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ABSTRACT
One of the machine learning challenges posed by the robot
soccer domain is to learn the opponents strategies. A team
that may be able to do it efficiently may have the advantage
to adapt its own strategy as a response to the opponent’s
strategy. In this work, we propose a similarity function to
compare two teams, and consequently their strategies, by
the ability of one team to mimic the behavior of the other.
The proposed function can be used to classify opponents as
well as to decompose an unknown opponent as a combina-
tion of known opponents. We apply the proposed function
to classify opponent’s defense strategies in real world data
from the RoboCup Small Size League collected during the
RoboCup 2007, RoboCup 2008 and USOpen 2009. We also
use this similarity function to discover patterns in the logs of
these championships, such as, similar teams and the number
of major defense strategies.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Experimentation

Keywords
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1. INTRODUCTION
A multi-agent, dynamic and adversarial domain offers sev-

eral challenges for machine learning, for instance, learning
how the environment evolves and how the adversary behav-
iors. One example of such domain is robot soccer, in special
the RoboCup Small Size League (SSL) [10, 11].

The SSL consists of two teams, each one with five robots,
that play robot soccer on a field of 6 by 4 meters with
global overhead perception and control (Figure 1). Also, the
robots must conform to the specifications about their size
and shape and they are equipped with kicking devices. The
main difference between SSL and the other RoboCup robot
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Figure 1: The CMDragons robots (built by Michael
Licitra) posed and in a game.

soccer leagues are: (i) the allowed use of cameras placed
over the field, for shared global perception; and (ii) the al-
lowance of a centralized computer to coordinate the robots,
therefore the overall team is autonomous. For this work,
we use the logs captured by the CMDragons team [4], the
SSL team of Carnegie Mellon University, during 3 champi-
onships: RoboCup 2007, RoboCup 2008 and USOpen 2009.

Our approach to classify opponent’s strategies uses fea-
tures extracted from the game logs, such as distance from
the ball to the robots and from the CMDragons goal to the
robots, and is composed by two steps: (i) segmentation of
games into episodes; and (ii) the comparison of episodes.1

In the first step, we segment games in a set of small time
series called episodes. Each episode encompasses a defense
attempted by the opponents and it is obtained by selecting
the time intervals in which the game logs registered the em-
ployment of an attack strategy by CMDragons. This proce-
dure assumes that when a team is attacking, the opponent’s
response is to employ a defense strategy.

In the second step of our approach, we compare two sets
of episodes A and B by representing them as matrices EA

and EB and computing the error of expressing EA using
only a conical combination of the column of EB . Formally,
we compute d = minW ‖EA − EBW ‖2F such that wij ≥ 0,
where ‖ · ‖F is the Frobenius norm, and define d as a (non-
symmetric) similarity measure from A to B. This measure-
ment can be seem as the ability of team B to mimic the

1In this work we focus in the defense strategies, however all
the techniques developed can be directly applied to analyze
attack strategies.



behavior of team A. We can also use the obtained matrix
W in the computation of d to explain the behavior of A as
a function of B. This is specially interesting when EA is
the set of episodes generated by a new and unknown oppo-
nent and EB is the set of all the episodes seen so far. Then
W represents a decomposition of the unknown opponent’s
strategy as a function of the strategies already known.

The remainder of this paper is organized as follows. In
Section 2 we discuss the previous approaches for learning
opponent’s strategies. In Section 3 we present the data set
used in this work. Our approach to learn defense strategies
based in the previous games is developed in Sections 4 and
5. In Section 6 we test our proposed approach by present-
ing a set of experiments, involving classification and pattern
discovery. Section 7 brings a few conclusion remarks and
future research directions.

2. RELATED WORK
Using logs of the RoboCup Simulation Soccer League,

Visser and Weland [15] tackle a similar problem: classify
the behavior of the goalkeeper and the pass behavior of the
opponent players. Their approach uses decision tress to la-
bel non-overlapping intervals of a given time series. For
instance, in the goalkeeper experiments the labels used are:
the goalkeeper backs up, the goalkeeper stays in the goal
and the goalkeeper leaves the goal. Using the same tech-
nique and a different set of labels, they also analyze the
pass behavior of the opponent player.

Another work in the simulation soccer is given by Fard
et al. [6]. They proposed an approach to learn opponent’s
strategy that relies on modeling the opponent as an automa-
ton. This automaton is learned for each previously played
opponent by using a predefined payoff matrix, that is de-
signed by an expert, and solving a Prisoner’s Dilemma game
instance. This payoff matrix is defined through high-level
features, such as intercept, pass, shoot and dribble and re-
late the payoff of playing one of this simple strategies with
the opponent response (also represented using the same sim-
ple strategies). The main limitation of this approach is the
assumption that the opponent plays a fixed deterministic
strategy.

For SSL, an alternative approach is given by Bowling et al.
[2] which does not model the opponent’s behavior. Instead,
their approach to adapt to the opponent is based on the out-
come of the attack strategies employed so far. Although this
technique has had success when employed in the real games
of the SSL, it does not consider previous games against dif-
ferent teams. That is, the authors do not provide a method
to relate two teams that play similarly in order to reuse the
learned responses.

A more similar approach to the one proposed in this paper
is given by Riley and Veloso [12]. This approach, which
is applied to simulation soccer, uses a discretization of the
observed features, for instance the position of the robots
and the ball, and decision trees to classify opponents. The
limitation of this method relies on the usage of decision trees
since decision trees only offer hard classification, that is,
each sample s is classified as belonging to exactly one class
as opposed to returning a confidence bound of s being from
class c, for every class c. This implies that an unknown
opponent is classified as exactly one of the previously seen
opponents instead of describing this opponent as a function
of the previous opponents.

Another work related to SSL and pattern recognition is
given by Vail and Veloso [14]. Instead of classifying oppo-
nent’s strategies, they focus in the problem of activity recog-
nition. More specifically, a framework using conditional ran-
dom fields, a temporal probabilistic graphical model, is de-
veloped to classify robots by a set of predefined roles, in-
cluding attacker, marker and defender.

Similar to [14], Ball and Wyeth [1] classify the roles of each
opponent and instead of using conditional random fields, a
naive bayes classifier is applied. Their experiments consist in
classifying the roles of the robots of RoboRoos, a SSL team
that the authors had access to the ground truth roles. The
authors also suggest a method to classify opponent teams
by adding a layer to their system that builds a model of the
opponent team based on the empirical probability distribu-
tion of the roles of each opponent robot. No experiment is
provided for team classification.

3. THE DATA SET
The data set used in this work is the collection of 13 games

played by the CMDragons team during the RoboCup 2007,
RoboCup 2008 and USOpen 2009. Each logged game is a
multivariate time series in which a new data point encom-
passes an interval of 1/60 seconds. These time series repre-
sent CMDragons perspective of the game, for instance, the
position of the robots in the data set was obtained by the
vision system of CMDragons and is noisy [3]. The number of
variables in the time series is 198 and, in this work, only the
following variables are considered during the classification
task:

• distance from each robot to the ball (10);

• distance from each robot to their defense goal (10);

• distance from the ball to each goal (2); and

• current CMDragons strategy (1),

leading to a total of 23 variables.
All variables, except from the current CMDragons strat-

egy, are computed variables, that is, they are obtained by
applying a function to one or more variables in the original
game logs. For instance, the distance from a robot to the
ball is computed by using the Euclidean distance between
the robot’s position and the ball position. The motivation
to use computed variables instead the original variables is to
build a new set of variables that is: (i) invariant to flipping
the image obtained by the vision system vertically and/or
horizontally; and (ii) invariant to the robots id [13]. Prop-
erty (i) guarantees that the learned patterns are independent
of the side in which CMDragons started the game as well as
the left and right orientation in the field. The identity track-
ing problem, i.e., the problem of labeling consistently each
robot in different games, is avoided by property (ii) that
anonymizes the robots. In order to respect property (ii),
the distances between robots (CMDragons and opponents)
and landmarks are sorted.

Using this set of variables, we want to learn the defense
strategy of the opponent. One possible approach is to ana-
lyze the time series defined by the games as a whole. How-
ever, these time series contain several realizations of the op-
ponent’s defense strategy since we assume that every time



Goals Number Length of

scored by of the episodes

CMDragons episodes Avg. S.Dev.

BSmart-07 10 5 94.40 25.70
Skuba-08 5 9 149.44 137.52
Botnia-07 10 10 125.20 114.93
Kiks-08 10 17 145.76 116.48
WrightEagle-07 10 30 125.60 135.79
EagleKnight-07 9 46 141.28 145.84
PlasmaZ-08 2 79 105.74 104.56
PlasmaZ-07 5 84 95.09 99.71
Fantasia-08 9 96 174.10 174.45
Zjunlict-08 5 97 111.60 96.14
GaTech-09 10 112 224.35 258.13
Zjunlict-07 7 120 126.26 119.33
RoboDragons-07 8 138 184.47 162.83

CMDragons-09 – 53 57.11 36.49
CMDragons-07 – 196 71.29 47.53
CMDragons-08 – 275 82.31 70.39

Table 1: Statistics about the episodes for each team
CMDragons played against in the RoboCup 2007,
RoboCup 2008 and USOpen 2009. The table is or-
dered by ascending number of episodes.

CMDragons attacks, the opponent employs its defense strat-
egy. Therefore, we segment each time series in non-overlap-
ping episodes.

Definition 1 (Episode). Given a time series T rep-
resenting a game, an episode is a maximal segment S of T
such that on each frame of S: (i) the game is on; (ii) the
ball is in the defensive field of the opponent; and (iii) the
current strategy being employed by CMDragons is an attack
strategy. Also, if the size of S is smaller than smin or size
greater than smax, then S discarded.

The game is on from the moment the game restarted un-
til either a goal is scored, the ball leaves the field or a fault
is made by a robot and it is a variable in the game logs.
Since we are interested in the opponent’s defense strategy,
we added in the definition of episode the requirements that
characterizes an attack from CMDragons. This because we
do not have access to the internal state variables of the oppo-
nents to select episodes when they are defending. Therefore,
we infer that the opponent is employing a defense strategy
by assuming that a defense strategy is the opponent response
to an attack.

For all experiments in this paper, we use smin = 100 and
smax = 3000. Also, we represent each episode by the mean
and standard deviation of each one of its variables. There-
fore if an episode has t timesteps and f variables, it will be
represented as a point in R

2f instead of a point in R
f×t.

This representation simplifies the processes of comparing
two episodes since the episodes can have different length
(time duration).

Table 1 presents the number of episodes, the average and
standard deviation of the episodes length. CMDragons are
also included in the table by using the same definition of
episodes and considering CMDragons as the opponent team.
Instead of inferring when CMDragons are employing a de-
fense strategy, we use the ground truth that is contained in

the game logs. As one may notice, the team BSmart-07 has
less episodes than the amount of goals scored by CMDrag-
ons, 5 episodes against 10 goals. This is possible because
the definition of episodes does not encompass directed kicks
from CMDragons’ defense field to the opponent’s goal and
short segments (less than 100 timesteps).

For the remainder of this paper, we denote by f the num-
ber of variables considered in the classification task and EA

the matrix with the episodes of team A. Therefore if there
are m episodes of team A in the game logs, then A ∈ R

2f×n.
We also denote by n the total number of episodes in the
game logs and E ∈ R

2f×n the matrix with all episodes. In
the next two sections we explore the definition of episodes
to develop a measurement to compare episodes and to find
the most relevant episodes in the CMDragons game log.

4. COMPARING DEFENSE STRATEGIES
In this section, we develop a measurement to compare two

episode matrices. The first question worth notice is if this
measure should be symmetric. We illustrate this problem
with the following example: consider three teams (A, B
and C) and three defense strategies (s1, s2 and s3); the
probability Pr(current strategy is Y | team = X) is:

s1 s2 s3

A 1 0 0
B 1/2 1/2 0
C 1/3 1/3 1/3

.

The team that most resembles the behavior of A is B since
in expectation it has more episodes of type s1 than C and
both A and B do not play strategy s3. On the other hand,
C is the best team to mimic B since it plays strategies s1
and s2. Thus, the measurement to compare two teams does
not necessarily need to be symmetric.

As one may notice, the previous example can be solved by
using the KL-divergence, that is, given two probability dis-

tributions P andQ, computeD(P ||Q) =
∑

x∈X
P (x) log P (x)

Q(x)
,

where X is the sample space of P and Q.2 However, in the
problem of learning the opponent’s strategies, the set X is
unknown since we do not know all possible strategies.

To overcome this problem, we propose a measurement
that compares how well one team can simulate/mimic an-
other one.

Definition 2 (Function s(·, ·)). Let EA and EB be
the episode matrices for team A and team B respectively,
then s(A,B) = minW ‖EA − EBW ‖F such that wij ≥ 0,

where ‖ · ‖F is the Frobenius norm (‖E‖F =
√

∑

i

∑

j
e2ij).

The intuition behind the function s(·, ·) is that, the smaller
s(A,B) is, the better team B can simulate team A. This
because, if s(A,B) is small, then the norm of EA − EBW
is small, therefore it is possible to reconstruct the episode
matrix EA with low error by using conical combinations of
the episodes of B (columns of EB). Also, each column wi of
the matrix W can be seem as an unnormalized probability
distribution over the episodes of B. If B plays according to
wi then the Euclidean norm between the episode i of A and

2For the KL-divergence, we consider 0 log 0
c
= 0, for c ≥ 0

and c log 0
c
= ∞, for c > 0.
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Figure 2: Relations obtained between teams by using the proposed similarity function s(·, ·). In the graph,
the solid arrows A → B represent that B = argminx s(A,x) and can be interpreted as “B is team that can better
simulate A”. Underneath each team name and in parentheses is the score of the game between CMDragons
and the given team. It is also depicted the phase of the championship in which the game was played: RR
stands for round-robin, QF for quarter-finals, SF for semi-finals and F for final.

the expected episode of B is minimized. The function s(·, ·)
is non-symmetric and in the previous example it gives the
same result: B minimizes s(A, ·) and C minimizes s(B, ·).

In order to compute the function s(·, ·), we cast the pro-
posed minimization problem as a quadratic programming
problem. First, notice that ‖E‖F =

√

tr(E′E) since E is
a matrix defined over the reals. Moreover, for our purposes
we can use s(A,B)2 instead of s(A,B) since s(A,B) ≥ 0 for
all A and B. Thus we solve the following program

min
W

‖EA − EBW ‖2F

≡ min
W

tr((EA −EBW )′(EA − EBW ))

≡ min
W

tr(A′A)− 2tr(A′BW ) + tr(W ′B′BW )

which shows that the problem is a quadratic program in W .
In all these forms, the only constraints of the programs are
wij ≥ 0.

Using the function s(·, ·) to compute the difference be-
tween two episode matrices we can classify teams according
to the distance to the teams that we already know. Also,
we can use this measurement to find patterns in the data
set and relations between the teams that we have played be-
fore. In section 6 we explore these ideas through a series of
experiments and in the next section we extend the usage of
s(·, ·) to find the main defense strategies in our data set.

5. MAIN DEFENSE STRATEGIES
In this section we look to all the episode at once, in order

to find a small set of the most relevant episodes. In other
words, we want to find a matrix D ∈ R

2f×k where k ≪ n
such that it is possible to reconstruct E, with low error,
by using linear combinations of the columns of D. Clearly,
there is a trade off between k and the reconstruction error
and in this section such trade off is explored.

Using D, it is possible to decompose each episode as a
function of the columns D. The advantage of this new rep-
resentation is mainly computational: we can compute an
approximation of s(A,B) by using the new representation

of EA and EB and since this new representation is smaller
than the original, a speed up can be obtained.

The problem of finding D such that D ∈ R
2f×k, k > 0, is

equivalent to find a rank k approximation of the matrix E.
This can be found by solving a similar optimization problem
as the one presented in Section 4: minB,W ‖E−DW ‖F such
that rank(D) = k.

This problem can be solved optimally through the singular
value decomposition of E (SVD decomposition). The SVD
decomposition of a matrix M ∈ R

m×n is the product UΣV ′,
where U ∈ R

m×m is unitary, Σ ∈ R
m×n has nonnegative real

numbers on the diagonal and zeros otherwise, and V ∈ R
n×n

is unitary.3 This factorization always exists for matrices
defined over the reals and Y = UΣ∗V ′, where Σ∗ has only
the first (largest) k values of Σ, is the rank k matrix that
minimizes ‖M − Y ‖F [8]. In our case, D equals the first k
columns of U and W is the first k rows of Σ∗V ′.

Besides the mathematical interpretation of D obtained
using the SVD decomposition, this approach does not offer
an interpretation in the robot soccer domain since each bij
can be negative. This implies that features whose meaning
requires a positive value, such as the standard deviation the
closest robot to the ball, can be represented by a negative
value.

In order to get a direct interpretation in our domain, we
can enforce that D is composed by subset of the columns
of E, i.e., D is a submatrix of E. The hardness of this
new problem, referred in the literature as column-based low-
rank matrix approximation [5] and CX-decomposition [9], is
unknown [5]. The best approximation algorithm for this
problem is proposed by [5]: given k, ǫ and δ, it finds D and
W such that:

‖E −DW ‖F ≤ (1 + ǫ)‖E − Ẽk‖F

with probability at 1 − δ where D has O(k2 log(1/δ)/ǫ2)

columns of E and Ẽk is the best rank-k approximation of E
(with no constraint).

3We assume that the values Σii, i ∈ {1, . . . ,min{m, n}}, are
in descending order.



Goals Ratio Ratio Average S. Dev. Ratio of the episodes outcome

Scored by Attack2 Attack3 time to time to Defense Direct Free Kick Indirect Free Kick

CMDragons score score ours theirs ours theirs

Botnia-07 10 0.9000 0.1000 328.00 209.74 0.3333 0 0 0.6667 0
BSmart-07 10 1.0000 0 509.40 593.51 0 0.5000 0 0.5000 0
EagleKnight-07 9 0.9333 0.0667 1324.44 1273.86 0.1143 0.1143 0.2000 0.2000 0.3714
Kiks-08 10 1.0000 0 1769.30 1323.97 0.1429 0.0714 0.1429 0.3571 0.2857
WrightEagle-07 10 0.9615 0.0385 1999.62 1968.81 0.3500 0.3500 0.3000 0 0
GaTech-09 10 0.9906 0.0094 2634.89 1915.21 0.2927 0.2073 0.1463 0.1341 0.2195
RoboDragons-07 8 0.8168 0.1832 3057.75 2390.57 0.2368 0.0351 0.1754 0.0789 0.4737
Fantasia-08 9 0.9888 0.0112 3916.78 3905.96 0.5238 0.0357 0.0595 0.1429 0.2381
Zjunclict-07 7 0.6552 0.3448 5185.29 5222.76 0.5893 0.0982 0.0804 0.0804 0.1518
PlasmaZ-07 5 0.7286 0.2714 5664.40 4819.29 0.5938 0.0625 0.1719 0.0781 0.0938
Zjunclict-08 5 1.0000 0 7134.40 8105.80 0.6585 0.1098 0.1585 0.0244 0.0488
Skuba-08 5 1.0000 0 14102.33 20114.26 0.8750 0 0.1250 0 0
PlasmaZ-08 2 1.0000 0 14784.50 8610.44 0.6119 0.0299 0.1045 0.0896 0.1642

Table 2: Statistics about the games played between CMDragons and opponent teams. Columns 3 and
4 represent ratio between the two different attack strategies employed by CMDragons; columns 5 and 6
presents statistics about the time to CMDragons score a goal; columns 7 to 11 represent ratio between the
possible outcome of an episode. This outcome can be: (7) defense, i.e., the opponent successfully neutralized
the attack and started a counter-attack; (8,9) a directed free kick for CMDragons and the opponent; and
(10,11) a indirected free kick for CMDragons and the opponent. This table is sorted by ascending average
time to score a goal.

In the next section we explore these two decompositions to
estimate how many defense strategies exist in our data set.
This estimation is also used to speed up the classification
task in the experiments presented in the next section.

6. EXPERIMENTS
We perform 5 experiments to evaluate our proposed sim-

ilarity function s(·, ·). In the first experiment we use the
s(·, ·) to find similarities between teams and in the second
experiment we estimate the number of strategies contained
in our game logs. Experiments 3 and 4 evaluate the accu-
racy of classifying teams according the proposed similarity
function. The last experiment explores the approximated
computation of s(·, ·) proposed in Section 5.

6.1 Experiment 1: Relation between teams
In the first experiment, we relate the teams that played

against CMDragons as well as CMDragons by finding, for
each team A, argminB s(A,B). The result of this experi-
ment is depicted in Figure 2, where each solid arrow A → B
represents that B = argminx s(A, x). As shown in Figure 2,
we obtain a disconnected graph composed by two directed
graphs, G1 and G2. By looking at the score of each game,
one may hypothesize that the teams are separated by their
defense strength. That is, teams in G1 have a better defense
than teams in G2, since CMDragons scored less goals on the
teams in G1 than in the teams in G2. In order to verify if
this hypothesis is true, in Table 2 we present statistics about
the games played by CMDragons against each of the teams.

Sorting the teams by ascending average time to score a
goal (ATSG), we obtain that G2 contains the teams with
the second to the seventh smaller ATSG and G1 contains
the team with smallest ATSG and the teams with the eighth
and higher ATSG. This shows a strong evidence that the hy-
pothesis is true, i.e., we clustered the teams between strong
defense and regular defense with the exception of only one

team. Also, the statistics in Table 2 corroborates with most
of the relations obtained, for instance: in 7 out of the 11
relations, the ratio between the two different attack strate-
gies employed by CMDragons is no more than 0.10 differ-
ent; Skuba-08 and PlasmaZ-08 have the two largest ATSG,
PlasmaZ-07 and Zjunlict-07 have the fourth and fifth largest
ATSG.

6.2 Experiment 2: Estimating the number of
defense strategies

In the second experiment, we estimate how many defense
strategies are in our data set. To perform this, we con-
sider the Schwarz regularization criterion (SIC), a criterion
used by the machine learning community to evaluate clus-
tering models [7]. The SIC criterion is defined as: given a
penalty λ > 0 and the matrices D ∈ R

2f×k and W ∈ R
k×n,

SIC(λ,D,W ) = ‖E −DW ‖2F + λfk log n. This value is the
score of the model, and we want to find a model with small
score, since it is composed by the error of approximating E
by D and W plus a regularization term that penalizes large
models, i.e., large k. Therefore, for a fixed λ we can vary the
value of k and find the one that minimizes SIC(λ,D,W ).

Figure 3 presents, for different values of λ, the value k
that minimizes SIC(λ,D,W ) for the two approaches pre-
sented in Section 5, namely, SVD-decomposition and CX-
decomposition, to find the matrix D and W given E and
k. This plot gives evidence that there are between 7 to 17
different defense strategies in our data set since this range
of values lies in the transition phase between the under-
constraint (small λ) and over-constraint (large λ) optional
value of SIC.

6.3 Experiment 3: Classification according to
the defense strategy

The third experiment consists of classifying the teams
by their defense strategy. For a given percentage p, we
randomly select p episodes of each team i, denoting these
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Figure 3: Value k that minimizes the Schwarz regularization criterion for different values of λ.

episodes as T i, and use them to classify the remainder episo-
des. The remainder episodes R are grouped by team, such
that each set of episodes Ri has only samples of the team i.
We classify Ri as team j if T j = argminx s(R

i, x).
Besides the classification accuracy, we also present a sec-

ond measurement called rank. The rank of a team i is the
position of T i when all matrices T j are sorted, in ascending
order, by the value of s(Ri, T j). Therefore if the rank of i is
1, then Ri is correctly classified, since T i has the minimum
value of s(Ri, T j) for all T j . Table 3 presents the result of
25 executions of this experiment for p equals 30%, 40% and
50%.

This experiment shows that we can perfectly classify 7 out
of 16 of the teams, namely Fantasia-08, Zjunlict-08, GaTech-
09, Zjunlict-07, RoboDragons-07, CMDragons-07 and
CMDragons-08, using 40% and 50% of the data as training.
Also, the average rank for EagleKnight-07, CMDragons-09,
PlasmaZ-08 and PlasmaZ-07 is at most 2, i.e., the proposed
measurement s(·, ·) ranked the correct answer as the sec-
ond most similar team. For the remaining 5 teams, namely
Skuba-08, Kiks-08, Botnia-07, WrightEagle-07 and BSmart-
07, the classification accuracy is not satisfactory since the
average rank for these teams is at least 4. One explanation
to this poor performance for these teams is that they are the
5 teams with the least amount of episodes in our data set
(Table 1).

6.4 Experiment 4: Classification of random
mixture of teams

The fourth experiment is an extension of the previous one.
Instead of using teams Ri with only samples of team i for
testing, a random mixture of the teams R̂i is used. The
testing set R̂i is built by selecting 15 random episodes of
team i and one episode of each team j 6= i. Therefore, the
probability of an episode in R̂i is from team j is 1/2 if i = j

and 1/30 otherwise. Given the values of s(R̂i, ·), we define

the induced probability distribution P̂ (R̂i is the team j) as

proportional to 1/s(R̂i, T j), where T j is the matrix with the
training episode for team j. Table 4 contains the results of
this experiment. The KL-divergence between the original
distribution and the obtained P̂ is smaller, i.e. differ less,
than the uniform distribution (random guess) in half of the

cases. By looking at the mode of P̂ , i.e. argmaxx P̂ (R̂i is the
team x), we observed that for all teams, except CMDragons-

08, the mode of P̂ is either GaTech-09 or Fantasia-08. This
is interesting since these two teams are the centers of each
graph in Figure 2.

6.5 Experiment 5: Approximating the value
of s(·, ·)

In the last experiment we compare the approach presented
so far, i.e., the exact computation of s(·, ·), with the approx-
imated approach suggested in Section 5: to use a rank k ap-
proximation of the episodes matrix to decrease the number
of variables describing each episode. For this experiment,
50% of the data set was used as training set and remaining
50% as testing set. The chosen values of k, namely 17, 12
and 7, are based in the second experiment (Figure 3). The
results are presented in Table 5 and as expected, the classifi-
cation accuracy, the rank and the running time decrease as k
decreases. One may also notice that the exact computation
and the SVD decomposition for k = 17 approaches achieve
almost the same classification accuracy and rank, however
the SVD approach is about 0.2 seconds faster than the exact
computation approach.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a novel approach to com-

pare team strategies. This approach relies on the best ap-
proximation, according to the Frobenius norm, of the matri-
ces representing the episodes in our data set of each team.
Therefore, we consider that a team A is similar to a team B,



30% for training 40% for training 50% for training
Accuracy Rank Accuracy Rank Accuracy Rank

Avg S.Dev Avg S.Dev Avg S.Dev Avg S.Dev Avg S.Dev Avg S.Dev
BSmart-07 0.04 0.20 7.60 4.40 0 0 9.12 3.58 0.12 0.33 7.36 5.43
Skuba-08 0 0 7.28 1.92 0 0 6.80 2.34 0 0 6.92 1.97
Botnia-07 0.20 0.40 6.92 5.13 0.12 0.33 7.40 5.55 0.32 0.47 5.32 4.67
Kiks-08 0 0 6.12 2.58 0 0 5.52 2.97 0 0 5.32 2.64
WrightEagle-07 0 0 5.40 2.94 0.08 0.27 5.12 2.68 0.24 0.43 4.24 2.69
EagleKnight-07 0.64 0.48 2.08 1.86 0.96 0.20 1.16 0.80 0.76 0.43 1.48 1.12
PlasmaZ-08 0.60 0.50 1.56 0.76 0.32 0.47 1.88 0.72 0.44 0.50 1.72 0.73
PlasmaZ-07 0.68 0.47 1.32 0.47 0.44 0.50 1.68 0.74 0.60 0.50 1.48 0.65
Fantasia-08 0.96 0.20 1.04 0.20 1.00 0 1.00 0 1.00 0 1.00 0
Zjunlict-08 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0
GaTech-09 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0
Zjunlict-07 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0
RoboDragons-07 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0
CMDragons-09 0.40 0.50 2.00 1.11 0.28 0.45 2.16 1.06 0.32 0.47 1.96 0.97
CMDragons-07 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0
CMDragons-08 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0

Table 3: Statistics about the classification experiment. For each percentage of the data used for training, we
classified each team in the remainder of the data (testing data). This table presents the average and standard
deviation of the classification accuracy and the average and standard deviation of the rank for 25 executions
of this experiment. The rank of a team A is defined as the position of s(A′, A) in the sorted vector of s(A′, ·),
where A′ are the instances of A in the test data. This table is sorted by the number of episodes of each team
(see Table 1.

KL-divergence Mode Pr(Mode) Pr(real Mode)

GaTech-09 0.3753 GaTech-09 0.1625 0.1625
Fantasia-08 0.4174 Fantasia-08 0.1457 0.1457
RoboDragons-07 0.4745 GaTech-09 0.1369 0.1313
CMDragons-08 0.4791 CMDragons-08 0.1382 0.1382
CMDragons-07 0.5342 GaTech-09 0.1341 0.1208
Zjunlict-08 0.6400 Fantasia-08 0.1370 0.0921
Zjunlict-07 0.6711 Fantasia-08 0.1257 0.0887
CMDragons-09 0.7012 GaTech-09 0.1468 0.0822
Kiks-08 0.7502 GaTech-09 0.1636 0.0722
PlasmaZ-08 0.8111 Fantasia-08 0.1387 0.0675
WrightEagle-07 0.8418 Fantasia-08 0.1316 0.0583
PlasmaZ-07 0.8560 Fantasia-08 0.1379 0.0587
Skuba-08 0.8900 Fantasia-08 0.1505 0.0591
EagleKnight-07 1.0590 GaTech-09 0.1155 0.0367
BSmart-07 1.1018 GaTech-09 0.1215 0.0315
Botnia-07 1.1302 Fantasia-08 0.1410 0.0306

Table 4: Results of the classification experiment using random mixture of the teams. For each team A, it was
select 15 random episodes of A and one episode of each other team. The remaining of the data set is used for
training. The first column contains the KL-divergence between the original distribution and the one obtained
by our proposed method. The KL-divergence between the original distribution and the uniform distribution
is 0.7254, therefore, our method performs better than the random guess for the 8 teams (top 8 lines). The
second column contains the mode of the induced probability distribution, i.e., the team that has maximum
probability and the third column its probability; and the fourth column presents the induced probability
of the mode of the original distribution (the team on each line). The induced probability distribution was
obtained by averaging 25 runs of the experiment. This table is sorted by ascending KL-divergence.



Class. Accuracy Rank Running time (secs)
Avg. S.Dev. Avg. S.Dev. Avg. S.Dev.

Exact computation 0.53 0.50 3.49 4.21 6.09 3.86
SVD decomp., k=17 0.52 0.50 3.69 4.20 5.82 4.11
CX-decomp., k=17 0.33 0.47 5.14 4.63 4.81 3.74
SVD decomp., k=12 0.51 0.50 3.68 4.17 5.04 4.80
CX-decomp., k=12 0.35 0.48 4.85 4.42 4.61 3.47
SVD decomp., k=7 0.46 0.50 3.77 4.17 4.44 6.36
CX-decomp., k=7 0.34 0.48 4.78 4.38 3.67 5.20

Table 5: Statistics about classification, rank and running time using the exact computation of s(·, ·), the SVD
decomposition approximation and the CX-decomposition approximation. The statistics were obtained by 25
runs of the experiment. The settings of this experiment is the same as the third experiment (Table 3) using
50% of the data for training. To make the table easier to read, the result for different team were combined.

if the episode matrix of A is best approximated by a conical
combination of the episodes in the episode matrix of B.

We presented experiments, using real data from the
RoboCup 2007, RoboCup 2008 and USOpen 2009, showing
how classification can be performed using the proposed mea-
surement. We also applied this measurement to find similar-
ities in the defense strategies of the teams in our data set.
The obtained patterns are corroborated by the presented
statistics of the games played by CMDragons against these
teams.

Possible future research directions include extending the
proposed approach to handle episodes represented as time
series instead of the representation by mean and standard
deviation used in this work. This extension is non-trivial
since each episode has different lengths (time duration). The
trivial extension of applying the same definition of s(·, ·) in
episode tensors, i.e., matrices in R

f×t×n where t the length
of the episode, does not work, thus additional research is
needed to find a suitable approach.

A second general direction for further investigation is to
explore adaption according to the opponent. That is, to use
of the knowledge from the previous opponents when playing
against an unknown opponent through the proposed decom-
position of the unknown strategies.
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