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Abstract

This paper focuses on factored planning problems with
probabilistic and nondeterministic elements. We first
show that problems expressed in the nondeterministic
extensions of PPDDL used in the 5th planning competi-
tion, yield Markov Decision Processes with Set-Valued
Transitions (MDPSTs). We present a generalization of
the language that still yields MDPSTs, and examine the
solution of these MDPSTs using real time dynamic pro-
gramming.

Introduction
Although the benefits of recent techniques for planning un-
der uncertainty seems ”highly contentious”, the research
in this field has brought promissing results in a short time
(compared to the time taken to reach the state-of-the-art of
classical planning). We believe that after establishing a com-
mon foundation on reasoning about planning under uncer-
tainty, the community will be ready to cope with real plan-
ning applications. In particular, we claim that the two differ-
ent forms of uncertainties,probabilisticandnondeterminis-
tic, should be unified in a common framework.

In this paper we present an analysis of planning problems
that are described in factored form and that containprob-
abilistic andnondeterministicactions. As usual in the lit-
erature on planning, a “probabilistic” action is represented
by a probability distribution over states, while a “nondeter-
ministic” action is just specified through a subset of states
— any one of these states can be selected by some unspec-
ified procedure. We are interested in minimax policies; that
is, in policies that minimize the maximum expected cost.
The minimax character of the solutions is needed to handle
the presence of nondeterminism. Depending on the situa-
tion, the focus may be on the minimax expected discounted
cost for infinite horizon, or on the minimax expected cost
to reach goal states with indefinite horizon. The experi-
ments described in the paper focus on the latter case (that
is, goal states and indefinite horizon) because this is the sit-
uation commonly found in the literature, and particularly in
the Planning Competitions held so far.

Our analysis focuses on planning problems that can be
expressed in existing extensions of the PDDL language. We
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adopt PPDDL 1.0 (Younes and Littman 2004; Younes et al.
2005), a probabilistic extension of PDDL 2.1 (Fox and Long
2003), plus the extensions made by Bonet and Givan (2005)
in order to handle non-determinism. To simplify the text,
we refer to the resulting language asPlanning Definition
Language version 1.0, or simply asPDL1. Even though
other variants and extensions of PDDL might have worked
as our starting point,PDL1 is a relatively mature language
for dealing with uncertainty that has proven its worth in sev-
eral Planning Competitions.

One interesting (and perhaps not widely known) fact
aboutPDL1 is that it allows probabilistic actions and non-
deterministic actions in the same domain, as discussed in
the next section. In fact it does not seem thatPDL1 has a
complete semantics at this point, in the sense that every al-
lowed domain description can be put in correspondence with
known mathematical structures.

Our first result is simple to state: Every planning problem
expressed inPDL1 defines aMarkov Decision Process with
Set-Valued Transitions (MDPSTs), as discussed in the next
section. That is, MDPSTs can be taken as the underlying
semantics ofPDL1 (Proposition 1).

We then ask: What happens if we allow probabilistic and
nondeterministic features to be usedtogetherin the descrip-
tion of the effects of thesameaction? Our second result
is Theorem 1, which shows that any planning problem that
mixes probabilistic and nondeterministic effects, with a re-
striction on their order, yields an MDPST. We call the result-
ing description languagePDL2.

The consequences of Proposition 1 and Theorem 1 are
nontrivial. We use results from the theory of MDPSTs to
derive a special version of the Bellman equation with excel-
lent computational properties. We discuss the importance
of these facts for value/policy iteration and for real time dy-
namic programming (RTDP) approaches to policy construc-
tion, and present empirical evaluation of real time dynamic
programming in standard problems in the field.

The results in this paper can be read from two differ-
ent perspectives. First, the results are statements about the
PDLx languages: they show that an elegant semantics for
PDL1 can be built with MDPSTs, and they indicate how
far one can go in extending the syntax before one finds
a computational cliff. Second, the results clarify some of
the prospects for merging probabilistic and nondeterminis-



tic planning — they show that MDPSTs are indeed a valid
foundation even for factored models, and they suggest how
far one can go with MDPSTs before one switches to more
complex mathematical structures.

PDL1 and MDPSTs
As described by Bonet and Givan (2005),PDL1 is a rela-
tively simple language syntactically. Every planning prob-
lem is expressed in two parts: thedomain contains direc-
tives, constants, and descriptions of actions; theproblem
basically contains a description of the initial state and the
desired goal. We have no comment on the syntax and se-
mantics ofproblems, so the reader may consult the paper
by Bonet and Givan (2005) for more information on that.
We wish to focus on the syntax and semantics ofdomains,
so we present the relevant pieces of the syntax here. The ba-
sic BNF fordomains is:
<domain> ::= (define (domain <NAME>)

(:requirements :adl)
[<types>][<constants>][<predicates>]
<action>*)

<action> ::= (:action <NAME>
[<param>] [<prec>] [<effect>])

<prec> ::= (:precondition <p-formula>)
<effect> ::= (:effect {<nd-eff>|<det-eff>})
<nd-eff> ::= <prob>|<one-of>
<prob> ::= (probabilistic <p-eff>+)
<p-eff> ::= <RATIONAL> <det-eff>
<one-of> ::= (oneof <det-eff>+),
where:<types>, <constants>, <predicates> and
<param> refer to lists of names or logical variables (pos-
sibly typed); <RATIONAL> denotes a rational number;
<p-formula> is a formula containing either atoms, or
conjunction ofp-formulas, or universal quantification
over p-formulas, or inequality of two given names as
(not (= <NAME> <NAME>)); and a<det-eff> is a
formula containing either atoms, or negation of atoms, or
conjunction ofdet-effs, or universal quantification over
det-effs, or theconditionaloperatorwhen. This condi-
tional operator has syntax
(when <p-formula> <simple-eff>),
wheresimple-eff is a formula containing either atoms,
or negations of atoms, or conjunction ofdet-effs, or uni-
versal quantification oversimple-effs.

For the purposes of this paper the important point is that
any action inPDL1 may containeithera probabilistic effect
or a nondeterministic effect. For instance, a domain may
contain two actions, one with probabilistic effects, and the
other with nondeterministic effects. What is not allowed in
PDL1 is the mixture of probabilistic and nondeterministic
effectsin the same action.1

1All planning problems written inPDL1 so far for relevant
tracks of Planning Competitions are either entirely probabilistic or
entirely nondeterministic. Perhaps the intention of the creators of
PDL1 was to deal only with such cases. The flexibility ofPDL1

may be a small oversight on the part of the creators ofPDL1; here
we wish to exploit this feature ofPDL1 positively rather than take
it as a flaw.

What is the semantics of completePDL1? It is not hard
to imagine what the semantics should be: (1) the seman-
tics of a probabilistic action is inherited from PPDDL 1.0
(that is, a probabilistic action is to be understood as a proba-
bilistic transition given by a Bayesian network (Younes and
Littman 2004; Younes et al. 2005)); (2) the semantics of a
nondeterministic action should be given by a direct reading
of theoneof element (where a nondeterministic choice is
made and one of the effects listed in the scope of theoneof
element is selected and pursued). We call these conventions
thestandard semanticsof PDL1; we believe there is nothing
controversial about it.

Note that the standard semantics ofPDL1 takes us be-
yond Markov Decision Processes (MDPs) given the pres-
ence of nondeterminism. Thus the interesting question is,
What is the right mathematics in which to embed the stan-
dard semantics ofPDL1? Besides, what can be derived con-
cerning existence and stationarity of optimal policies, and
algorithms for finding optimal policies?

Our first contribution is to indicate the mathematical
model for the standard semantics ofPDL1:

Proposition 1 Any planning problem expressed inPDL1

defines an MDPST.

Before we show the proof of this proposition, we review the
theory of MDPSTs. We use the framework proposed by Tre-
vizan et al (2007), who have employed MDPSTs to analyze
non-factoredplanning problems with probabilistic and non-
deterministic uncertainty. After the main facts about MDP-
STs and their relation to planning are reviewed, we hope the
proposition should become almost self-evident.

An MDPST consists of:
(M1) a state spaceS (assumed finite),
(M2) a nonempty set of initial statesS0,
(M3) a nonempty set of actionsA(s) (assumed finite) for
each states ∈ S,
(M4) a costc(a, s) for taking actiona ∈ A(s) in states,
(M5) a state transition functionF (a, s) that maps states and
actiona ∈ A(s) into aset of subsetsof S,
(M6) a mass assignmentm(k|a, s) that assigns a number
p ∈ [0, 1] to every set inF (a, s) such that they add up to
one:

∑

k m(k|a, s) = 1.
We may also have a set of goal states (if the problem of inter-
est prescribes them) or a discount factor (if we are interested
in infinite horizon with discounted cost).

The intuition is that any MDPST is an MDP where transi-
tions may happen probabilistically from a given state into a
setof states. Once a transition is made into a set of states, the
resolution of any remaining uncertainty is nondeterministic.
As discussed by Trevizan et al (2007), deterministic plan-
ning is obtained whenF (a, s) yields a singleton{s′} for
every (a, s). Nondeterministic planning is obtained when
F (a, s) yields a single subsetk of S, where|k| ≥ 1. Prob-
abilistic planning is obtained whenF (a, s) is a set of sin-
gletons, and then the mass assignmentm(k|a, s) is the usual
transition probabilityP (r|a, s) for each{r} ∈ F (a, s).

MDPSTs are clearly more expressive than MDPs, and the
latter are special cases of the former. But MDPSTs are not
the only variant of MDPs that generalize the transition prob-



abilities. Markov Decision Process with Imprecise Proba-
bilities (MDPIPs)are even more general (Satia and Lave Jr.
1970; White III and El-Deib 1994): an MDPIP is an MDP
with a set of transition probabilitiesamongst states. Any
MDPST is an MDPIP; this is a consequence of the fact that
a mass assignment over subsets of a set defines aChoquet
capacity of infinite order(Dempster 1967) because it pre-
scribes a probability distribution (the mass assignment) fol-
lowed by a multivalued mapping (the state transition func-
tion).2 We also note that BMDPs as proposed by Givan,
Leach, and Dean (2000) are MDPIPs as the transition prob-
abilities are encoded by probability intervals, but MDPSTs
and BMDPs define classes of models that are not contained
in each other (Trevizan, Cozman, and de Barros 2007).

The important fact about MDPSTs is that a very attractive
version of the Bellman equation can be written for their min-
imax policies. By minimax we mean a policy that minimizes
the maximum expected cost — minimization with respect to
policies, and maximization with respect to the allowed tran-
sition probabilities.3 First, note that results from the theory
of MDPIPs show that backward induction yields:

V (s) = min
a

max
P

(

c(a, s) + γ
∑

r

P (r|a, s)V ′(r)

)

, (1)

where again the minimization is over actions and the max-
imization is over transition probabilities. This equationap-
plies to a specific time (V is the value function at the next
time point andV ′ is the value function at the current time
point) or to infinite time (V andV ′ both refer to the opti-
mal value function); existence and stationarity of the optimal
policy for infinite horizon can be shown (Satia and Lave Jr.
1970; White III and El-Deib 1994). The search for optimal
policies in MDPIPs (and in BMDPs) is based on the solution
of Equation (1). Now for MDPSTs the backward induction
argument leads to a simplified equation:

V (s)=min
a



c(a, s) + γ
∑

k∈F (a,s)

m(k|a, s)max
r∈k

V ′(r)



 , (2)

Trevizan et al (2007) show the validity of this simplified
Bellman equation. A concise proof can be produced by not-
ing that Choquet capacities of infinite order always satisfy
maxP E[f(x)] = E[maxy∈Z f(y)] where the first expecta-
tion is with respect to the whole space ofX while the second
expectation is with respect to the space of mass assignments,
encoded here byZ (Wasserman and Kadane 1992). Thus the

2Choquet capacities of infinite order are also calledbelief func-
tions (Shafer 1976) andrandom sets(Molchanov 2005). The con-
struction of a set of probability distributions out of a Choquet ca-
pacity of infinite order is standard (Cozman 2000): the set isthe
convex hull of all distributions produced by selecting atomic events
inside each subsetk (in F (a, s) for eacha ands).

3There are other criteria that apply when probabilities are
not precisely specified (Kikuti, Cozman, and de Campos 2005;
Seidenfeld 2004; Troffaes 2004; Utkin and Augustin 2005); we fo-
cus on the minimax criterion because nondeterministic planning
itself generally adopts a minimax approach.

(define (domain tire) (:requirements :adl) (:types location)
(:predicates (road ?from - location ?to - location)

(vehicle-at ?loc - location) (spare-in ?loc - location)
(not-flattire) (hasspare))

(:action load-tire
(:parameters (?loc - location))
(:precondition (and (vehicle-at ?loc) (spare-in ?loc)))
(:effect (and (hasspare) (not (spare-in ?loc))))

)
(:action move-car

(:parameters (?from - location ?to - location))
(:precondition (and (vehicle-at ?from)

(road ?from ?to) (not-flattire)))
(:effect (and (vehicle-at ?to) (not (vehicle-at ?from))

(probabilistic 2/5 (not (not-flattire)))))
)
(:action change-tire

(:precondition (hasspare))
(:effect (oneof (and (not (hasspare)) (not-flattire)) (and)))

)
)

Figure 1: Thetire domain in PDL1, with actions
load-tire (deterministic),move-car (probabilistic),
andchange-tire (nondeterministic) together. This do-
main defines an MDPST (Proposition 1).

maximum over summation in Equation (1) becomes a sum-
mation over maxima in Equation (2).

The simplified Bellman equation represented by Equation
(2) leads to important computational simplifications, as the
maximization required by Equation (1) becomes a search
for maxima inside the setsk, presumably containing sig-
nificantly less elements than the whole space. In fact, the
theory of MDPSTs is much closer to the theory of MDPs
than to the theory of MDPIPs. Trevizan et al explore these
facts to produce efficient value/policy iteration schemes for
non-factoredMDPST; here “efficient” means “as efficient as
for an MDP of identical size”. We return to issues of com-
putational efficiency in a later section.

At this point we can present a short proof for Proposi-
tion (1):
Proof of Proposition (1). Given a planning problem in
PDL1, construct an MDPST where the state space is the
product space of predicates, the initial states, costs and
goal are as encoded inPDL1, and actions are as follows.
For a probabilistic actiona′ in PDL1, defineF (a′, s) as
a set of singletons where each singleton is in the support
of the transition probabilities, and the mass assignment is
just identical to the probabilities expressed inPDL1 (follow-
ing the PPDDL 1.0 semantics (Younes and Littman 2004;
Younes et al. 2005)). For a nondeterministic actiona′′ in
PDL1, defineF (a′′, s) as a single set containing as many el-
ements as there are deterministic effects in the<one-of>
construct.2

Example 1 Consider the following example, based on ver-
sions of thetire problem used in Planning Competitions
(Bonet and Givan 2005; Bryce and Buffet 2008). The prob-
lem is to plan a trip by car from one city to another. One
may have to deal with flat tires during the trip. The original
description oftire included probabilisties for getting a flat
tire and for finding difficulty in changing a flat tire.
Figure 1 shows a description oftire in valid PDL1 syn-
tax with probabilities onmove-car and nondeterministic
effects onchange-tire. Suppose there is vast statistical
evidence that the probability of a flat tire during an interme-



diate trip is 2/5. The original version of thetire domain
represented this situation by assigning 2/5 to the probability
of a flat tire. However, suppose there is really no evidence on
the behavior of drivers concerning the change of tires. The
original version of thetire domain presumably addressed
this situation by assigning 1/2 to the probability that a driver
actually succeeds in changing a tire. In Figure 1 we leave
indeterminate the probability that one succeeds in changing
tires.
The optimal policy for this example is discussed in a later
section.2

PDL2, MDPSTs and MDPIPs

We have seen thatPDL1 allows probabilistic and nondeter-
ministic actions to coexist. However, the mix is not terribly
expressive when it comes to representing uncertainty. Con-
sider two unsatisfying aspects of Example 1:

1. In a real trip, a flat tire may cause the trip to halt and the
car to return to its origin. A more realistic description
of the actionmove-car should consider the possibility
that, when a tire is flat, the car may not reach its interme-
diate goal. There is thus probability 3/5 that a car reaches
its intermediate goal with intact tires, and probability 2/5
that a car, having a flat tire,eitherreaches its intermediate
goalor not (without any probability on this latter disjunc-
tion).

2. The nondeterminism of the actionchange-tire is too
extreme, for it would imply that,in the worst case, the
probability of actually succeeding in changing a tire is
zero. But we might expect that any driver would even-
tually succeed in changing a tire, given enough trials, or
perhaps even by calling upon professional assistance.

The following example avoids such difficulties:

Example 2 Figure 2 describes thetire domain discussed
in Example 1, with two modifications. Actionmove-car
now expresses the fact that a car may or may not reach
its intermediate goal when a tire is flat. And action
change-tire now reflects the fact that any driver can
change a tire at least with some small probability (in this
case, at least 1/100). The semantics is to be presented
shortly, but the meaning of this example should be easy to
grasp.
The optimal policy for this example is discussed in a later
section.2

Clearly the ability to mix probabilistic and nondeterminis-
tic effects within actions dramatically increases expressivity.
But does it keep us within the boundaries of MDPSTs, so
that we are still quite close to MDPs as far as computations
go?

Start with Example 2. Under the obvious semantics for
actions, this example does define an MDPST. To see why,
consider a represention for actions that uses trees with de-
terministic nodes (boxes), probabilistic nodes (filled circles)
and nondeterministic nodes (void circles):

(define (domain tire) (:requirements :adl) (:types location)
(:predicates (vehicle-at ?loc - location)

(road ?from - location ?to - location)
(spare-in ?loc - location) (not-flattire) (hasspare))

(:action load-tire
(:parameters (?loc - location))
(:precondition (and (vehicle-at ?loc) (spare-in ?loc)))
(:effect (and (hasspare) (not (spare-in ?loc))))

)
(:action move-car

(:parameters (?from - location ?to - location))
(:precondition (and (vehicle-at ?from)

(road ?from ?to) (not-flattire)))
(:effect (probabilistic

2/5 (oneof (and (vehicle-at ?to) (not (vehicle-at ?from))
(not (not-flattire)))

(not (not-flattire)))
3/5 (and (vehicle-at ?to) (not (vehicle-at ?from))

(not-flattire))))
)

(:action change-tire
(:precondition (hasspare))
(:effect (probabilistic

99/100 (oneof (and (not (hasspare)) (not-flattire))
(and))

1/100 (and (not (hasspare)) (not-flattire)))
)

)

Figure 2: Thetire domain in PDL1, with actions
load-tire (purely deterministic),change-tire and
move-car (mixtures of probabilistic/nondeterministic) to-
gether. This domain defines an MDPST (Theorem 1).
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In the last two drawings, a probabilistic node defines a
mass assignment over sets of states, and each one of these
sets is defined by a nondeterministic node. Thus we can sim-
ply extract the mass assignmentsm and the state transition
functionsF from the drawings.

We can generalize as follows. Consider an actiona with
probabilistic andoneof elements, and build a tree
Ta that encodes the structure ofa. A probabilistic
element ina produces a probabilistic node with as many
children as theprobabilistic element has effects. An
edge inTa leaving a probabilistic node is labelled with
the probability that the effect pointed to by the edge ob-
tains. And anondeterministic element ina pro-
duces a nondeterministic node with as many children as the
nondeterministic element has effects. The leaves of
Ta are the deterministic effects ina. We call apath in Ta a
maximal sequence of consecutive probabilistic nodes start-
ing from the root (and obviously stopping either before a
nondeterministic node or before a deterministic node). A
path may be empty.

Suppose any path from the root ofTa to a leaf meets prob-
abilistic effects before nondeterministic effects. We canthen
easily define reasonable semantics for the actions using the
semantics of PPDDL 1.0. Theprobability of a pathis de-
fined as the product of all probabilities attached to the edges
in the path; if the path is empty its probability is 1 by defini-
tion. This is a direct application of the rule used to combine
probabilities in PPDDL 1.0 (Younes and Littman 2004, page



9):
p1(p

′
1e

′
1| . . . |p

′
ke′k)|p2e2| . . . |pnen ≡

(p1p
′
1)e

′
1| . . . |(p1p

′
k)e′k)|p2e2| . . . |pnen.

Thetransition of a pathis defined as the set of all determin-
istic descendants of the last probabilistic node in the path;
if the path is empty its transition is the root of the tree by
definition.

Now these definitions do produce an MDPST: the mass
assignmentm(k|a, s) for an actiona are the path probabil-
ities in Ta, and the state transition functionsF (a, s) are the
transitions inTa.

We emphasize this nice construction by defining an exten-
sion ofPDL1:

Definition 1 The Planning Definition Language version 2.0
(PDL2) has the same syntax asPDL1 but allows nesting of
probabilistic andoneof elements, provided that all
probabilistic elements come before theoneof ele-
ments in a single action.

The semantics ofPDL2 inherits the semantics ofPDL1

plus the interpretation of actions using path probabilities and
transitions as discussed before Definition 1. Given that dis-
cussion, it should be clear that:

Theorem 1 Any planning problem described inPDL2 de-
fines an MDPST.

Can we generalize even further? The next obvious step
would be to let a probabilistic node to appear after a nonde-
terministic node inTa. But it is not possible to do so and
stay within the confines of MDPSTs. This can be seen con-
sidering an action as follows:
(:action dummy

(:parameters ...)
(:precondition (...))
(:effect (oneof

(probabilistic p11e11 . . . p1ne1n)
...

(probabilistic pm1em1 . . . pmnemn)))
).

With such an action we can describe any finite set of dis-
tributions, so we are beyond Choquet capacities of infinite
order and consequently of MDPSTs. As far as minimax
policies are concerned, we have moved to the realm of MD-
PIPs modeled by general sets of transition probabilities with
finitely many vertices (Walley 2000). This is so because
there is no difference between a set of probabilities and its
vertices:

Proposition 2 In Equation (1) any maxima with respect to
probabilities must be attained at vertices of the sets of tran-
sition probabilities.

Proof. Suppose the maxima is attained at an interior point of
the set forP (r|a, s) for some actiona. This interior point
must necessarily be a convex combination of vertices, and
given the linearity of summation over states, the maximum
value must be a convex combination of the values of the
summation at the vertices. Thus either both vertices also
attain the maximum, or else the vertices do not attain the

maximum and the interior point (being a convex combina-
tion of the vertices) fails to do so as well, contradicting the
hypothesis that it attains the maximum.2

It should be noted that the resulting factored MDPIPs
have a very interesting property: all vertices of the set of
probabilities distribution are explicitly represented bypos-
sible paths in trees representing actions. Due to Proposi-
tion 2, we can exploit this structural property to solve fac-
tored MDPIPs using the minimax criterion becauseP ∗ =
argmaxP E[f(x)] is always a vertex ofP . We leave this
investigation for the future.

We now turn to the problem of computing optimal policies
for planning problems expressed inPDL2.

Solving factored MDPSTs
Given the form of the Bellman equation for MDPSTs (2),
most of the MDPs algorithms can be adapted to solve MDP-
STs (Trevizan, Cozman, and de Barros 2007). For instance,
suppose one runs the value iteration algorithm (Puterman
1994), but uses Equation (2) instead of the usual Bellman
equation. This kind of value iteration has the same theoret-
ical guarantees of the original value iteration (e.g., conver-
gence to a minimax stationary policy for the discounted cost
with infinite horizon).

The more interesting case for planning problems is goal
reachability with indefinite horizon. This situation can also
be tackled for MDPSTs by adapting existing algorithms.
Before presenting the actual algorithm, it is worth paus-
ing to specify a common assumption made when solving
goal-driven problems, thereachability assumption(Barto,
Bradtke, and Singh 1995). For MDPs, this assumption can
be stated simply as: a goal statemust be reachablefrom ev-
ery state. Clearly the reachability assumption aims at ensur-
ing that the problem being solved does not have dead ends
so that it can be safely explored by greedy algorithms.

For MDPSTs, the reachability assumption requires some
refinement because we do not know probability distributions
over effects. The assumption must hold for all probability
distributions defined by the mass assignment functionm.
Thus the reachability assumption for MDPSTs can be stated
as: for all possible probability distributionsP induced by
m, a goal state must be reachable from every state ifP is
adopted as the probability distribution for state transitions.
If we interpret an MDPSTM as a special encoding of a (in-
finite and uncountable) set of MDPs, then the reachability
assumption forM just ensures that every MDPMi encoded
by M respects the usual reachability assumption for MDPs.
Although this assumption is harder to be proved for MDP-
STs, if, ∀ states, s′ ∈ S, actiona ∈ A(s) andk ⊆ S,
m(k∪{s′}|a, s) > 0 impliesP (s′|a, s) > 0, then it suffices
to prove the MDP reachability assumption for any MDPMi

encoded byM (that is for any valid choice ofP ).
When the reachability assumption is satisfied by an

MDPST, we can apply an adapted version of any algorithm
based on real time dynamic programming (RTDP) (Barto,
Bradtke, and Singh 1995), such as Labeled RTDP (Bonet
and Geffner 2003), Bounded RTDP (McMahan, Likhachev,
and Gordon 2005) and Heuristic Dynamic Programming



(Bonet and Geffner 1998). The adaptation of these algo-
rithms is straightforward: just replace the Bellman equa-
tion for MDPs by its MDPST counterpart. Due to space re-
strictions, we present a high level description of the adapted
RTDP, depicted in Figure 3.

Two other points are worth mentioning about algorithms
based on RTDP: (1) the termination proof for RTDP; and (2)
the implementation of the auxiliary methodSimulate that
is required by RTDP.

The termination proof for the RTDP is based on the fact
that, if the reachability assumption holds, then in a finite
number of steps (calls toSimulate) the goal will be
reached (Barto, Bradtke, and Singh 1995). Using the reacha-
bility assumption for MDPSTs, the termination proof holds,
and the RTDP (and derivated methods) are guaranteed to
stop.

The second point that should be mentioned is the auxiliary
methodSimulate used by RTDP (Figure 4). This method
simulates the environment and returns one of the possible
resulting states when actiona is applied in states. Because
the exact probability distribution is not knowna priori, we
can use any probability measureP defined bym to simu-
late the environment. The minimax probability distribution
Pmax obtained by themax operator in Equation (1) could
be used in this step. However,Pmaxdoes not guarantee that
a closed policyπ with respect toS0 (that is a policy defined
over all states reachable by followingπ from s0 ∈ S0) can
be found. This is so because for eachk ∈ F (a, s), Pmax
assigns all probability mass ofk to exactly one states′; thus
the states ink \ {s′} may not be visited. If the states in
k \ {s′} are reachable only throughs, then a starvation sce-
nario may happen. In such a case a closed policy cannot be
found because it has to be defined for alls ∈ k. To guar-
antee that a closed policy with respect toS0 is found, we
need to assign a non-zero probability to every transition that
Pmax > 0, that is, for alls, s′ ∈ S anda ∈ A(s) such
that

∑

k⊆S m(k ∪ {s′}|s, a) > 0, thenP (s′|a, s) should be
greater than 0 too. Because this approach allows any state
s′ ∈ k to be chosen, eventually all states ink are visited,

Input : an MDPSTq = 〈S,S0,A, F, C〉, an admissible
heuristicH andǫ the maximum estimation error.

Output : Theǫ-optimal closed (with relation tos0)
policy π for q.

begin
repeat

H ← RTDP-Trial-SPST(q, H)
πH ← Greedy-Policy(q, s0, H)

until δmax< ǫ
return πH

end

Figure 3: Adapted version of the RTDP algo-
rithm for solving MDPSTs. The definition of
δmax is maxs∈S

s0
πH

|H(s) − mina∈A(s){C(a, s) +
∑

k∈F (a,s) m(k|a, s)maxs′∈k H(s′)}|. The
RTDPTrialMDPST is depicted in Figure 4.

Input : an MDPSTq = 〈S,S0,A, F, C〉 and an
admissible heuristicH .

Output : an admissible heuristic, tighter or equal toH
begin

while s 6∈ SG do
a← argmin

a′∈A(s)

{C(a′, s) +

∑

k∈F (a′,s)

m(k|a′, s)max
s′∈k

H(s′)}

H(s)←

C(a, s) +
∑

k∈F (a,s)

m(k|a, s)max
s′∈k

H(s′)

s← Simulate(q, s, a)

return H
end

Figure 4: Auxiliary method for the MDPST version of
RTDP. For each iteration of this method,H is used to
find a path from the initial state to a goal state. The
methodSimulate is discussed in the text.

what is the condition needed to define a closed policyπ.
In order to make the algorithms based on RTDP more

efficient, we need to provide an admissible heuristic (that
is, a heuristic that never overestimates the optimal cost).
One example of admissible heuristic is the zero-heuristic:
h0(s) = 0 for all s ∈ S. Another possible admissible heuris-
tic is themin-min(Bonet and Geffner 2005). For MDPs, the
value of this heuristic for a states is defined as the optimal
cost froms to the goal in theweak relaxationof the original
problem. The weak relaxation of a probabilistic planning
problem is a deterministic problem computed by transform-
ing all the probabilistic actions in a set of deterministic ac-
tions. For MDPSTs, the same procedure can be employed,
by replacing each actiona of the form:

〈pred; (p1(e
1
1 ⊕ · · · ⊕ e1

n1
)| · · · |pr(e

r
1 ⊕ · · · ⊕ er

nr
))〉

by
∏r

i=1 ni deterministic actions of the form〈pred; e1
j1
∧

· · · er
jr
〉, where ek

ji
is a deterministic effect andji ∈

{1, · · · , nk}. This weak relaxation for MDPSTs give us a
lower bound of the optimal cost because the (deterministic)
planner can choose exactly the effect to be applied, instead
of relying on the uncertainty of the environment.

Experiments
The potential gain of any mixture of probabilistic and non-
determistic planning lies in the increased expressivity; how-
ever, this gain is lost if the resulting complexity is too high.
We have argued throughout the paper that MDPSTs not only
increase expressivity, but also have nice computational prop-
erties as they are close cousins of MDPs. These statements,
although based on similarity of theoretical properties, must
be tested empirically before acceptance. Such an empirical
evaluation is what we report in this section. With this in
mind, we have implemented optimized versions of Labeled
RTDP (LRTDP) schemes that can take planning problems



expressed inPDL2 and produce plans efficiently — again,
“efficient” means “as efficient as MDPs”.

The set of experiments we have resorted to the following
mixture of probabilistic and nondeterministic effects. Every
probabilistic effect in the original domain definition is re-
placed by a convex mixture of the original distribution and
a nondeterministic choice; that is, ifP0 is the original distri-
bution, the set of distributions we consider is

(1 − ǫ)P0 + ǫQ

whereQ is an arbitrary distribution (thus encoding the non-
determinism). This kind of model is in fact widely em-
ployed in robust statistics under the name ofǫ-contaminated
class (Berger 1985; Huber 1980). For our experiments,
we have0.1-contaminated versions of the blocks world
and the exploding blocks world generated by replacing ev-
ery probabilistic action of the form〈pred; (p1e1| · · · |prer)〉
by the following new action〈pred; (0.9 × p1e1| · · · |0.9 ×
prer|0.1(e1 ⊕ · · · ⊕ er))〉. We have also tested the tire do-
main described in Figure 2.

Figure 5 summarizes the running time of the LRTDP for
these three domains. For the MDP case, we split the proba-
bility massm(k|a, s) uniformly between the states ink, re-
sulting in the MDP version of the tested problems. We also
initialized the LRTDP with two different heuristics, the zero-
heuristic and the min-min heuristic. As one may notice, the
running time for MDPSTs is near to a constant factor dis-
tance from the running time for MDPs. This corroborates
the theoretical result, since the computation of policies for
MDPSTs consists in adding the overhead of themax oper-
ator in (2). However, this small running time difference is
compensated by the quality of the solution, since the policy
generated by MDPSTs offers an extra theoretical guarantee
– it has the best performance in the worst case (minimax).

Conclusion
In this section we would like to revisit the remarks made
in the last paragraph of the Introduction. As noted there,
the results in this paper contribute: (1) to the quest for a
planning description language that balances expressivityand
complexity; and (2) to a better understanding of the interface
between probabilistic and nondeterministic planning.

The results in this paper suggest that we should at least
leave the syntax ofPDL1 as relaxed as it is now concern-
ing mixtures of probabilistic and nondeterministic actions.
There is a small cost to be paid in dealing with MDPSTs,
as the theoretical and computational tools to use are rather
close to their MDP counterparts. And the results of this pa-
per suggest that we could go even further in relaxing the
language.PDL2 seems to be a viable relaxation, because
it increases expressivity considerably, by allowing true mix-
tures of probabilistic/nondeterministic effects, while paying
a small cost.

With regard to the interface between probabilistic and
nondeterministic planning, the results in this paper suggest
the theory of MDPSTs to be a solid starting point when deal-
ing with factoredplanning problems. This observation adds
to the results by Trevizan et al (2007) for the non-factored
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Figure 5: Running time of the LRTDP for the final problems
of the 5th International Planning Competition. The chosen
domains are: (a) tire world, (b) blocks world, and (c) ex-
ploding blocks world.



case. Again, the main point is that the added flexibility costs
little in conceptual and computational terms.

In short: instead of MDPs, one can easily use MDP-
STs; instead ofPDL1, one can usePDL2. However, it is
apparent that MDPSTs have their own limitations concern-
ing expressivity; it seems that more general combinations of
probabilistic andoneof constructions will take us
directly into the theory of MDPIPs. Even though MDPIPs
are harder to handle, their factored form presents the inter-
esting property of explicitly decode all the vertexes of the
set of probabilities distributions. This structure can be ex-
ploited in order to develop efficient planning algorithms for
factored MDPIPs. As additional future research directions,
we highlight the translation to MDPSTs (and MDPIPs) of
important concepts for MDPs, such as thestrong relaxation
and heuristics based on this concept, for instance the atom-
min-forward, atom-min-backward and ff heuristics.
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