ARTICULO

Designing Logic-based Robots *

Felipe W. Trevizan, Leliane N. de Barros, Flavio S. Corréa da Silva

Institute of Mathematics, University of Sao Paulo
Rua do Matao, 1010, Cidade Universitaria
CEP 05508-090 Sao Paulo, SP, Brasil
{trevisan, leliane, fcs}@ime.usp.br

Abstract

A rational agent exploring a complex and dynamic environment with incomplete information needs cognitive
capabilities, e.g. planning, in addition to its perception and reaction for basic functionalities. However, mere
planning, i.e., reasoning about sequences of actions, is not sufficient to solve problems in such complex
environment. This is because (i) agents need to execute actions while they plan, (ii) they must gather and
interpret sensor information, (iii) revise their world model, and (iv) adapt their own goals during a task.

The knowledge representation and non monotonic reasoning area has shown the advantage of using logical
formalisms to specify rational agents for complex robot applications, also called cognitive robotics applica-
tions. An example of such formalism is the Golog language and its different dialects. What those areas
are still missing is implementational testbeds to evaluate existing theories. Since practical experimentation
highlights the need for the improvement of existing formal theories at the ontological level.

This work presents a logic-based implementation of an agent for the Wumpus World domain, which can be
envisaged as a simplified model of an agent that reasons logically about its actions and sensor information
in the presence of incomplete knowledge. Through a complete implementation of an agent in a real robot,
the Lego® MindStorms™ robot, we show some experiments to verify that the Wumpus World can be an
implementational testbed used to identify difficulties in transforming theory into operational solutions.

Keywords: Cognitive Robotics, Planning, Lego® MindStorms™.

1 Introduction such as Golog [13].

Golog is a language based on the situation

Works on logically reasoning agents have made 'Calculus [14], 1@plemented as a Prolog meta-
significant progress, specially through the cogni- 1nterpreter. Tbls CR language'has been.used on
tive robotics (CR) [13, 7, 12] - the research field experiments with extel.l(.ie(.i 1og1<.:al theories, suc.h
as temporal or probabilistic logics [7, 16], but it
has rarely seen comparison results between differ-
ent approaches. In fact, there is not a reliable set
of testbed examples, adopted by this community,
to be used to compare different approaches.

at the confluence of logics and robotics for rea-
son about actions. The aim of CR is to program
robotic agents using explicitly only high-level ac-
tions and relations among actions characterized
as formal logical statements. To archive this goal,
much recent research in the area has been devoted

I i k [23, 24, 25 h d
to the development of robot high-level languages, n previous work [23, 24, 25] we have propose

*This article is an extended version of [23] with minor modifications

Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No 31 (2006), pp. 11-22.
ISSN: 1137-3601. ©AEPIA (http://www.aepia.org/revista)

12

Inteligencia Artificial Vol. 10, N°31, 2006

the Wumpus World domain as an interesting
challenge for the cognitive robotics area. Al-
though this is a domain usually adopted to teach
classes on knowledge representation in introduc-
tory courses on Al, the design, programming and
implementation of a complete program for an
agent is not a trivial task. This can be corrob-
orated by the fact that the Wumpus World has
been proposed as a special theme in the Sixth
Workshop on Nonmonotonic Reasoning, Actions,
and Change at IJCAI 2005 [1] and Eleventh Non-
monotonic Reasoning at KR 2006 [2].

This work presents a logic-based implementa-
tion of an agent for the Wumpus World domain,
which can be envisaged as a simplified model of
an agent that reasons logically about its actions
and sensor information in the presence of incom-
plete knowledge. Through a complete implemen-
tation of an agent in a real robot, the Lego®
MindStorms™ robot, we show some experiments
to: (i) demonstrate how to interleave on-line ex-
ecution of the robot low-level actions with the
Golog logical projection of the high-level control
program and (ii) measure the agent time spent
on reasoning for a simple evaluation. We also
give some guarantees about the behavior of this
agent.

This paper is organized as follow. In Section
2 we briefly describe the Golog language and
the situation calculus. In Section 3 we intro-
duce the Lego® MindStorms™ robots , as well
as the language Legolog. Section 4 presents
the development phases of a Legolog agent for
the Wumpus World, that are: (1) the agent’s
action description in situation calculus formal-
ism; (2) the agent Golog implementation; (3) the
proof of some desirable features; (4) the imple-
mentation of the low-level actions for the Lego®
MindStorms™ robot; and (5) how we have con-
structed a real setup for the Wumpus World. Sec-
tion 5 gives the results of some experiments of
the Legolog agent. Section 6 makes a discussion
about few other works for the Wumpus World.

2 Golog: A Language for
Cognitive Robotics

Planning can be defined as the problem of find-
ing a sequence of actions to achieve a desired
state of the world (goal state) or behaviors (goal
task). This usually amounts to computationally
intractable problems, since the search space is

. 1 . . .
proportional to nl? a"l, in which n, is the num-

ber of possible actions and ||plan|| is the length
of the smallest sequence of actions that archives
the goal state from the initial state (i.e. a solution
plan). In order to make this search space smaller,
classical planning algorithms employ:

e conflict resolution techniques for actions,
which typically transform state space search
into plan space search [10];

e heuristic methods [4, 9] to guide the state
space search; or

e compound tasks, which define constraints
on actions compositions, through task net-
works, also called hierarchical task network
planning (HTN planning) [8].

Golog [13] is a programming language for intelli-
gent agents through which we can specify con-
straints on actions compositions, thus pruning
the search space. The constraints are specified
in a high-level program, which can be defined as
a program comprised by (1) primitive instruc-
tions, which are the actions an agent can execute
in the environment, described as situation cal-
culus statements [14]; (2) tests, which make use
of domain dependent predicates that are affected
by actions; (3) procedures, which correspond to
compound actions as in HTN planning [3]; and
(4) non-deterministic choices, which allow looka-
head in sets of actions to select what to add to
the solution plan.

Therefore, instead of looking for a sequence of ac-
tions to achieve a goal, a Golog agent looks for a
sequence of actions to generate a valid execution
of its high-level program, i.e., a valid decompo-
sition of the high level program that implements
the agent, resulting in its desired behavior. This
is very similar to an HTN planning agent imple-
mentation.

2.1 The situation calculus

Golog is based on the situation calculus [14]: a
logical formalism based on First Order Predicate
Logics (FOPL) that allows the logical projection
of world properties. Its ontology includes sit-
uations, which are snapshots of the world; flu-
ents, which represent world properties; and ac-
tions, which are capable of altering the truth

Inteligencia Artificial Vol. 10, N°31, 2006

13

value of fluents. In situation calculus, the con-
stant sg denotes the initial situation; the function
do(c, o) denotes the resulting situation after per-
forming the action « in situation o; the predicate
poss(a,a) represents that action a can be exe-
cuted in situation o; and the predicate holds(¢, o)
represents that fluent ¢ is true in situation o. Sec-
tion 4.2 shows an example of situation calculus
axioms for the Wumpus World.

Given a specification of a planning domain as
a situation calculus axiomatization, the solution
plan can be found through theorem proving in
FOPL. Let A be the set of axioms that charac-
terize the actions of an agent, Z the set of axioms
that characterize the initial situation and G a log-
ical statement that characterizes the agent’s goal.
The constructive proof of

ANT = (39).legal(S) A G(S), where
legal(S) = poss(a1,s0) A+ A
poss(an, do(an—1,do(...,do(a1,50)))...),

generates an instance of the variable S as the term
do(ay,, do(. .., do(aq, sp)) ...), which corresponds
to the sequence of actions («, ..., a,), that when
executed by the agent from the initial situation
S0, takes it to the goal situation.

2.2 The Golog Meta-interpreter

Golog programs are executed by a specialized the-
orem prover (Table 1) in FOPL [13]. The user
must provide a situation calculus axiomatization
A, describing the actions of an agent (declara-
tive knowledge), plus a control program ¢, speci-
fying the desired behavior of the agent (procedural
knowledge). The execution of the Golog program
corresponds to the proof that A |= exec(c, sg, o),
where exec(c, sp,0) = (d0).0 A legal(o) and o
= do(ay,,do(...,do(ay, s0))...) is a decomposi-
tion of c.

Another characteristic of Golog is that it per-
forms off-line planning, that is, Golog searches
for a sequence of actions that is a valid execution
of a high-level program before any action has been
actually executed by the agent. In order to solve
problems that require the execution of actions
during planning, namely on-line planning, the
language IndiGolog [11] has been created. Using
IndiGolog we can specify programs that perform
sensing and execution of actions, while search for
a solution plan. However, IndiGolog is not capa-

:— op(950,xfy, [&]).
1= op(500,xfy, [?]).
:- op(960,xfy,[1]).
:— op(960,xfy,["]).
exec(Al & A2,51,83) :-

exec(A1,S1,52), exec(A2,52,83).
exec(P?,S,S):- holds(P,S).
exec(Al | A2,51,82) :-

exec(A1,S1,52); exec(A2,51,82).
exec(if (P,A1,A2),S1,S2) :-

exec(P? & A1 | "P? & A2,S1,82).
exec(star(E),S1,82) :-

S1=82; copy(E,E1), exec(E & star(E1),S1,S2).
exec(while(P,A),S1,82) :-

copy(P,P1), exec(star(P? & A) & “P17,S1,S82).
exec(A,S1,S2) :- proc(A,Al), exec(A1,S1,52).
exec(A,S,do(A,S)) :- prim(A), poss(A,S).
holds (A=A,).
holds("P,S) :- not holds(P,S).
% frame axiom
holds(P,do(A,S)) :- holds(P,S), not affects(A,P).

sequence
test (temporal projection)
non-deterministic choice

%
%
%
%

negation as failure

Table 1. A simplified implementation of the
Golog as a Prolog meta-interpreter.

ble to combine the off-line and on-line planning,
and a solution to this problem is partially done
in section 4.3.3.

3 Legolog: a Golog for the
Lego® MindStorms™
Robot

Usually, researchers in cognitive robotics make
use of simulations to test their theories, due to
the difficulty to find affordable robots that are
simple to program, assemble and use. The Lego®
MindStorms™ robots present all these features:
they are affordable and simple to program; they
also allow the implementation of reasoning capa-
bilities without requiring skills about the robot’s
hardware.

The main component of the Lego®
MindStorms™ robot is the RCX brick (RCX
stands for Robotic Commander Explorer). It con-
tains a Hitachi H8/3297 16 bits microprocessor,
capable of controlling up to three actuators and
three sensors simultaneously. The actuators are
motors with possible selection of five rotation
speeds for both directions, and the sensors can
be light sensors, and touch sensors. The RCX
also has an infrared port that can communicate
with an infrared tower, which can be connected to
a desktop’s serial port, enabling the communica-
tion between the robot and the computer. All of

14

Inteligencia Artificial Vol. 10, N°31, 2006

these features can be programmed by the robot
designer, e.g., in the language NQC (not-quite
C), which was used in this work.

3.1 Legolog

Legolog [12] is a software package that includes
the IndiGolog meta-interpreter, and the imple-
mentation of a communication protocol between
the RCX brick and the desktop. This protocol
enables the exchange of messages during the exe-
cution of a program stored in the RCX brick.

Cl i ent (computer) Ser ver (RCX Brick)

Communication Communication

Protocol Protocol
| I ndi Gol og | y Sensing and action |
+ T \ execution program i
A it A P

Agent reasoni ng
program

Figure 1. Client/server model for the Legolog
package, in which dashed rectangles are
defined by the programmer.

Legolog can be used to model client-server ap-
plications, in which the RCX is the server of ac-
tuators and sensors, and the desktop (executing
the IndiGolog meta-interpreter) is the client. In
Figure 1 we show how a client/server architec-
ture breaks a Legolog agent in modules, where
(1) Client is the module executed in the desk-
top. It contains the IndiGolog meta-interpreter
and the agent reasoning program; (2) Server is
the module executed in the RCX brick that con-
tains the actions execution program.

Thus, a program to control a robot in Legolog is
comprised by two main parts (dashed rectangles
in Figure 1): an agent reasoning program and an
sensing and action execution program.

Agent reasoning program. When executed
by the IndiGolog meta-interpreter, in the desk-
top, it performs incremental on-line generation of
plans composed of primitive actions, taking into
account the robot perceptions.

Sensing and action execution program. Im-
plemented in NQC and stored in the RCX. It
specifies how primitive actions and perceptions
are executed in the robot.

—
A
B e v
Pt
A
7.
k)

[

]
A
A
B s v
Pt

b

®

([N

| T
'
I -
]

Figure 2. A solved instance of the Wumpus
World.

Using this model, the robot designer can define
the appropriate level of abstraction of actions del-
egated to the RCX, i.e. the degree of autonomy
of the robot. The RCX can be programmed sim-
ply to control inputs and outputs; or it can be
programmed to implement more complex actions,
e.g. follow a line, find an object, or even to per-
form a more complex task detailed in Section 4.5.

4 Case Study: A Legolog
Agent for the Wumpus
World

In [12] an implementation of Legolog was done
for a simple task: make the robot to follow a
line while it recognizes and reacts to its percep-
tions (marks over the line). Although for this
simple task there are still some challenges on how
to program a Legolog agent with such behaviour
[12], this task does not involve complex reasoning.
In this paper, the main motivation is to propose
a more complex testbed domain for CR agents:
the Wumpus World, which requires an agent with
higher level cognitive actions. The following sec-
tions present the main steps of building a Legolog
agent for the Wumpus World.

4.1 The Wumpus World: an agent
searches for a treasure in a hos-
tile environment

The Wumpus World problem contains an agent
that must explore a square grid, having informa-
tion only about the neighborhood of the square

Inteligencia Artificial Vol. 10, N°31, 2006

15

Wumpus World task

Explore the

Reasoning about
situations

Diagnostic
of the Wumpus
position

Location
classification

Action
selection

Planning to
reach a shooting
position

Reasoning about
actions
Execution of
the best action
Action
classification

Climb the
exit

Planning to
reach the exit

Mapping
the perceptions
to locations

Perception
of the world

Interactions with
the environment

Figure 3. Task decomposition for an agent in the Wumpus World.

in which it is located. The goal of the agent is
to explore the grid, which is surrounded by walls,
collecting the highest possible score on the way.
The agent can increase its score by collecting gold
bars, spread in various squares, plus performing
the least number of movements. The agent must
also avoid pits, and a wandering agent-devouring
monster called Wumpus.

In Figure 2 we show a 4x4 instance of the Wum-
pus World in which the grid has already been suc-
cessfully explored. The solid line represents the
path to explore the environment and the dashed
lines represent planned paths to kill the Wum-
pus or to get out of the grid. Squares containing
horizontal straight lines represent breeze, and ver-
tical curved lines represent the smell of Wumpus.
This map characterizes an instance of the prob-
lem with high difficulty for the agent, requiring
41 actions to reach the solution state. The arrow
indicates that the Wumpus has been killed.

An agent for the Wumpus World has incomplete
information about the world, since it can only
sense the Wumpus (by sensing its smell) or a pit
(by sensing a breeze) when it is in a neighbor-
ing square to the Wumpus or a pit. Therefore,
the agent must perform a hypothetical reasoning
about the world while exploring the environment,
in order to classify the squares as safe or danger-
ous. The agent can also kill the Wumpus using
an arrow.

The Wumpus World domain has been used in in-
troductory courses of Artificial Intelligence. Nev-
ertheless, the design, programming and imple-
mentation of a complete program for an agent in
the Wumpus World can not be found in the lit-
erature. In fact, the Wumpus World problem is
not completely solved in introductory courses. In

[17], for instance, only a few suggestions are pre-
sented on how to model the set of tasks that the
agent must execute (ovals in Figure 3). Moreover,
that book only hints that the logical specification
of the solution of the Wumpus World problem can
be implemented as a Prolog program. The con-
struction of such program, however, can be quite
complicated without resorting to a language such
Golog or IndiGolog.

4.2 Logical specification of the
agent

The specification in situation calculus of the agent
for the Wumpus World was based initially on [17].
Figure 3 shows the task decomposition for the
agent implemented in this world. Double ovals
represent sub-tasks modelled and implemented
specifically in this project, while simple ovals are
tasks usually discussed in AI books.

The fluents in the Wumpus World are:
smelly (L) or breeze(L), which mean that posi-
tion L is smelly and breezy; atAgent(L), means
that the agent is at position L; agentDirec-
tion(D), means that D is the current direction
of the agent; visited(L) and secure(L), which
denote that position L has been visited or is
safe; and holding(O), denotes that the agent is
holding object O.

Using these fluents, one can write a set of ax-
ioms in the situation calculus to specify the agent.
These axioms are divided into: (1) initial state
azrioms, which describe the initial state of the
world; (2) successor state axioms, which represent
how the fluents are changed or remain unchanged
after the actions. For example, the successor state

16 Inteligencia Artificial Vol. 10, N°31, 2006
il i nfit E]ﬁiii o]
|| N EAE
e o

Figure 4. Four maps representing two situations in the Wumpus World. The first and the third

maps show what the agent already knows about the environment: white squares represent visited

positions; black squares represent not visited positions; and grey squares represent not visited

positions which were inferred to be safe. The second map shows the agent’s hypothetical reasoning

about the first map, and the fourth map shows the same about the third map. Squares labelled with

“?” denote hypothesis; squares labelled with “X” denote a false hypothesis.

axiom for the fluent smelly(L) is:

holds(smelly(L), do(A, S8)) :-
holds(smelly(L), S);
A==forward, stench(do(A, S)),
holds(atAgent(L), do(A, S)).

It defines a position L as smelly in situation
do(A,S) if L was already smelly in situation S
or if the agent sensed the smell of Wumpus when
reaching it due to the action A. Similarly, addi-
tional axioms must be defined describing the ef-
fects of all remaining agent’s actions: turn, for-
ward, grab, shoot, and climb.

4.3 Procedures in IndiGolog: the
agent reasoning programming

Besides the above axioms, we must also specify
the following compound tasks:

4.3.1 Actions classification

The set of (primitive or composite) actions that
can be executed from a given situation are clas-
sified as Great, Good, Medium, Risky and
Deadly. This classification is implemented by
procedures in IndiGolog and its modification im-
plies in different behaviors of the agent. For in-
stance:

proc(greatAction,
if (holding(gold),
planning([0,0], [climb | [11),
[sense(glitter), grab]l # [tryToKillWumpus])).

This defines an agent whose action with highest
priority (greatAction) is to plan the way out of
the grid if it has already found gold bars. Other-
wise, the agent must collect the gold whenever it
senses its shine. Finally, if none of the previous
actions are possible, the agent must try to kill the
Wumpus.

4.3.2 Diagnosis of the Wumpus position

An interesting feature of the Wumpus World
problem is that it requires the determination of
the Wumpus position based on incomplete infor-
mation. This task, illustrated in Figure 4, is
named diagnosis since the identification of the
Wumpus position can explain the observations
(smelly positions) of the agent in previous situ-
ations. The following procedure:

proc (tryToKillWumpus,
[?(holding(arrow)), consultKB(smellyPos(SmellyP)),
startSet (WumpusP), findWumpus(SmellyP, WumpusP),
planKillWumpus (WumpusP)]) .

specifies that in order to kill the Wumpus
the agent must consult its knowledge base
(consultKB) and retrieve a list of positions
in which the smell of the Wumpus was sensed.
Then the procedure findWumpus is triggered
to generate and discriminate a list of hypothe-
ses about the possible positions of the Wum-
pus (WumpusP). If the list contains a sin-
gle position, then the procedure planKillWum-
pus(WumpusP) leads the agent to a plan to

Inteligencia Artificial Vol. 10, N°31, 2006

17

reach an adequate position to shoot an arrow and
kill the Wumpus. The agent has only one arrow,
and should not risk to waste it before knowing for
sure where the Wumpus is.

The Golog procedure findWumpus below shows
the generation and discrimination of hypotheses
about the Wumpus position.

proc (findWumpus ([[SmeX, SmeY] | SmePos], Wpos),

[abductWumpusAt ([SmeX, SmeY+1], south, Wpos),
abductWumpusAt ([SmeX, SmeY-1], north, Wpos),
abductWumpusAt ([SmeX+1, SmeY], west, Wpos),
abductWumpusAt ([SmeX-1, SmeY], east, Wpos),
if (SmePos = [],

[cut (f indWumpus (SmePos, Wpos))],

[endSet (Wpos)1)1).

In this procedure, for each position [SmeX,
SmeY] in which the smell of the Wumpus was
sensed, the four adjacent positions are consid-
ered hypotheses of localizations of the Wumpus,
since the Wumpus can be sensed only when it
is adjacent the agent. The generated hypothe-
ses are then discriminated by the procedure ab-
ductWumpusAt:

proc(
abductWumpusAt ([WumX, WumY], IgnDir, Wpos),
if (secure([WumX, WumY]), [],
if (wall([WumX, WumY]), [],
[possibleWumpusPos ([WumX, WumY], IgnDir),
addToSet (Wpos, [WumX,WumY])]
[?(inCave)]))]).

Initially, it is checked whether the position
[WumpusX, WumpusY] has already been clas-
sified as safe or wall, otherwise the procedure
possibleWumpusPos analyzes the three adja-
cent positions, excluding the position in the al-
ready visited direction IgnDir. This is done by
verifying the hypothesis of the Wumpus being at
position [WumX, WumY] through the analysis
of the past perceptions in order to detect conflicts,
i.e., if an adjacent position to the previously posi-
tion [WumX, WumY] was visited and has not
been labelled as smelly.

4.3.3 Planning to find the way out and
the Wumpus

The agent must, in certain situations, plan to
reach a goal state crossing only safe positions,
without sensing the world (off-line planning).
This is an example of an agent which adapts its
own goals during the performance of a task. In
the Wumpus World, this task occurs in three oc-
casions: when the agent decides to (1) kill the

Wumpus; (2) to climb the exit; and (3) ex-
plore a safe position not in its adjacency. For
(1) it must find the closest position in the direc-
tion of the Wumpus, and for decision (2) and (3)
it must find the shortest path to the exit or safe
position respectively.

The planning algorithm was implemented in
Prolog and performs an iterative deepening
search in the state space [15] when the Pro-
log query “plan(S),exec(S),holds(agentAt[Goal_
Pos],S)” is done, where plan(S) and exec(S)
are defined as:

exec(s0).

exec(do(A,8)) :- poss(A,S), exec(S).
plan(s0).

plan(do(A,S)) :- plan(S).

This algorithm is used with the axioms of the
situation calculus, to infer that (3s).plan(s) A
erec(s) A G, in which G is a goal state. It is
interesting to notice that this algorithm, despite
its simplicity, is the most concise way to find a
solution plan s, based on the situation calculus
axioms.

4.4 Description of the representa-
tion of the Wumpus World

In order to build a physical model, we had to
find a way to represent the environment con-
sidering the sensors available for the Lego®
MindStorms™. In our case, we only used a light
sensor. The squares in the grid were identified
by tags with different light emitting properties
(opaque dark tags, shining silver tags, and so on).

In Figure 5 the dashed lines delimit each position
in the Wumpus World, and the solid lines repre-
sent the possible paths for the robot to move.

(a) (b)
I — Position P
: |

| O .

ST !
el Glitter | (Null) 1
: ; [

| [
| I
: 7 B | 1
A ey stanen
| | I

1 L _m----

Figure 5. (a) Physical representation of
Figure 2 and (b) zoom of the position (4,4).

18

Inteligencia Artificial Vol. 10, N°31, 2006

Figure 6. Lego® MindStorms™ robot and the physical model of the Wumpus World.

The perception tags were created to represent
the three possible perceptions for the Wumpus
World: glitter, stench and breezy. All posi-
tions in the environment were divided in quad-
rants. Each quadrant is used to represent one
type of perception (Figure 5). Another type of
tag is the rotation tag, used by the perception
algorithm to collect perception in the quadrants
in P. A physical model to represent the Wumpus
World can be seen in Figure 6.

4.5 Primitive actions for the RCX
brick

In the decomposition that implements the Wum-
pus World in Legolog, the perceptions in a po-
sition (glitter, stench and breezy), with no
previously specified order, is implemented by the
primitive action percept. The perception of the
agent is therefore performed autonomously by the
RCX. In order to sense a position, the robot must
perform a 360° rotation collecting all perceptions
in all quadrants and then return to the original
orientation. Hence, the action percept is im-
plemented using four iterations of the function
get_boolean _sense (Table 2), returning a vec-
tor containing four booleans to the computer, en-
coded as an integer.

The robot can reach a position coming from four
alternative directions (north, south, east or west),
hence the reasoning program of the agent uses the
present orientation of the robot to determine the

amount of circular shifts that must be applied to
the vector to recover the correct perception.

void(get_boolean_sense) {
int light_dif;
//Restarting global variable
boolean_sense = FALSE;
//Rotating till coming out of the rotation tag
turnToExitMark(bg_dif min, bg-dif max, 1);
light_dif = light_sensor - base_value;
//Checking whether agent found the perception
if (light_dif >= sense_dif min &&
light_dif <= sense_dif max) {
//Perception found
boolean_sense = TRUE;
PlaySound (SOUND_UP) ;
//Leaving perception tag
turnToFindMark (bg-dif min, bg.-dif max, 1);
//Looking for guide line or rotation tag
turnToFindMark(line dif min, mark_dif max, 1);
} //1f tag not found, the robot is already on line

}
Table 2. NQC program to perform a 90°

rotation looking for perceptions.

The following primitive actions were also imple-
mented in the RCX block besides the action per-
cept: turn_clockwise, turn_anti_clockwise,
forward, grab, shoot and climb. From these,
only the first three can move the robot; i.e., turn-
ing 90° clockwise, counter-clockwise, or advanc-
ing one square, respectively. For the other ac-
tions (grab, shoot and climb), the robot emits
different sounds indicating that they have been
executed and waiting for a manual update of the
environment, that is: grab the gold, remove the
Wumpus, and remove the agent from the exit po-
sition.

Inteligencia Artificial Vol. 10, N°31, 2006

19

Instance number 1 2 3
Wumpus position 3,3 0,2 [3,1]
Coin position 1,1 1,2 [3,0]
Pits positions 2,0 [3,1], [3,3]
Number of steps of the executed plan 22 25 18
Average time for on-line action selection 0.03s 0.42s 0.05s
Standard deviation of time for on-line action selection | 0.01s 1.68s 0.03s
Average time for plan generation (off-line) 0.03s 1.35s 0.13s
Standard deviation time for plan generation (off-line) 0.01s 1.30s 0.10s
Total time spent by the agent reasoning program 0.38s 13.25s 9.16s

Table 3. Statistic results for 3 instances of the Wumpus World with 1 coin position and 0.2
probability of pits.

4.6 Evaluating the designed agent

One of the goals in CR is to prove that the de-
signed agent has the expected behavior. Since
Golog is complete, i.e. it searches the entire plan
space, we only have to show that the agent high-
level program prunes the undesirable plans and
not a candidate solution. In proposition 1 we
prove that our agent does not die in the cave.

Proposition 1. The Golog agent for the Wum-
pus World does not die while it is in the cave.

Proof. Since our agent only moves to positions
labelled as secure, it is enough to prove that this
label mechanism is correct. A position is defined
as secure through the following situation calculus
axiom:

holds(secure(X), do(A, S)) :-

holds(secure(X), S8) ; (
percept ([Ste, Bre, -, -, 1, S),
holds(atAgent ([Ax, Ayl), S), X=[Px, Pyl,
Ste==none , Bre==none, (

(Px=Ax, (Py is Ay+l ; Py is Ay-1)) ;

D Ul R W N =

(Py=Ay, (Px is Ax+1 ; Px is Ax-1)))).

Due to the static environment, the recurrence in
line 1 is correct and its base is the initial position
which is secure by the definition of the Wumpus
World domain. Lines 2 and 3 only collect infor-
mation about the current state and lines 4, 5, 6
define that the position X is secure if the agent
did not percept the smell of Wumpus nor breeze
of the pit and X is adjacent to the agent’s posi-
tion in situation S. Since each hostile entity for
an agent in this domain, i.e. the Wumpus and
the pits, produces perceptions in all positions of
their adjacency, this definition is correct. There-
fore there is no risk for the agent to move into
positions labelled as secure. Because of the nega-
tion as failure implemented in Prolog, while there
is no evidence that a position is safe, it will not
be labelled as secure, however, just one evidence
is sufficient to conclude that it is secure. a

Other important feature of this agent is the opti-
mality (in terms of numbers of forward actions in
the plan) when moving through secure positions
to: (1) exit the cave; (2) kill the Wumpus; and (3)
explore the nearest secure position. This feature
is due to the off-line optimal planning procedure
plan that searches only the subset of the state
space in which all positions are safe. As com-
mented in Section 4.3.3, this procedure performs
an iterative deepening search.

5 Experimental Results

Table 3 shows three instances of the Wumpus
problem, with the Wumpus position, coin posi-
tion and pits positions specified in lines 2, 3 and 4,
respectively. Those experiments require reason-
ing about incomplete information. In all experi-
ments the robot has correctly detected safe and
dangerous positions and also found optimal plan-
ning solutions to determine the approximation of
the Wumpus and the exit. The experiments show
that for a medium size plan (22, 25 and 18 steps),
the average time spent for on-line action selection
was less then 0.5 seconds, while the average time
for off-line planning was less then 1.4 seconds.

The times on Table 3 can be considered low since
they are the results of the actual on-line execu-
tion of Golog plans by a real robot, i.e., a robot
capable of handling low-level actions sent by the
high-level controller.

6 Other solutions for the
Wumpus World

Traditionally, it is a hard task to compare differ-
ent formalisms for reasoning about actions, spe-

20

Inteligencia Artificial Vol. 10, N°31, 2006

cially with incomplete information. However, this
is an important activity that can help one to iden-
tify the strengths and weakness of the various ap-
proaches. When this comparison is based on a
testbed application, it is possible to make some
comparisons, nevertheless it is still very difficult
to establish good metrics. For instance, the score
of the Wumpus World agent can be used has a
metric but: (i) two different agents should be
compared on the same set of problem instances,
and (i) the time spent to solve the same prob-
lems should be measured accordingly. Another
difficulty about comparisons issues is with respect
to the attempt to justify a better performance.
That is because the implementation of a cogni-
tive robotic agent has always a domain dependent
knowledge layer which causes its performance to
rely in part on the expertise of the knowledge
designers and in part on the logical formalism
adopted which should be the main research in-
terest of the non monotonic community.

Next, we make some brief discussion about other
works that have recently tried to solve the Wum-
pus World problem. A planning approach for
the Wumpus World was made by Blai Bonnet
in [6] and consists on modelling the problem
by a partial-observable Markov decision process
(POMDP) [5] with deterministic actions. This
approach only reasons about sequences of actions,
i.e., the solution is completely deliberated before
executing any action. As a result, the planner
agent has a performance worse than others dedi-
cated solutions.

The work described in [18] also gives a solution
using IndiGolog. In this implementation, they
proposed some modifications in the IndiGolog to
deal with incomplete information. This is done
by extending the ontology of the situation calcu-
lus as follow: fluents can have possible values at
a situation; known is a new predicate to say that
a fluent has only one possible value at a specific
situation.

Another logic-based agent implementation for
the Wumpus World is given in [22]. This ap-
proach uses FLUX, a constraint logic program-
ming method for the design of agents based on
fluent calculus [21]. The fluent calculus is an ex-
tension to the situation calculus in which states
are represented by the set of fluents that are true
in it. This feature combined with constraint pro-
gramming makes FLUX an interesting and effi-
cient framework for cognitive robotics. By doing

experiments with the FLUX agent we have veri-
fied that the problem instance illustrated in Fig-
ure 4 can not be completely solved, i.e. the agent
does not kill the Wumpus to grab the gold.! How-
ever, in [22] the authors suggest some future im-
provements to the agent that seems to solve this
problem.

Finally, the implementation proposed in [20], uses
the SNePS framework [19] and different from the
others, it explicitly aims to model general human-
level intelligence instead of maximize the use of
computing power to optimize problem solving.
For instance, they have a implemented an agent
for the Wumpus World that has mental states,
such as bored.

7 Conclusions

In cognitive robotics is essential: (1) to show how
it is possible to interleave high-level procedures
execution with low-level robot sensing and ac-
tions execution; and (2) to have testbed domains
to show how a logic-based agent can be used for
high-level control and facilitate comparisons be-
tween different approaches.

In this paper we show how to implement the
high-level behavior required by an agent in the
Wumpus World using Legolog, a Golog dialect
which contains a communication protocol for a
real robot: the Lego® MindStorms™ robot. The
main goal of the experiments was to verify the
interleaving of on-line execution and the Golog
logical projection. Besides that, this paper has
the aim of motivating the CR community to use
the Wumpus World as a challenging testbed do-
main for comparisons between logic-based robotic
approaches.

Acknowledgments

This work has been supported by Fundacdo de
Amparo a Pesquisa do Estado de Sao Paulo
(FAPESP), grant number 03/08311-3, and by
Conselho Nacional de Pesquisa (CNPq), grant
number 308530/03-9.

We used the implementation available at http://www.fluxagent.org/demos.htm

Inteligencia Artificial Vol. 10, N°31, 2006

21

References

1]

[10]

[12]

Sizth Workshop on Nonmonotonic Reason-
ing, Action, and Change, Edinburgh, UK,
August 2005.

International Workshop on Non-Monotonic
Reasoning, Lakes District, England, June
2006.

L. N. Barros and E. lamamoto. Planeja-
mento de tarefas em golog. In SBAI 2003.

B. Bonet and H. Geffner. HSP: Heuristic
Search Planner. In Proc. of AIPS., 1998.

B. Bonet and H. Geffner. Planning with in-
complete information as heuristic search in
belief space. In S. Chien, S. Kambhampati,
and C. Knoblock, editors, Proc. 6th Interna-
tional Conf. on Artificial Intelligence Plan-
ning and Scheduling, pages 52—61, Brecken-
ridge, CO, 2000. AAAT Press.

B. Bonet and H. Geffner.
GPT: Planning with Uncertainty
and Partial Information, 2002.

http://www.tecn.upf.es/~hpalacio/model2/
dos/slides2.pdf (visited in march 2006).

C. Boutilier, R. Reiter, M. Soutchanski,
and S. Thrun. Decision-theoretic, high-level
agent programming in the situation calculus.

In Workshop on Decision-Theoretic Plan-
ning, Proc. KR-00, Apr 2000.

K. Erol, J. A. Hendler, and D. S. Nau.
UMCP: A sound and complete procedure for
hierarchical task-network planning. In Proc.
AIPS, pages 249-254, 1994.

J. Hoffmann and B. Nebel. The FF plan-
ning system: Fast plan generation through
heuristic search. J. of Artificial Intelligence
Research, 14:253-302, 2001.

S. Kambhampati, C. A. Knoblock, and
Q. Yang. Planning as refinement search:
A unified framework for evaluating design
tradeoffs in partial-order planning. Artificial
Intelligence, 76:167-238, 1995.

Y. Lespérance and H. Ng. Integrating plan-
ning into reactive high-level robot programs.
In Proc. of the 2nd International Cognitive
Robotics Workshop, August 2000.

H. Levesque and M. Pagnucco. Legolog: In-
expensive experiments in cognitive robotics.

[13]

[16]

[19]

[20]

[22]

In Proc. of the 2nd International Cognitive
Robotics Workshop, August 2000.

H. Levesque, R. Reiter, Y. Lespérance,
F. Lin, and R. Scherl. GOLOG: A logic pro-
gramming language for dynamic domains.
JLP, 31:59-84, 1997.

J. Mccarthy. Situations, actions and causal
laws. MIT Press, 1963.

S. L. Pereira and L. N. Barros. Formal-
izing planning algorithms: a logical frame-
work for the research on extending the
classical planning approach. In Proc. of
the ICAPS Workshop: Connecting Planning
Theory with Practice, 2004.

R. Reiter. Sequential, temporal golog. In
Principles of Knowledge Representation and
Reasoning: Proc. KR-98, pages 547-556,
1998.

S. Russel and P. Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice-Hall,
Inc., 2nd. edition, 2003.

S. Sardina and S. Vassos. The Wumpus
World in IndiGolog: A preliminary report.
In Workshop on Nonmonotonic Reasoning,
Action, and Change (NRAC’05), IJCAI
2005.

S. C. Shapiro. The cassie projects: An ap-
proach to natural language compentence. In
J. P. Martins and E. M. Morgado, editors,
EPIA 89: Proc. of the Jth Portuguese Con-
ference on Artificial Intelligence, pages 362—
380. Springer, Berlin, Heidelberg, 1989.

S. C. Shapiro and M. Kandefer. A SNePS
Approach to The Wumpus World Agent or
Cassie Meets the Wumpus. In Workshop

on Nonmonotonic Reasoning, Action, and
Change (NRAC’05), IJCAI 2005.

M. Thielscher. The fluent calculus: A spec-
ification language for robots with sensors
in nondeterministic. Technical Report CL-
2000-01, Artificial Intelligence Institute, De-
partment of Computer Science, Dresden Uni-
versity of Technology, 2000.

M. Thielscher. A FLUX agent for the Wum-
pus World. In Workshop on Nonmonotonic
Reasoning, Action, and Change (NRAC’05),
IJCAI 2005.

22

Inteligencia Artificial Vol. 10, N°31, 2006

[23]

F. W. Trevizan, L. N. Barros, and F. S. Cor-
rea da Silva. Low cost experiments in
Cognitive Robotics for planning in hostile
environments with incomplete information.
In Proceedings of the XI Conference of the
Spanish Association for Artificial Intelli-
gence (CAEPIA), Santiago de Compostela,
Galicia, 2005.

F. W. Trevizan and L. N. de Barros.
Robdtica cognitiva. Relatério técnico de

[25]

cniciacao cientifica FAPESP 308530/03-9-1,
Universidade de Sao Paulo, Departamento
de Ciéncia da Computagao, Marco 2004.

F. W. Trevizan and L. N. de Barros.
Robdtica cognitiva. Relatério técnico de
cniciagao cientifica FAPESP 308530/03-9-2,
Universidade de Sao Paulo, Departamento
de Ciéncia da Computagao, Setembro 2004.

