learning methods could
allow learning for planning systems to be much more scalable in practice.

7.3.5 Efficient pattern extraction

In effect, what the WL algorithm does when learning planning heuristics is to extract
a number of patterns on a graph, which are used as features for the heuristic. The
problem with current methods is that the result weight matrix is very sparse, meaning
most patterns are not actually useful for the heuristic. In future work, it is interesting
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to explore how we can extract patterns more efficiently, such that the result set of pat-
terns are more useful for the heuristic. This could potentially involve adapting the WL
algorithm or using more sophisticated graph neural network methods. More generally,
this ties into the active research area of graph learning, with the specific application to
planning.

A key reason why efficient pattern extraction is important is that our current pattern
extraction method (WL) limits the expressivity of the patterns we can use. Specifically,
our experiments used only 2 iterations of the WL algorithm, so as to make the number
of colours tractable, where colours in WL correspond to patterns in general. This is
despite the fact that most colours are not actually useful for the heuristic. If we can
extract patterns more efficiently, we can afford to use much more expressive and com-
plex patterns for our heuristics. We expect this to lead to fundamental performance
improvements in our methods.

7.3.6 Learning search space reductions

Partial space search fits under the broad umbrella of search space reduction techniques.
Search space reduction is interesting and important to planning as it represents a fun-
damental reduction in the effort needed by search algorithms, and is orthogonal to the
research for better heuristics. There have been many works in the past that have ex-
plored search reduction techniques for planning, such as symmetry reduction, partial
order reduction, and decoupled search. We had discussed these in Section 6.5. There
have also been works on learning search reduction techniques, which we discussed in
Section 6.3, but these works have not shown to be very beneficial empirically.

We believe that learning search reductions is a promising direction for future work. An
easy example of a search reduction that can be learned is symmetry. The WL algorithm
was originally designed for identify isomorphic graphs. Given that we represent search
states and nodes as graphs, it is straightforward how we can use the WL algorithm to
identify symmetries in the search space. This naive approach would render the search
process incomplete, in that the WL algorithm may identify non-symmetric search nodes
as symmetric. More sophisticated approaches may focus on learning symmetries that
are guaranteed to be correct, or more accurate symmetries that are not necessarily
guaranteed to be correct.

A more sophisticated example of future work that learns search reduction is to learn a
model that identifies subproblems of a planning problem and what order these subprob-
lems should be approached in. This may allow planners to always focus on a particular
subproblem at a time, rather than the whole complex planning task. This is similar to
the idea of hierarchical planning, where a planner first solves a high-level planning task
and then refines the resulting high-level plan into a low-level plan. Here, we suggest
learning how to identify the high-level planning task automatically from the low-level
planning task.

Another interesting direction for learning search space reduction is to extend the idea
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of tiered state expansions that we had discussed in Section 6.5. The idea is to learn a
model that can group the applicable actions of a state into tiers, where top-tier actions
are treated as usual, and actions in lower tieres are represented as placeholder node that
is inserted into the search queue. Once expanded, this placeholder node expands into
the successors of applying the actions in the lower tier to the original state. Future work
may investigate how to learn such a model for grouping actions. The evaluation of the
placeholder node for heuristic search may be done by action set heuristics that we had
developed.

Lastly, we want to discuss the prospect of learning macro operators. Macro operators
represent the merger of a number of action schemas into a single action schema, repre-
senting the sequential application of the actions in the macro operator. The motivation
is that macro operators represent abstractions that reduce the computational effort for
repetitive applications of several actions together. Learning macro operators were his-
torically researched in works such as Botea et al. (2005), and research interests in them
have died out in the recent decade, partly due to the lack of empirical success. We
believe that using advances in learning, future works can potentially learn better macro
operators that are more effective in practice. Moreover, we believe macro operators
compliment partial space search nicely, in that the macro operators typically have high
branching factors, that can be reduced by partial space search. This way, we are able to
reap the benefit of macro operators without paying its price.

Our work is on deeply integrating learning and planning. In general, all of these direc-
tions represent deeper integrations of learning and planning, and we believe they are
promising directions for future work.

7.3.7 Learning for more expressive planning

Classical planning has restricted expressivity, and many real-world planning problems
require reasoning about concepts such as time, continuous values, and uncertainty. There
have considerable research in these more expressive forms of planning. We refer to
Geffner and Bonet (2013) for a comprehensive review of these works. However, there
has been less research on how learning can be applied to these more expressive forms
of planning. This is despite the fact that learning methods are often more flexible
than non-learning methods, and are hence likely easier to extend to more expressive
forms of planning. This is demonstrated in works by Wang and Thiébaux (2024) and
Chen and Thiébaux (2024), where they extended learning methods for classical planning
to numeric planning (Fox and Long, 2003) in straightforward ways. Future work can
focus on how to extend learning methods to more expressive forms of planning in more
sophisticated ways. In particular, we believe our work in this thesis extends trivially to
numeric planning via methods proposed by Chen and Thiébaux (2024).

Beyond numeric planning, it is also interesting to explore how learning, and our method,
can be applied to temporal planning and various forms of planning with uncertainties.
This is in particular, very applicable for tasks with natural relational action structures.
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There, partial space search may be directly applicable and may help provide a more
efficient search process. Moreover, the concept of action set heuristics may also be useful.
For example, it is possible to imagine a form of planning where actions are parameterised
by continuous values. The concept of action set heuristics can be extended to this form
of planning to reduce the branching factor of the search space from infinite to finite.

7.4 Final Remarks

Learning and planning are two fundamental aspects of artificial intelligence. The rise
of deep learning has led to significant interest in using learning for planning. Our work
in this thesis is a step towards adapting planning systems to take the best advantage of
learning. We have developed a new planning system, LazyLifted, that uses learning and
planning systems designed for each other. We showed that LazyLifted outperforms the
state-of-the-art planning systems in various benchmarks. This highlights the potential
of deeply integrating learning and planning, with some promising directions for future
research being discussed in our future works section.
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L. P. 2021. Planning with Learned Object Importance in Large Problem Instances
with Graph Neural Networks. In Proc. of 35th AAAI Conf. on Artificial Intelligence
(AAAI). [Cited on page 90.]
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