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Abstract

Planning involves an agent automatically reasoning about the environment and inferring
an action plan that achieves the goals with minimal cost based on predefined actions
and limited resources. Currently, there are several methods to solve planning problems,
including graph-based, SAT-based, and heuristic search planning methods. However, as
the problems we work on are at least PSPACE-complete, these traditional planning al-
gorithms struggle to find optimal solutions for large-size problems and complex domains
within a reasonable time.

Given the limitations of traditional planning algorithms and the significant success of
neural networks, researchers began to explore using neural networks to learn generalized
policies for solving planning problems. The state-of-the-art model GBFS-GNN, which
learns a generalized policy represented by a GNN using reinforcement learning, still faces
several limitations: the plan quality for large-size problems and complex domains is poor,
training times are too long, training on large problem-size datasets is challenging, and
more importantly, it cannot train and infer on domains with higher-arity predicates.

In this project, we introduce several methods to improve these limitations, such as (1)
the usage of advantage normalization, selecting the most likely action, and illegal edges
deletion to improve the plan quality and planning efficiency; (2) a new incremental
training procedure enabling to train on large problem-size datasets; and (3) handling
domains with higher-arity predicates through different approaches. We evaluate the im-
proved GBFS-GNN across multiple domains from the IPC 2023 Learning Tracks dataset.
The experimental results demonstrate that the improved GBFS-GNN significantly en-
hances the plan quality and planning efficiency, reduces training time, and is capable of
solving problems in domains with higher-arity predicates. Moreover, the plan quality
and planning efficiency of the improved GBFS-GNN surpasses that of other advanced
models.
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Chapter 1

Introduction

This chapter introduces planning, neural networks, and learning for planning and presents
the contributions and outline of this thesis.

1.1 Planning

Formulating a well-reasoned plan before action is a sign of intelligence. Planning in-
volves an agent automatically reasoning about the environment and inferring an action
plan that achieves the goals with minimal cost based on predefined actions and limited
resources (Geffner and Bonet, 2013). Planning is one of the fields where computer theory
and industrial applications are most tightly integrated. It has been widely applied in
aerospace, robotics, autonomous driving, and production scheduling. For example, it
provides decision support for Mars rovers (Chien et al., 2000), analyzes network vulner-
abilities (Boddy et al., 2005), controls industrial systems such as sheet metal processing
(Gupta et al., 1998) and industrial printing (Do et al., 2008), and generates safe routes
for commercial airlines (Geisser et al., 2020).

Currently, there are various methods to solve planning problems. The graph-based plan-
ning method (Blum and Furst, 1997) represents the planning problem through a plan-
ning graph and finds the solution with the backward backtracking search. The planning
graph is a compressed representation of the state space, where the proposition and action
mutexes explicitly represent the constraints in the planning problem. The SAT-based
planning method (Kautz et al., 1992) regards the planning problem as propositional
satisfiability (SAT) problem and encodes the problem description and constraints into a
conjunctive normal form (CNF) as the input for the SAT problem, which is then solved
by an efficient SAT solver to construct the planning solution. The heuristic search plan-
ning method treats the planning problem as a state space search problem, using common
search algorithms such as Greedy Best First Search (GBFS) and A∗ to solve the planning

1



1 Introduction

problem. To improve search efficiency, these planning methods typically use a heuristic
to guide the search, with representative heuristic functions including the additive/max
heuristic (Bonet and Geffner, 2001) and heuristic based on the relaxed plan (Hoffmann
and Nebel, 2001).

1.2 Neural Networks

Artificial Neural Networks (ANNs) are computational models that mimic the structure
and function of biological neural networks. Based on deep neural networks, deep learn-
ing (DL) learns inherent patterns in large-scale datasets, achieving automatic feature
extraction and recognition. Its performance has surpassed that of human experts and
traditional algorithms in various fields, and it is widely applied in computer vision (CV),
natural language processing (NLP), healthcare, finance, and other areas. For instance,
Convolutional Neural Networks (CNNs) (LeCun et al., 1998) have become the bench-
mark in the CV field, greatly outperforming traditional handcrafted algorithms like SIFT
(Lowe, 1999) and HOG (Dalal and Triggs, 2005); Recurrent Neural Networks (RNNs)
(Elman, 1990) have significantly improved language understanding and text generation
abilities in the NLP field, greatly outperforming traditional handcrafted algorithms like
BoW and n-gram. Neural network models based on Transformers (Vaswani et al., 2017),
such as Swin Transformer (Liu et al., 2021) and ChatGPT (Brown et al., 2020), even
outperform CNNs and RNNs in CV and NLP fields, demonstrating exceptional ability
in complex patterns and sequential dependencies.

Deep reinforcement learning (DRL), inspired by the behavior of animals to seek re-
wards and avoid punishments, uses neural networks to represent environment states
and action policies, using the rewards obtained from the interaction of the agent with
the environment as feedback signals to train the agent, and optimizing the policy for
problem-solving. This method has surpassed human experts and traditional algorithms
in strategic planning and decision-making abilities and has been widely applied in games,
robotics, parameter optimization, and other areas. For example, Google’s AlphaGo (Sil-
ver et al., 2016) used DRL to successfully defeat the human world champion in Go at
2017. At the meantime, it is also considered an important pathway towards general
artificial intelligence.

1.3 Learning for Planning

Given the limitations of traditional planning algorithms and the significant success of
neural networks in multiple fields, researchers began to explore the application of neural
networks in planning. Currently, neural network models used in planning can be divided
into two categories: learning heuristics and learning generalized policies.

Learning heuristics involves using neural networks to learn and infer heuristics, and
combining the output heuristics with heuristic search algorithms to solve planning prob-
lems. A typical example is STRIPS-HGN (Shen et al., 2020), which uses hypergraph
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1.4 Contributions

neural networks to represent state nodes. By relaxing the negative effects of actions, it
constructs a hypergraph model between actions and propositions for training domain-
dependent and domain-independent heuristics.

Learning generalized policies involves using neural networks to learn a generalized policy,
inferring the action probability distribution based on the learned policy, and selecting
actions through sampling to solve planning problems. For instance, GBFS-GNN (Rivlin
et al., 2020) utilizes the graph neural network (GNN) (Scarselli et al., 2008) to represent
the state and uses reinforcement learning techniques to learn generalized policies. It
then combines the neural network’s output of the action probability distribution with
an improved GBFS search algorithm to solve planning problems.

1.4 Contributions

The objective of this thesis is to improve and remove some of the current limitations
of GBFS-GNN, a state-of-the-art learning for planning model. The aim is to enable
GBFS-GNN to train on large problem-size datasets and domains with arbitrary arity
predicates within a reasonable time while reducing the training time and improving
planning performance. The contributions of this thesis are as follows:

Improving Training and Inference Performance

The original GBFS-GNN’s planning performance for large-size problems and complex
domains is poor, and its training times are too long. Moreover, the original GBFS-
GNN was trained using a small problem-size dataset, and it cannot complete training
on large problem-size datasets, such as the IPC 2023 Learning Tracks dataset, within
a reasonable time. Therefore, we replicate the original GBFS-GNN and propose four
optimization methods to address these limitations:

• Advantage Normalization: We use advantage normalization to standardize ad-
vantage estimation, reducing its variance, improving training stability, accelerating
model convergence, and enhancing model performance.

• Selecting Most Likely Action: During inference, we select the action with the
highest probability instead of sampling an action. This approach fully utilizes
the trained policy, converging more rapidly to the optimal solution and improving
planning performance.

• Illegal Edges Deletion: We delete illegal edges between nodes in the state graph
(a directed complete graph) that do not share binary relations to reduce training
and inference time and improve performance.

• Incremental Training Procedure: We divide the dataset sorted by problem size
into multiple splits. Training begins with the first split, and after several epochs,
the next split is merged into the current training set and training is resumed.
This process is repeated until the entire dataset is used for training. Training is
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stopped if the performance on the validation set does not improve for several con-
secutive evaluations. This method enables GBFS-GNN to train on large problem-
size datasets within a reasonable time while saving computational resources and
training time.

Handling Domains with Higher-arity Predicates

The original GBFS-GNN can only encode 0-ary, 1-ary, and 2-ary predicates (low-arity
predicates) as global, node, and edge features in the state graph, and it is unable to
solve problems in domains with higher-arity predicates. To address this limitation, we
propose two types of solutions:

• Decomposition: We decompose higher-arity predicates in the domain into binary
predicates. The decomposed domain and problem are then input into the original
GBFS-GNN for encoding, training, and inference. We develope two decomposition
methods, relational decomposition and token-based decomposition, and compare
their tradeoffs.

• Architecture Modification: We modify the architecture of the original GBFS-
GNN to directly encode higher-arity predicates as nodes and edges of the state
graph. We propose two modification methods: (1) simulating the relational decom-
position method by representing higher-arity predicates as binary predicates for
encoding states and effects; (2) simulating the token-based decomposition through
introducing the hub nodes in the state graph representing the relation between
parameters of higher-arity predicates to encode states and effects.

Standardized Evaluation

The original GBFS-GNN trains and infers on their own ad-hoc datasets. Their exper-
imental results depend heavily on the quality, quantity, and difficulty of the problems
in the datasets, making it challenging to fairly and accurately evaluate the models’ per-
formance. Therefore, we use the IPC 2023 Learning Tracks dataset, a public dataset in
the learning for planning field, to conduct experiments and compare the performance
with other models participating in the IPC 2023 Learning Tracks to ensure fairness and
accuracy.

Moreover, since only the Rovers domain in the IPC 2023 Learning Tracks dataset con-
tains higher-arity predicates, we construct the Grippers domain dataset mimicking the
structure and difficulty of the IPC 2023 Learning Tracks dataset to test our model,
which could also be used for experiments on other models in domains with higher-arity
predicates.
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1.5 Thesis Outline

1.5 Thesis Outline

• Chapter 2 – Background and Related Work aims to provide the reader with
background knowledge on planning and neural networks and relevant works in the
learning for planning field.

• Chapter 3 – GBFS-GNN for Domains with Low-arity Predicates first
discusses the original GBFS-GNN and its limitations. Then, it proposes four opti-
mization methods: advantage normalization, selecting the most likely action, ille-
gal edges deletion, and incremental training procedure to address the performance
limitations.

• Chapter 4 – GBFS-GNN for Domains with Higher-arity Predicates pro-
poses two types of solutions, decomposition and architecture modification, to ad-
dress the limitation of the original GBFS-GNN’s inability to handle domains with
higher-arity predicates.

• Chapter 5 – Evaluation describes the datasets and experimental setup, presents
the relevant experimental results in several domains, and provides a thorough
discussion.

• Chapter 6 – Conclusion and Future Work summarizes our contributions and
proposes several future research directions.

1.6 Terminology

Object: An entity within a planning problem.

Low-arity predicate: Predicates that include two or fewer parameters.

Higher-arity predicate: Predicates that include three or more parameters.

Encoding: An initial feature vector specified manually.

Embedding: A feature vector obtained through neural network training.

State graph: A graph output by the encoding of a state.

State graph component: Components of a state graph, including global at-
tributes, nodes, and edges.

Original GBFS-GNN: The GBFS-GNN as proposed in the original paper.

Improved GBFS-GNN: A neural network model that applies various optimiza-
tions to the original GBFS-GNN.

Improved GBFS-GNN (relational): The improved GBFS-GNN using simu-
lating the relational decomposition method of architecture modification.
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Improved GBFS-GNN (token): The improved GBFS-GNN using simulating
the token-based decomposition method of architecture modification.

Relation token: A predicate parameter or object introduced when decomposing
a predicate or proposition to represent the relationships between parameters of a
predicate.

Relation node / Hub node: A node corresponding to a relation token in the
state graph.

Relation edge: An edge between a relation node and other nodes in the state
graph.

6



Chapter 2

Background and Related Work

This chapter provides readers with background knowledge related to planning and neural
networks and relevant works in the learning for planning field. Section 2.1 discusses the
planning representations and algorithms for solving planning problems. Section 2.2
covers concepts and neural network models in deep learning and reinforcement learning.
Finally, Section 2.3 presents current neural network approaches applied to planning.

2.1 Planning

Planning involves an agent reasoning about the environment, making decisions based
on the predefined initial states, goal conditions, and actions, and ultimately produc-
ing a sequence of actions that achieve the goals with minimal cost. Depending on the
abstraction levels of states, environment, and actions, planning problems can be di-
vided into classical and non-classical planning problems. Classical planning problems
are based on strong constraints, requiring a known initial state, deterministic actions
without durations, and a fully observable environment. In this thesis, we mainly focus
on classical planning. A planning system will first represent the planning problem in
a formal language and then solve the planning problem. Therefore, we introduce the
formal representations of planning problems in Subsection 2.1.1, followed by algorithms
to solve planning problems in Subsection 2.1.2.

2.1.1 Representations in Planning

Classical Planning Representation

A classical planning problem can be represented as the tuple ⟨S, s0, SG, A, f, c⟩ (Geffner
and Bonet, 2013), where:

• S represents the set of states;
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2 Background and Related Work

• s0 ∈ S represents the initial state;

• SG ⊂ S represents the set of goal states;

• A represents the set of actions. A(s) ⊆ A represents the subset of actions exe-
cutable in the state s ∈ S;

• f(s, a) : S × A → S is the state transition function, indicating that executing
action a ∈ A(s) in state s ∈ S results in a new state s′ ∈ S;

• c(s, a) : S × A → R+ is the action cost function, indicating the cost of executing
action a ∈ A(s) in state s ∈ S.

Classical planning problems can be transformed into a search problem: starting from
the initial state, finding a sequence of actions π = [a1, a2, ..., aT ] called a plan to reach
any goal state. At each step t = 1, ..., T , the cost for the agent to execute an action
in the current state is c(t) = c(st, at), then the cost of the plan is

∑
i=1,...,T c(i). An

optimal planner finds the minimal cost plan π∗ among all feasible plans Π, that is
π∗ = argminπ∈Π

∑
i=1,...,T c(i).

STRIPS Representation

STRIPS (Fikes and Nilsson, 1971) is one of the earliest general planning description
languages. It utilizes a conjunctive form of propositions to describe states, represented
as the tuple ⟨F,O, I,G, c⟩, where:

• F represents the set of propositions. Each state s ⊆ F includes one or more
propositions;

• O represents the set of actions. Each action o ∈ O can be described as the tuple
⟨pre(o), add(o), del(o)⟩, where pre(o) ⊆ F represents the precondition of the action
a, and if pre(o) ⊆ s, it implies that action o can be executed in state s; add(o) ⊆ F
and del(o) ⊆ F represent the additive and delete effects of executing action o. The
successor state s′ = (s \ del(o)) ∪ add(o) is achieved by executing action o in state
s;

• I ⊆ F represents the initial state;

• G ⊆ F represents the set of goal states;

• c(o) : O → R+ is the action cost function, representing the cost of executing action
o ∈ O.

It is apparent that STRIPS is an encoding form of the classical planning representation
⟨S, s0, SG, A, f, c⟩.

PDDL Representation

The Planning Domain Definition Language (PDDL) (Aeronautiques et al., 1998) is a
STRIPS-based general planning description language that uses a domain file and a prob-

8



2.1 Planning

lem file to describe the planning domain and specific planning problems. The domain
file includes domain knowledge unrelated to specific planning problems, mainly includ-
ing types of objects, predicates, and action schemas. The problem file details a specific
planning problem, mainly including objects, the initial state, and goal conditions. A
domain file combined with different problem files constitutes various specific planning
tasks within a domain. For instance, in the Blocksworld domain and problem file:

(define (domain blocksworld)

(:requirements :strips)

(:types block)

(:predicates

(arm-empty)

(clear ?x - block)

(on-table ?x - block)

(holding ?x - block)

(on ?x - block ?y - block)

)

(:action pickup

:parameters (?b - block)

:precondition (and

(clear ?b)

(on-table ?b)

(arm-empty)

)

:effect (and

(holding ?b)

(not (clear ?b))

(not (on-table ?b))

(not (arm-empty))

)

)

...

)

(define (problem blocksworld-01)

(:domain blocksworld)

(:objects b1 b2 - block)

(:init

(arm-empty)

(clear b2)

(on-table b2)

(clear b1)

(on-table b1)

)

9



2 Background and Related Work

(:goal (and

(clear b1)

(on b1 b2)

(on-table b2)

))

)

In the domain file, the predicate on(?x−block, ?y−block) indicates that the “block” type
variable ?x is on top of the “block” type variable ?y. The action schema pickup(?b−block)
indicates picking up the “block” type variable ?b from the table. This action schema
requires the precondition that the predicates clear(?b), on-table(?b), arm-empty are true
to be executable. Executing this action schema results in a successor state where the
predicate holding(?b) is true, and the predicates clear(?b), on-table(?b), arm-empty are
false.

In the problem file, two “block” type objects b1 and b2 are defined. Predicates and action
schemas can be instantiated through these objects into propositions and actions, thereby
converting the PDDL into a STRIPS problem. The initial state and goal conditions are
represented by (: init...) and (: goal...).

2.1.2 Heuristic Search Planning

Currently, there are various methods for solving classical planning problems, among
which the most widely used is the state-space heuristic search. This approach views the
state space of the planning problem as a directed graph, representing states as nodes in
the graph, actions as directed edges from nodes that satisfy the action’s preconditions
to the nodes of the resulting successor states, and the directed edge weight as the cost
of action. Therefore, solving the classical planning problem can be transformed into a
shortest path search problem from the initial state node to a goal state node. Addition-
ally, heuristic search methods employs a heuristic h(s) as an estimate of the cost from
state s to a goal state, guiding the search algorithm to choose the best branch for search-
ing, rapidly crossing the state space, thereby significantly reducing the computational
complexity of the search process.

Heuristics

The heuristic function h(s) : S → R+ is used to evaluate the cost from state s to a
goal state, enabling heuristic search algorithms to focus their search on the paths most
likely to lead to a goal state. If for every state s in the state space, it holds that h(s) ≤
h∗(s), then this heuristic function is admissible. Combined with an appropriate search
algorithm, such as A∗, it can guarantee finding the optimal solution to the planning
problem.

InDelete-Relaxation classical planning, the delete-relaxation is a commonly used relaxation to compute
heuristics. For a STRIPS problem P = ⟨F,O, I,G, c⟩, the delete-relaxation is obtained
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by removing the delete effects of each action o ∈ O. The original problem P is trans-
formed into P ′ = ⟨F,O′, I, G, c⟩, where O′ = {⟨pre(o), add(o), ϕ⟩ | o ∈ O}, resulting
in a simpler delete-relaxation problem. This approach, by ignoring the delete effects
of actions, allows the number of true propositions in a state to monotonically increase,
making each state contain more information. Therefore, the set of applicable actions is
monotonically non-decreasing during search, thereby making the calculation of the cost
estimate easier.

In FF heuristicthis thesis, we utilize the commonly used delete-relaxation heuristic hFF (Hoffmann
and Nebel, 2001) for training and inference. hFF employs graph planning methods to
non-optimal solve the delete-relaxation problem and uses either the total number of
actions or the sum of action costs from the plan leading to each goal proposition as the
heuristic estimate for the original problem. If the plan for solving the delete-relaxation
problem is optimal, then hFF is admissible. But in practice, the admissible of hFF is
often sacrificed for higher computational efficiency.

Algorithms

The GBFSGreedy Best-First Search (GBFS) algorithm is a widely used heuristic search algo-
rithm. It begins from the initial state node, selecting the state node with the minimal
f(s) = h(s) from the candidate set for expansion, where h(s) represents the heuristic
estimate of the state. Then, successor state nodes generated by the expansion are added
to the candidate set. This process repeats until a goal state node is reached or all state
nodes have been explored. GBFS focuses only on the future costs when evaluating nodes
and does not consider the cost already incurred to reach the current state node. GBFS
is simple to implement and has high search efficiency, enabling it to find the plan that
solves the planning problem quickly. However, GBFS does not ensure that the plan
found is optimal.

The A∗A∗ algorithm evaluates nodes by considering both the cost already incurred and
the future costs. It starts from the initial state node, selecting the state node with the
minimal f(s) = g(s) + h(s) from the candidate set for expansion, where h(s) represents
the heuristic estimate of the state and g(s) represents the cost to reach the current state.
Then, successor state nodes generated by the expansion are added to the candidate set.
This process repeats until a goal state node is reached or all state nodes have been
explored. If the heuristic used is admissible, A∗ ensures that the plan found is optimal.
Compared to GBFS, A∗ is more comprehensive and accurate, capable of finding higher
quality plans despite its lower search efficiency.

2.2 Neural Networks

Artificial Neural Networks (ANNs) are computational models that mimic the structure
and function of biological neural networks. It originated in the 1940s and has made sig-
nificant progress through ongoing research, solving numerous problems that traditional
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algorithms could not address and outperforming traditional algorithms in many fields.
Thus, ANNs are widely used in computer vision (CV), natural language processing
(NLP), robotics, healthcare, and finance. We introduce the deep learning concepts and
models, including MLP and GNN, in Subsection 2.2.1. Then, Subsection 2.2.2 presents
the reinforcement learning concepts and models, including Actor-Critic and PPO.

2.2.1 Deep Learning

Deep learning (DL) is a machine learning technique based on deep neural networks,
primarily focusing on learning inherent patterns in large-scale datasets to achieve feature
extraction and recognition. The core of deep learning is to automatically extract and
combine low-level features from raw data to learn high-level abstract representations
through multi-level non-linear transformations without the need for manually designed
feature extraction algorithms. This technique has surpassed traditional algorithms and
human expert performance in many fields.

MLP

The Multilayer Perceptron (MLP) (Rumelhart et al., 1986) is one of the simplest feed-
forward neural networks. Figure 2.1 illustrates the structure of an MLP with one hidden
layer. An MLP consists of multiple neuron layers, each containing several neurons. As
shown in Figure 2.2, each neuron represents a function that applies a weighted sum to
multiple inputs and then uses non-linear activation functions such as Sigmoid, ReLU, or
Tanh to produce an output. The formula is as follows:

y = ϕ(
n∑

i=0

wi · xi + b)

where w is the weight of summation, b is the bias, ϕ is the non-linear activation function.

In an MLP, information flows only in one direction: from the input nodes through the
neurons of the hidden layers to the output nodes, without any cycles. MLPs are fully
connected between adjacent layers, with no connections within the same layer. The first
layer of an MLP receives the input feature vector, which then passes through one or more
hidden layers to compute hidden representations, eventually producing the final output
of the MLP in the output layer. As the number of hidden layers increases, the neural
network extracts more complex features from the input. The formula for computing the
hidden representations and final output in the MLP shown in Figure 2.1 is as follows:

h = ϕ(Whx+ bh)

y = ϕ(Wyh+ by)
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2.2 Neural Networks

Figure 2.1: An example of a MLP with 6 neurons in the input layer, 4 neurons in a
hidden layer, and 2 neurons in the output layer.

Figure 2.2: An example of a single neuron with 3 inputs, 3 weight, and 1 output.

13
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whereWh and bh represent the weight matrix and bias vector from the input layer to the
hidden layer, Wy and by represent the weight matrix and bias vector from the hidden
layer to the output layer, x is the input feature vector, h is the hidden representation,
y is the final output vector.

GNN

Traditional deep neural network models like Convolutional Neural Networks (CNNs)
(LeCun et al., 1998) are mainly used for processing Euclidean space data such as im-
ages. Euclidean space has direction and location, and each node has a fixed number
of neighboring nodes. Therefore, we can use the same convolutional kernel to operate
on all nodes. However, for non-Euclidean space data such as graphs, the number of
neighboring nodes per node is not fixed, and non-Euclidean space lacks the direction
and location, which is challenging for traditional deep neural network models to handle
efficiently.

Graph Neural Networks (GNNs) (Scarselli et al., 2008) are neural network models de-
signed to handle graph-structured data, generalizing traditional deep learning techniques
to non-Euclidean space. The goal of GNNs is to learn a representation vector for each
node in a graph based on the structural features of the graph that encodes information
from neighboring nodes. GNNs use a message-passing framework, which mainly involves
two steps:

1. Collecting messages from neighboring nodes, which is the process of information
propagation;

2. Using neural networks to update node representations, which is the process of
information aggregation.

GNNs can be divided into two categories:

• Spectral-based GNNs model from a traditional graph signal processing perspec-
tive and define graph convolution operations in the Fourier domain of graph data
based on spectral graph theory, having strict mathematical derivations and theo-
retical support. Graph Convolutional Network (GCN) (Kipf and Welling, 2016) is
a widely applied spectral-based GNN model, utilizing the eigendecomposition of
the Laplacian matrix to aggregate and update node features.

• Spatial-based GNNs learn node representations by aggregating information
from neighboring graph components from the graph structure perspective. Graph
Networks (GNs) (Battaglia et al., 2018) are one of the best-known general spatial-
based GNN frameworks, which generalize several existing GNNs and have a strong
relational inductive bias.

InGN GNs, a graph is defined as the tuple G = ⟨u, V,E⟩, where u represents global at-
tributes, V = {Vi} represents a set of nodes, and E = {⟨ek, rk, sk⟩} represents a set
of edges, where rk is the receiving node and sk is the sending node. The aggregation
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Figure 2.3: The computational steps of the GN block are as follows: (1) Use ϕe to up-
date each edge’s embedding, use ρe→v to aggregate the embeddings of edges
starting from Vi for subsequent node updates, and use ρe→u to aggregate all
edge’s embeddings for subsequent global attribute updates; (2) Use ϕv to up-
date each vertex’s embedding, use ρe→v to aggregate all vertex embeddings
for subsequent global attribute updates; (3) Use ϕu to update the global at-
tributes. Source: Battaglia et al. (2018)

and update functions in GNs are as follows, with the computational steps illustrated in
Figure 2.3:

e′k = ϕe(ek, vrk , vsk , u), ē
′
i = ρe→v(E′

i), ē
′ = ρe→u(E′)

v′i = ϕv(ē′i, vi, u), v̄
′ = ρv→u(V ′)

u′ = ϕu(ē′, v̄′, u)

where E′
i = {⟨e′k, rk, sk⟩}rk=i, E

′ = {⟨e′k, rk, sk⟩}, V ′ = {V ′
i }

GN blocks offer flexible representations, allowing global, node, and edge attributes to
be represented in various formats, including vectors, tensors, sequences, sets, and even
graphs. The output of a GN block can also be customized based on the specific tasks.
Furthermore, the structure and aggregation and update functions within GN blocks can
be configured in various ways, and diverse GNN models can be derived through different
configurations. Additionally, complex model structures can be constructed by stacking
any number of GN blocks.

Moreover, for a given node in a graph, the influence of its neighboring nodes may vary.
Therefore, attention mechanisms have been integrated into the GNN’s message-passing
process, assigning different weights to neighboring nodes and updating the hidden state
of a node using the weighted aggregation of neighboring nodes. Velickovic et al. (2017)
proposed the Graph Attention Network (GAT), which employs a multi-head attention
mechanism to represent relationships between nodes, capturing the varying importance
of neighboring nodes to a central node, thereby enabling adaptive weight allocation to
neighboring nodes.
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Training

TheLoss loss function measures the difference between the model outputs and the truth
labels, and the training objective of deep neural networks is to minimize the loss by
optimizing model parameters. The loss function formula is as follows:

ŷ = f(x, θ)

L = L(ŷ, y)

where x represents the input feature, θ represents all the parameters, including weight
matrices and bias vectors, ŷ is the model output, y is the truth label, and L is the
loss function, such as the mean squared error (MSE) loss function or cross-entropy loss
function. To prevent overfitting in neural networks, a regularization term is usually
included in the loss function, calculated as follows:

L = L(ŷ, y) + λ · Ω(θ)

DeepGradient Descent learning typically uses the gradient descent algorithm to update the weights and
biases of the neural network. Specifically, during each iteration, the gradient descent
algorithm calculates the gradient of the loss with respect to each parameter and adjusts
the parameters in the direction of the negative gradient to minimize the loss.

Backpropagation (Rumelhart et al., 1986)Backpropagation is an efficient technique for computing param-
eter gradients, consisting of forward and backward propagation stages. During forward
propagation, data flows from the input layer to the output layer, computing the corre-
sponding hidden representations at each hidden layer. After reaching the output layer,
the loss is evaluated by a loss function. Back propagation starts from the output layer
and propagates errors backward through the network, using the chain rule to calculate
the error gradients for each layer, which are then used to update the weights and biases
of the neural network.

2.2.2 Reinforcement Learning

Reinforcement learning (RL) is inspired by the behavior of animals seeking rewards and
avoiding harm and trains agents with rewards received from their interactions with the
environment as feedback signals. It is generally represented using a Markov decision
process described by the tuple ⟨S,A,R, P ⟩, where:

• S represents the state space of the environment;

• A represents the action space of the agent;

• R represents the reward function, which evaluates the quality of the actions per-
formed by the agent;
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Figure 2.4: The structure of reinforcement learning.

• P represents the state transition probability function, where for every state s ∈ S
and every action a ∈ A, p(s′|s, a) is the probability distribution for transitioning
to the next state s′.

The agent’s policy π maps the state space to the action space. At each time step t,
based on the current state st ∈ S and the policy π, the agent takes action at ∈ A. It
then transitions to the next state st+1 ∈ S according to the state transition probability
function P , while receiving a reward rt from the environment according to the reward
function R. Due to the Markov property, the new state st+1 depends only on the current
state st and action at, not on any prior states or actions. The objective of reinforcement
learning is to continually interact with the environment to optimize the policy π, thereby
maximizing the cumulative reward. The overall framework of reinforcement learning is
shown in Figure 2.4.

Deep learning focuses on the representation of objects, while reinforcement learning em-
phasizes learning policies to solve problems. Deep reinforcement learning (DRL) com-
bines both advantages, utilizing deep learning to learn abstract representations from
large-scale data automatically, and based on these representations, it conducts self-
motivated reinforcement learning to optimize problem-solving policies. DRL is highly
generalizable, with agents learning and constructing their knowledge directly from raw
input signals without prior domain knowledge or human intervention. Therefore, DRL
has been widely applied in game, robotics, and parameter optimization and is considered
a significant way toward general artificial intelligence.

Value-based Model vs. Policy Gradient-based Model

Deep reinforcement learning models are mainly divided into value-based and policy
gradient-based models. Value-based models use deep neural networks to approximate
the value function and iteratively update it using TD algorithms or Q-learning, indirectly
obtaining the optimal policy from the optimal value function. A widely used value-based
model is the Deep Q-Network (DQN) (Mnih et al., 2015). Policy gradient-based models
establish a policy network to learn the action probability distribution for each state and
optimize the parameters by computing the gradient of the expected rewards, eventually
converging on the optimal policy. A common policy gradient-based model is the Trust

17



2 Background and Related Work

Figure 2.5: The structure of Actor-Critic.

Region Policy Optimization (TRPO) (Schulman et al., 2015).

Actor-Critic

Regarding application scenarios, value-based models output the value of each action and
are suitable only for discrete action space; policy gradient-based models can directly
output the action probability distribution, thus suitable for both discrete and continu-
ous action space. However, policy gradient-based models have poorer convergence and
require sampling a series of data at each iteration to update the policy gradient, unlike
value-based models, which can perform single-step updates.

Actor-Critic models (Sutton et al., 1999) integrate the advantages of both value-based
and policy gradient-based models, also addressing their shortcomings. Its structure
includes a policy network (Actor) that selects and updates actions based on the policy
gradient algorithm and a value network (Critic) that evaluates actions based on the
value function. During training, the parameters of the policy and value networks are
updated alternately. Actor-Critic can handle continuous actions like policy gradient-
based models, turning the sequential updates of policy gradient-based models into single-
step updates and reducing the variance of the policy gradient algorithm. The structure
of the Actor-Critic framework is shown in Figure 2.5.

PPO

The Proximal Policy Optimization (PPO) (Schulman et al., 2017) model is a reinforce-
ment learning model based on the Actor-Critic framework. Previous policy gradient-
based models were highly sensitive to update steps, often causing significant differences
between old and new policies during training, leading to instability and poor perfor-
mance. PPO aims to optimize the policy within a certain constraint range, avoiding too

18



2.3 Learning for Planning

significant changes that could destabilize training and degrade performance. Thus, PPO
uses an “alternative” objective to limit the difference between new and old policies:

L(θ) = Ê
[
min(rt(θ), clip(rt(θ), 1− ϵ, 1 + ϵ))Ât

]
where rt(θ) = πθ(at|st)

πθold
(at|st) represents the ratio of new to old policies, Ât represents the

advantage estimates, and clip(rt(θ), 1−ϵ, 1+ϵ) clips the ratio rt(θ) to keep it within [1−
ϵ, 1 + ϵ]. PPO iterates with small batches of samples over multiple episodes, optimizing
using the ratio of new to old policies and limiting the extent of policy improvement with
the clip function. Among many reinforcement learning models, PPO is stable, adaptable,
performs well, and is easier to implement than the earlier TRPO model.

2.3 Learning for Planning

Before the popularity of machine learning, solving planning problems primarily relied
on traditional algorithms and heuristics such as GBFS and hFF . In recent years, with
the significant successes of neural networks in CV, NLP, and game, deep learning and
reinforcement learning began to be applied in the planning field. Currently, neural net-
work models used in planning can be divided into two categories: learning heuristics and
learning generalized policies, which we will discuss in Subsection 2.3.1 and Subsection
2.3.2, respectively.

2.3.1 Learning Heuristics

Learning heuristics can be seen as supervised learning that uses neural networks to train
and infer heuristics, which are then combined with heuristic search algorithms such as
A∗ and GBFS to solve planning problems. Yoon et al. (2008) learn a domain-dependent
linear heuristic function through δ(s) = h∗(s) − hFF (s), which are linear combinations
of features extracted from delete-relaxation plans, including the length of the delete-
relaxation plan and ignored delete effects information.

Arfaee et al. (2010) employs a bootstrap learning technique that adaptively updates
training data, learning a stronger heuristic function from training samples provided by a
weak heuristic function. Starting from a weak heuristic model, if the heuristic can solve a
training problem, the state sequence of the plan is added to the training set. If it cannot,
states are generated starting from a goal state using a random walk algorithm and added
to the training set. The weak heuristic model is then trained with the updated dataset
to develop a stronger heuristic model. By iterating these steps, the model’s performance
continuously improves. Geissmann (2015) and Ferber et al. (2022) have shown that this
bootstrap learning technique can be used to learn domain-specific heuristic functions.

Garrett et al. (2016) does not treat learning heuristic as a regression problem like previous
research but instead approaches it as a state ranking problem. Using feature vectors of
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action pairs as inputs, he trains a RankSVM to rank states. Features for each pair
of actions (a1, a2) include the intersection of preconditions and effects of a1 and a2,
their temporal order in approximate plans, and existing domain-independent heuristic
estimates. Ultimately, the state rankings rather than the estimated cost from the current
state to a goal state are used as the domain-dependent heuristic estimate, which achieves
better results than the regression-based learning heuristic. Hao et al. (2024) extends this
ranking approach by using DL methods to compute state embeddings as well as rankings.

STRIPS-HGN (Shen et al., 2020) is a supervised learning method that uses the hyper-
graph neural network, a generalization of GNN, to represent state nodes and constructs
a hypergraph between actions and propositions under the delete-relaxation problem for
training the domain-dependent and domain-independent heuristics. It supports gener-
alization across different problem sizes and performs better than hmax. Furthermore,
the heuristics learned by STRIPS-HGN can be combined with any heuristic search algo-
rithms, including A∗, to achieve near-optimal plans, unlike models like Garrett’s, where
learned heuristics can only be combined with rank-based heuristic search algorithms,
such as GBFS. GOOSE (Chen et al., 2024) is another GNN method with a novel graph
representation created specifically for learning heuristics.

Learning heuristics models can lead to heuristics with better performance than tra-
ditional heuristics, and some models can learn domain-independent heuristics, which
eliminates the need for neural networks to be trained separately for each domain. How-
ever, these models cannot directly output a probability distribution of candidate actions,
and the ultimate effectiveness depends on the heuristic search algorithm. Moreover, this
approach needs to use the neural network to infer heuristic estimates for all successor
states to select the best action at each state, which will significantly increase runtime.

2.3.2 Learning Generalized Policies

Given a specific planning problem with state set S and action set A, a policy π : S → A
is a function that maps the current state to an action to be taken, which can only
output a solution for a particular problem. We aim to find a higher level of generalized
policy that can be used to solve any problem within the given domain, thus sharing the
underlying planning logic. For example, in the Blocksworld domain, finding the optimal
solution is usually an NP-hard problem. However, we can use a generalized policy—first,
unstack all blocks and put them on the floor; then, starting from the bottom blocks,
stack blocks according to the target configuration—to find a feasible solution for any
size of Blocksworld problem in polynomial time, although this policy and plan are not
optimal.

Neural networks have the ability to infer general principles that remain valid beyond
the observed range from examples. Thus, we can use neural networks to learn such a
generalized policy from small-size problems within a domain and then use the learned
generalized policy to solve large-size problems in the same domain. From another point
of view, heuristic search algorithms can be considered a manually designed generalized
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policy, and we can use the powerful learning capabilities of neural networks to auto-
matically learn a generalized policy with better performance than manually designed
generalized policy through data.

Groshev et al. (2018) use a handcrafted translator to convert states into an image form,
for example, transforming the state of the Sokoban domain into a grid-based image
representation that includes the warehouse layout, the position of boxes, the initial
state, and the target state. The images are then used as input to train the CNN or
GNN to learn a generalized policy, predict the action to be taken in the current state
and the length of the plan, and use the bootstrap method to update the training set.
However, this approach depends on the visual representation of the problem, requiring
a handcrafted translator designed for each domain.

ASNets (Toyer et al., 2018, 2020) mimic traditional non-learning planners through su-
pervised learning, learning solutions from small-size problems and integrating domain-
independent heuristics to improve performance, thereby obtaining a generalized policy.
ASNets consist of alternating action layers and proposition layers, connected according
to the action schema in the (P)PDDL. ASNets can be seen as a graph neural network
architecture that represents the state as a graph, performs message passing between
propositions and actions, and uses different update functions according to different ac-
tion schemas. The weight-sharing scheme of this architecture theoretically allows it to be
applied to any size problem in the given domain. Additionally, ASNets can be combined
with Upper Confidence Bounds applied to Trees (UCT) (Shen et al., 2019) to optimize
suboptimal generalized policies due to insufficient training or architectural limitations.
However, ASNet’s fixed receptive field limits its ability to infer over long paths.

Another state-of-the-art neural network model, GBFS-GNN (Rivlin et al., 2020), uses
GNN and reinforcement learning to learn generalized policies and combines the inference
results of the neural network with an improved GBFS search algorithm to enhance
performance. We will introduce it in detail in Section 3.1.

ToRPIDo (Bajpai and Garg, 2018) and TraPSNet (Garg et al., 2019) learn generalized
policies for probabilistic planning problems defined in RDDL. They encode the state as
a graph, where nodes represent objects and edges indicate two objects corresponding to
two edge nodes are connected by non-fluents. Then, they use GCN and GAT to obtain
state representation in latent space. However, these models assume the domain only
contains unary actions and binary non-fluents.

Compared to traditional non-learning planners, generalized policies learned from neu-
ral networks can provide higher-quality solutions with lower computational complexity.
Unlike learning heuristics methods, generalized policies can directly output the action
probability distribution and only require a single inference by the neural network at each
state to determine the action to be executed, thus solving the planning problem more
efficiently. However, most models learning generalized policies can only learn domain-
dependent generalized policies and need to be trained separately for each domain.
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Chapter 3

GBFS-GNN for Domains with Low-arity
Predicates

In this chapter, we will introduce the original GBFS-GNN and present its limitations in
Section 3.1, and then propose improvements to address these limitations in Section 3.2.

3.1 Original GBFS-GNN

In common discrete action reinforcement learning problems, the set of actions is fixed.
For example, in the Grid World problem, the agent can only take one of four movements:
up, down, left, or right. Hence, the core approach of common reinforcement learning
models involves inputting the state embedding into the MLP to obtain the value or
probability distribution of each action in the fixed action set, and then selecting an
action to interact with the environment. Therefore, common reinforcement learning
models only require embedding the state as a single vector without needing to embed
the action.

However, in classical planning problems, the action set is not fixed, and the specific
actions and the number of actions in the action set under each state are different, mean-
ing the action set is state-dependent. Taking the Blocksworld domain as an exam-
ple, when the state = {arm-empty, on-table(block1), on(block2, block1), clear(block2)},
the action set includes the action unstack(block2, block1); while when the state =
{on-table(block1), holding(block2)}, the action set includes actions putdown(block2) and
stack(block2, block1). Moreover, the same actions within different states should have
different representations. Therefore, we cannot simply use common discrete action rein-
forcement learning models to solve classical planning problems.

The training and inference process of the original GBFS-GNN is illustrated in Figure 3.1
and encompass the following steps:
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1. Encode the state as a graph and input it into the GNN to obtain the state embed-
ding, including global, node, and edge embeddings.

2. Combine the effects of actions and the state embedding affected by the effects as
the effect encoding and input it into the MLP to obtain the action embedding.
The action embedding is state-dependent, containing both the action and state
information.

3. Input the action embeddings into the reinforcement learning model to obtain the
value of each action, then use softmax to normalize these action values into an
action probability distribution.

4. Integrate the output of the neural network model with the heuristic search algo-
rithm to solve the planning problems.

This section will introduce these four main steps in order and discuss the limitations
with the original GBFS-GNN.

3.1.1 State Representation

State Encoding

In planning, the state is a complex data structure containing many objects and propo-
sitions, and a single vector may not fully and accurately represent its complex internal
structure. Moreover, since we wish for the action representation to be state-dependent,
containing both the action and state information, the state embedding should include
multiple vectors associated with effects of action. Therefore, the original GBFS-GNN
encodes the state as a directed complete graph with strong expressiveness, where dif-
ferent graph components are associated with different propositions affected by effects of
action.

Specifically, the directed complete graph consists of the global attributes, nodes, and
edges, each with its attributes described by a feature vector. The feature vector contains
three parts: features describing the previous state, the current state, and the goal. These
three parts are identical in size and used to fully describe the information of a state
from its past state, current state, to its goal state, hence called the history-state-goal
graph (also referred to as state graph). In each part of the state graph, the original
GBFS-GNN uses the global attributes to represent the set of all unique entities in the
domain, such as the arm in the Blocksworld domain, whose attributes are the domain’s
0-ary predicates; nodes to represent objects in the problem, whose attributes are the
domain’s 1-ary predicates, and each object type is also considered a 1-ary predicate;
and edges to represent relationships between objects, whose attributes are the domain’s
2-ary predicates.

Each feature in the feature vector is a binary value of 0 or 1. In the history part, the
current state part, and the goal part of the state graph, an feature being 1 indicates
that its corresponding grounded predicate is present in the history state, current state,
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3 GBFS-GNN for Domains with Low-arity Predicates

Figure 3.2: The example history-state-goal graph (state graph) of the Blocksworld do-
main. The left side shows the PDDL description of the history-state-goal,
and the right side shows the graph representation of the same history-state-
goal. Orange represents history information, blue represents state informa-
tion, and green represents goal information.

or goal, respectively, and 0 indicates the opposite. An example of a state graph from
the Blocksworld domain is as Figure 3.2.

State Embedding

Due to the simplicity of the aforementioned state encoding method, its capacity for
representation is limited. Furthermore, there is a lack of connectivity among global at-
tributes, nodes, and edges, which hinders a comprehensive and accurate representation
of state information. Therefore, after encoding the state into a state graph, the orig-
inal GBFS-GNN employs a GNN to train it, performing message passing between the
different components of the graph. This process yields the embeddings of nodes, edges,
and global attributes in the latent spaces. The original GBFS-GNN utilizes two types of
GNN blocks: the Graph Network block (GN block) and the Graph Network Attention
block (GNAT block). These two GNN blocks share a similar methodology for message
passing and update sequences:

1. The edge is updated using the original edge and the source node.

2. The node is updated using the original node, the incoming edges, and the global
attributes.

3. The global attributes is updated using the original global attributes and the average
of all nodes.

For domains of varying complexity, the original GBFS-GNN employs GNNs with dif-
ferent stacking approaches: for simpler domains, such as Blocksworld, it employs two
successive GN blocks; for more complex domains, such as Satellite, it utilizes a GNAT
block followed by a GN block. Moreover, the original GBFS-GNN introduces a residual
connection mechanism between the two layers of GNN blocks to mitigate the vanish-
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Figure 3.3: The GNN message passing process. The black elements represent the graph
components updated at each step, the blue elements represent the additional
graph components used to update that component, and the gray elements
represent the graph components not used. On the left: updating the edges.
In the middle: updating the nodes. On the right: updating the global at-
tributes. Source: Rivlin et al. (2020)

ing gradient problem while also enabling the model to better integrate features across
various levels of abstraction. Figure 3.4 illustrates these two stacking approaches.

GN block GN blockis similar to the one described in Subsection 2.2.1. Mathematically, it performs
the following operations:

Figure 3.4: Two types of GNNs with different stacking approaches
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ẽij = ϕe([eij , vi])

hij = ϕv1([vj , ẽij ])

mi = ψ(hij)

ṽi = ϕv2([mi, u])

ũ = ϕu(
1

|v|
∑
i∈v

ṽi)

where [x, y] represents the concatenation operation, ϕ represents the MLP, and ψ rep-
resents the max-pooling operation.

During the update process of a GN block, each node equally receives information from
its neighbors. Although it can achieve the purpose of information transmission, it does
not allow for targeted focus on key information.

ToGNAT block address this limitation, the original GBFS-GNN proposes the GNAT block, which
introduces an attention mechanism similar to that of Transformers. Mathematically, it
performs the following operations:

ẽij = ϕe([eij , vi])

valuei = ϕvalue(vi)

keyi = ϕkey(vi)

queryij = ϕquery(ẽij)

attentionij =
exp(keyi · queryij)∑
p∈v exp(keyi · queryip)

mi = φ(attentionij ⊙ ẽij)

ṽi = ϕv([vi,mi, u])

ũ = ϕu(
1

|v|
∑
i∈v

ṽi)

where [x, y] represents the concatenation operation, ϕ represents the MLP, φ represents
the sum-pooling operation, and ⊙ represents element-wise product operation.

During its update process, the GNAT block employs an attention mechanism that allows
each node to focus on certain key information, optimizing the performance of message
passing between neighboring nodes. This mechanism significantly enhances the model’s
expressive capability, thereby improving the performance of the GBFS-GNN.
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3.1 Original GBFS-GNN

3.1.2 Action Representation

At each step of the search, a successor-state generator is employed to take the current
state and output a list of legal actions. Since the selection of actions is primarily based
on their effects, the original GBFS-GNN uses an effect-based embedding to describe
an action: encoding all effects of an action and then training them through the MLP,
followed by a sum-pooling operation on the trained effect embeddings to obtain the
action representation.

Specifically, an action is comprised of preconditions, add effects, and delete effects. As
the legal actions are provided by the successor-state generator (i.e., actions all meet their
preconditions), preconditions can be ignored, and only encoding the add and delete ef-
fects. The original GBFS-GNN uses a one-hot feature vector to represent the effect, with
each feature being a ternary value of 0, -1, or 1. Each effect influences a grounded pred-
icate in the state, hence each effect corresponds to a state graph component associated
with the grounded predicate. The dimension of the effect feature vector matches that of
the corresponding state graph component encoding. A feature value of 0 indicates the
corresponding grounded predicate is unaffected by the effect, while 1 and -1 indicate a
positive or negative impact (i.e., this effect is an add effect or del effect), respectively.
To ensure the action representation is state-dependent, containing both the action and
state information, the original GBFS-GNN concatenates each effect feature vector with
the effect’s corresponding state graph component embedding as the effect encoding to
represent the impacts of this effect on the current state.

Subsequently, effect encodings are grouped based on the type of corresponding state
graph component (e.g., global attributes, node, and edge) and input into three MLPs
for training, yielding the effect embedding for each effect. A sum-pooling operation is
then performed on all effect embeddings of an action to derive the action embedding,
which includes the information of action and state, indicating the impacts of this action
on the current state. Figure 3.5 illustrates the process of action embedding.

3.1.3 Training

The objective of GBFS-GNN is to train models using problems of a small size to ob-
tain the generalized policy and then solve problems of a much larger size, leading to a
difference between the state space of the training and testing set. Although supervised
learning could train the model with the optimal solution of a problem, this approach
primarily learns the inherent patterns from the data, performing well only within the
state space covered by the training data and potentially failing to make optimal deci-
sions for unseen states. Reinforcement learning, on the other hand, learns policies to
solve problems through interaction with the environment, not limited by known optimal
solutions, and can make optimal decisions for unseen states. This makes reinforcement
learning particularly suited for planning and decision-making problems, prompting the
choice to train the GBFS-GNN using reinforcement learning. The PPO model, chosen for
its simplicity, broad applicability, effectiveness, and stability, serves as the foundational
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3 GBFS-GNN for Domains with Low-arity Predicates

Figure 3.5: The action embedding process. From left to right: gray blocks represent
action effects, blue blocks represent state graph components embeddings,
red blocks represent one-hot effect feature vectors, black pieces represent
MLPs, purple blocks represent effect embeddings and then scattered back to
their origin actions, and green blocks represent action embeddings. Source:
Rivlin et al. (2020)
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reinforcement learning model for the GBFS-GNN.

Since the original GBFS-GNN focuses on finding a feasible plan to solve planning prob-
lems, it models these problems as a binary sparse reward environment. It uses five times
the value of the FF heuristic for the initial state as the maximum acceptable plan length,
rewarding the agent with a score of 1 if it solves the planning problem within this length;
otherwise, no reward is given. The original GBFS-GNN inputs the action embeddings
into the PPO’s policy network (Actor) to evaluate the value of each legal action under
the current state, then normalizes these action values using a softmax function to obtain
an action probability distribution. At the same time, it inputs the embedding of global
attributes into the PPO’s value network (Critic) to acquire the current state’s value.
The resulting action probability distribution and state value are used for subsequent
inference. Moreover, the training set includes problems whose size is small enough to be
occasionally solved by a randomly initialized policy, allowing for effective feedback and
learning at the initial training stage.

Several improvements to the original PPO have been implemented in the original GBFS-
GNN:

1. Unlike in the original PPO, where model parameters are updated after a fixed
number of rollout steps, often terminating the episode prematurely, the original
GBFS-GNN performs rollout until the agent receives a reward or reaches the plan
length limit, avoiding premature episode termination. This ensures the data in the
rollout buffer remains complete and sequential, enhancing training effectiveness.

2. The original PPO uses Bootstrapping Value Estimation or Generalized Advan-
tage Estimation (GAE) as the return function, whereas the original GBFS-GNN
employs a modified Empirical Return function, defined as follows:

Rt = rt + γT−t+1Rt+1

where Rt represents the cumulative discounted return at time step t, rt represents
the reward received at time step t, and γ represents the discount factor.

3. While the original PPO performs gradient descent on each batch, larger batch sizes
can stabilize the training process and improve performance. Therefore, the original
GBFS-GNN uses cumulative gradient descent to simulate super large batch size.

3.1.4 Inference

During the inference process, we can directly use the neural network for rollout. Starting
from the initial state, the current state is input into the neural network to obtain the
action probability distribution. Next, we sample from this distribution to select an
action to interact with the environment. This process is repeated until we either obtain
the reward or reach the maximum plan length. While this method is straightforward to
implement, its success rate is relatively low for complex domains and large-size problems.
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3 GBFS-GNN for Domains with Low-arity Predicates

The original GBFS-GNN introduces a neural network-based heuristic estimation, defined
as follows:

h(s, a) =
π(a | s) · V (s)

1 +H(π(· | s))
where h(s, a) represents the heuristic estimate for choosing action a under state s, π(a | s)
is the probability of action a output by the actor part of PPO, V (s) is the value of state s
output by the critic part of PPO, and H(π(· | s)) is the entropy of the action probability
distribution. This heuristic estimation can be used with the heuristic search algorithm,
such as GBFS, to solve planning problems.

Many zero-sum game solvers have significantly improved inference performance by com-
bining search algorithms with neural network policies. For example, AlphaGo (Silver
et al., 2016) combines the Monte Carlo Tree Search algorithm with a deep neural network
policy to achieve remarkable results, defeating the world champion of Go. The original
GBFS-GNN also uses this inference method, combining the heuristic search algorithm
GBFS with a neural network policy and heuristic to decide on the next action to take.
Specifically, similar to standard GBFS, each state-action pair is considered a node in
the search tree, and the heuristic described above is used to navigate through the tree.
Starting from the initial state node, the node with the best heuristic estimate is selected
from the open list, and the neural network performs a rollout on it. If the goal state is
reached within the maximum plan length, this plan is returned; otherwise, this node is
expanded, and its child nodes are put into the open list. This process is repeated until
the time limit is reached. Figure 3.6 illustrates this inference procedure.

3.1.5 Limitations of Original GBFS-GNN

The original GBFS-GNN has the following limitations:

1. The original GBFS-GNN’s planning performance for large-size problems and com-
plex domains is poor, and its training times are too long.

2. The original GBFS-GNN was trained using a small problem-size dataset, and it
cannot complete training on large problem-size datasets, such as the IPC 2023
Learning Tracks dataset, within a reasonable time.

3. The original GBFS-GNN can only encode 0-ary, 1-ary, and 2-ary predicates (low-
arity predicates) as global, node, and edge features in the state graph, and it is
unable to solve problems in domains with higher-arity predicates.

In the next section, we address limitation 1 and 2. In Chapter 4, we address the arity
limitation.

3.2 Improving Training and Inference Performance

As mentioned in the previous section, there is a need to optimize the training and in-
ference performance. Therefore, we propose four optimization methods to address these
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Figure 3.6: The GBFS-GNN inference procedure. Open list is represents by the nodes
inside rectangle and tree represents the seatch tree. At first, there are two
nodes with different heuristic estimates in the open list. We choose the node
with best heuristic estimate to perform a rollout. If the goal state is not
reached, this node is expanded, and its child nodes are put into the open list.
Then, we repeat the above steps.
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3 GBFS-GNN for Domains with Low-arity Predicates

limitations: advantage normalization, selecting the most likely action, illegal edges dele-
tion, and incremental training procedure. This section will introduce these improvements
in order.

3.2.1 Advantage Normalization

In the PPO model, advantage estimation assesses the relative value of taking a specific
action in a given state compared to the average performance of the policy. A higher
advantage estimation indicates that the specific action is significantly better than the
policy’s average performance. The formula for calculating the advantage estimation is
as follows:

At = Rt − V (s)

where At represents the advantage estimation at time step t, Rt represents the cumulative
discounted return (i.e., the value of taking a specific action) at time step t, and V (s)
represents the value of state s (i.e., the average performance of the policy).

However, in practical applications, advantage estimation can have a high variance due
to differences in states and rewards and the stochastic nature of policies, leading to
instability in training, long training times, and poor performance. To address this issue,
advantage normalization can be applied to reduce its variance. The specific formula is
as follows:

Ât =
At − µA
σA

where Ât is the normalized advantage estimation at time step t, At is the advantage
estimation at time step t, µA is the mean of advantage estimation across a batch, and
σA is the standard deviation of advantage estimation across a batch.

By reducing the variance of advantage estimation, advantage normalization can decrease
oscillations during the update steps, improving training stability. Furthermore, advan-
tage normalization adjusts all advantage estimations to the same scale, preventing states
or actions from being overemphasized or ignored due to extreme reward values. This
aids in accelerating model convergence, reducing training time, and enhancing model
performance.

3.2.2 Selecting Most Likely Action

In the inference process of the original GBFS-GNN, after obtaining the action proba-
bility distribution from the neural network, actions are chosen through sampling. This
method is simple to implement and introduces randomness, providing the capability for
exploration. It prevents the model from overly optimizing for states encountered during
training, thereby preserving its ability to generalize to unseen states and effectively mit-
igating the issue of overfitting. However, this approach does not fully utilize the trained
policy, and when the trained policy is close to optimal, it significantly increases the un-
certainty and time required to find a solution. For instance, in a problem where any state
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has 10 legal actions, and the trained policy outputs an action probability distribution
where the best action has a 91% chance and all others have a 1% chance. This policy
is close to optimal, but sampling has over a 50% chance of selecting a poor performance
action in 7 consecutive steps.

Thus, for policies close to optimal, another method for choosing actions can be used
during inference: selecting the most likely action (i.e., selecting the action with the
highest probability) based on the action probability distribution obtained from the neural
network. This deterministic method fully utilizes the trained policy, converging more
quickly to the optimal solution and improving inference performance. Using the example
above, the chance of selecting a poor performance action in 7 consecutive steps drops to
0%.

Selecting the most likely action algorithm is similar to a Depth-first search (DFS) algo-
rithm, starting from the initial state and always choosing the highest probability action
that has not yet been taken in the current state. If trapped in a loop (encountering the
same state twice) or there are no unexecuted actions in the current state, it backtracks
to the previous state. This process repeats until the problem is solved or the plan length
limit is reached.

However, this method of choosing action also presents three limitations:

1. Complex implementation: This method requires identifying the highest prob-
ability action that has not been taken in the current state and employs a back-
tracking algorithm to avoid loops, necessitating various suitable data structures to
store a large number of intermediate states.

2. Lack of exploration: Always choosing the optimal action leads to a lack of
exploration during inference, especially when facing unknown states, which may
result in missing better paths and settling for local optima.

3. High dependency on policy performance: When the trained policy performs
poorly, it may frequently enter loops, leading to frequent backtracking and travers-
ing a large number of useless states.

In Section 5.4, we will determine the appropriate method of choosing action.

3.2.3 Illegal Edges Deletion

In the original GBFS-GNN, the state is encoded as a directed complete graph, where
nodes represent objects and edges denote binary relations between two objects. This
encoding approach assumes the existence of binary relations among all objects. During
training and inference with GNNs, messages are passed through edges between all object
nodes. However, the parameters accepted by predicates are subject to type constraints,
meaning that if no predicate that takes two specific types as parameters, there is no bi-
nary relation between objects of those types. For example, in the Satellite domain, there
are no binary relations between objects of the “direction” type and the “mode” type.
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Edges should not exist between nodes that lack a binary relation preventing messages
from passing directly between them. But in the original GBFS-GNN, these unassoci-
ated nodes still engage in message passing through illegal edges in the directed complete
graph, significantly increasing training and inference times and reducing inference per-
formance.

To address this, after encoding the state as a directed complete graph, we can delete
illegal edges between nodes that lack any binary relation (i.e., where no predicate exists
that takes the types of the objects as parameters). This reduces training and inference
times and improves model performance. Moreover, as the number of objects increases,
illegal edges deletion can remove a greater number and proportion of illegal edges. For
example, in an easy satellite problem containing 6 satellites, 11 instruments, 2 modes,
and 7 directions, the state graph in the original GBFS-GNN contains 650 edges. After
applying illegal edges deletion, the graph contains 442 edges, reducing 208 (32%) edges.
For a medium satellite problem with 40 satellites, 78 instruments, 5 modes, and 30
directions, the state graph in the original GBFS-GNN contains 23,256 edges. After
illegal edges deletion, the graph has only 14,400 edges, a reduction of 8,856 (38%) edges.

3.2.4 Incremental Training Procedure

GBFS-GNN uses reinforcement learning to train the model. Finding any plan to solve a
planning problem is a sparse reward environment, where the agent receives rewards only
after completely solving the problem without intermediate feedback during the planning
process since action costs are ignored and only goal reachability is considered. Moreover,
the initial model uses a random policy to solve the problem, and the environment is
more complex for larger-size problems. These factors lead the agent to generally fail to
receive rewards for large-size problems within the plan length limit in the early stage
of training. As a result, it is challenging for the agent to receive effective feedback and
learn on large problem-size datasets during the training. Furthermore, problems with
larger sizes typically have longer plan lengths, making it difficult for the agent to learn
which specific actions lead to rewards, even when rewards are occasionally granted.

Therefore, original GBFS-GNN constructs training sets with problems whose size is small
enough to be occasionally solved by a randomly initialized policy to obtain sufficient
rewards during the training. For example, problems containing four blocks are used as
training data in the Blocksworld domain. However, the generalization target for the
original GBFS-GNN is 5 - 100 blocks, while the IPC 2023 Learning Tracks dataset aims
for a generalization of 5 - 500 blocks. Thus, larger problem-size training sets (e.g., 2 -
26 blocks in the Blocksworld domain) are employed in the IPC 2023 Learning Tracks
dataset, where original GBFS-GNN struggles to train within a reasonable time on such
a large problem-size dataset.

To overcome this limitation, we propose an incremental training procedure. First, the
dataset is sorted by problem size and divided into n splits. Training begins with the
first split, and after m epochs, the next split is merged into the current training set and
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traning is resumed. This process is repeated, gradually adding splits to the training
set until the entire dataset is utilized for training. The hyperparameters n and m can
be adjusted based on the difficulty of the training set to ensure more comprehensive
training on simpler data.

This approach allows the agent to rapidly learn the basic policy from small-size problems.
The basic policy is then used to continue training on more complex problems, gradually
learning higher-level policy until the optimal policy is finally learned using the entire
dataset. By adjusting the hyperparameters n and m, this method enables GBFS-GNN
to train on large problem-size datasets within a reasonable time.

Additionally, the original GBFS-GNN trains 1000 iterations in each domain and selects
the best model based on performance on the validation set. This approach can lead
to wasting computational resources and training time, as training continues even after
achieving optimal performance or overfitting. In our incremental training procedure, if
the performance on the entire dataset does not exceed the previous best performance for
k consecutive validations, it means that the model performance has not been improved,
and the training can be stopped at this time to save computational resources and train-
ing time. We can adjust hyperparameter k to balance the expected performance and
computational resources.
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Chapter 4

GBFS-GNN for Domains with
Higher-arity Predicates

In the previous chapter, we introduced the original GBFS-GNN and proposed four im-
provement methods. However, the improved GBFS-GNN is unable to encode higher-
arity predicates as nodes or edges of the state graph, which limits its ability to train and
infer in domains containing higher-arity predicates.

The original GBFS-GNN obtains legal actions through a successor state generator, in-
dependent of whether higher-arity predicates are encoded. Moreover, a static predicate
is not changed by any action and is used only in the precondition and not in effect. The
original GBFS-GNN embeds action based on effects, therefore, the static higher-arity
predicates do not affect action embeddings. Since legal actions and action embeddings
are independent of whether encoding the static higher-arity predicates, for domains con-
taining only static higher-arity predicates, like Sokoban domain, we can address the
limitation of the original GBFS-GNN’s inability to handle domains with higher-arity
predicates by ignoring static higher-arity predicates during state encoding.

For domains containing non-static higher-arity predicates, such as Grippers and Rovers
domains, there are two approaches to addressing this limitation:

1. Decompose higher-arity predicates in the domain into binary predicates, then input
the decomposed domain and problem into the original GBFS-GNN for encoding,
training, and inference. We will detail this solution in Section 4.1.

2. Modify the architecture of the original GBFS-GNN so it can directly encode higher-
arity predicates as nodes and edges of the state graph. This solution will be
explained in Section 4.2.
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Figure 4.1: Two approaches to solving problems in domain with higher-arity predicates

4.1 Decomposition

We first introduce the solution of decomposing higher-arity predicates in the domain
into binary predicates. There are two decomposition methods:

1. Decompose the higher-arity relationship among parameters of higher-arity pred-
icate into multiple binary relationships by pairing parameters, i.e., decompose
p(?a, ?b, ?c) into p1(?a, ?b), p2(?a, ?c), and p3(?b, ?c). We refer to this method as
relational decomposition and it will be detailed in Subsection 4.1.1.

2. Introduce an extra relation token to represent the relationship among parameters
of higher-arity predicate, and decompose the higher-arity relationship into multiple
binary relationships between each parameter and the relation token, i.e., decom-
pose p(?a, ?b, ?c) into p1(?r, ?a), p2(?r, ?b), and p3(?r, ?c). We refer to this method
as token-based decomposition and it will be explained in Subsection 4.1.2.

4.1.1 Relational Decomposition

Higher-arity predicate p(?a, ?b, ?c, ...) represents the higher-arity relationship among pa-
rameters a, b, c, ..., which can be decomposed into multiple binary relationships p1(?a, ?b
), p2(?a, ?c), p3(?b, ?c), ... by pairing parameters while maintaining consistency. For in-
stance, in a traffic system, predicate p(?c, ?s, ?d) denotes “car c travels from source s to
destination d.” This can be decomposed into p1(?c, ?s) for “car c departs from source s”,
p2(?c, ?d) for “car c arrives at destination d”, and p3(?s, ?d) for “there is a route from
source s to destination d”.

The specific decomposition involves:

1. Decomposing all higher-arity predicates p(?a, ?b, ?c, ...) in the domain into p1(?a, ?
b), p2(?a, ?c), p3(?b, ?c), ..., i.e., generating new binary predicates by pairing all pa-
rameters of the higher-arity predicate to replace the previous higher-arity predi-
cate.

2. Decomposing all propositions derived from higher-arity predicates, such as p(A,B,
C...), in the problem’s initial state and goal into p1(A,B), p2(A,C), p3(B,C), ...,
i.e., generating new propositions by pairing all instances of parameters of the
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higher-arity predicate to replace the previous proposition.

3. Modifying actions containing higher-arity predicates by decomposing their precon-
ditions and effects in the same way:

• p(?a, ?b, ?c, ...) → p1(?a, ?b), p2(?a, ?c), p3(?b, ?c), ...

• (not p(?a, ?b, ?c, ...)) → (not p1(?a, ?b)), (not p2(?a, ?c)), (not p3(?b, ?c)), ...

Taking Rovers domain as an example, the original domain and problem:

(define (domain rover)

...

(:types rover waypoint mode objective ...)

(:predicates

(can_traverse ?r - rover ?x - waypoint ?y - waypoint)

(have_image ?r - rover ?o - objective ?m - mode)

...

)

(:action navigate

:parameters (?x - rover ?y - waypoint ?z - waypoint)

:precondition (and (can_traverse ?x ?y ?z) ...)

:effect (and ...)

)

(:action take_image

:parameters (?r - rover ?o - objective ?m - mode ...)

:precondition (and ...)

:effect (and (have_image ?r ?o ?m) ...)

)

...

)

(define (problem rover-01)

(:domain rover)

(:objects

rover0 - rover

waypoint0 waypoint1 waypoint2 waypoint3 - waypoint

...

)

(:init

(can_traverse rover0 waypoint3 waypoint0)

...

)

...

)

decomposed domain and problem:
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(define (domain rover)

...

(:types rover waypoint mode objective ...)

(:predicates

(can_traverse_1 ?r - rover ?x - waypoint)

(can_traverse_2 ?r - rover ?y - waypoint)

(can_traverse_3 ?x - waypoint ?y - waypoint)

(have_image_1 ?r - rover ?o - objective)

(have_image_2 ?r - rover ?m - mode)

(have_image_3 ?o - objective ?m - mode)

...

)

(:action navigate

:parameters (?x - rover ?y - waypoint ?z - waypoint)

:precondition (and

(can_traverse_1 ?x ?y)

(can_traverse_2 ?x ?z)

(can_traverse_3 ?y ?z)

...

)

:effect (and ...)

)

(:action take_image

:parameters (?r - rover ?o - objective ?m - mode ...)

:precondition (and ...)

:effect (and

(have_image_1 ?r ?o)

(have_image_2 ?r ?m)

(have_image_3 ?o ?m)

...

)

)

...

)

(define (problem rover-01)

(:domain rover)

(:objects

rover0 - rover

waypoint0 waypoint1 waypoint2 waypoint3 - waypoint

...

)

(:init

(can_traverse_1 rover0 waypoint3)
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(can_traverse_2 rover0 waypoint0)

(can_traverse_3 waypoint3 waypoint0)

...

)

...

)

The relational decomposition method allows us to convert domains containing higher-
arity predicates into those with only low-arity predicates while ensuring consistency. This
enables us to input the decomposed domain and problem into the original GBFS-GNN
for training and inference, allowing us to solve problems in domains with higher-arity
predicates without modifying the original GBFS-GNN architecture. Additionally, since
the decomposition does not introduce new objects to the problem, new nodes and edges
will not be introduced when encoding the state, maintaining the original complexity of
the state graph.

Moreover, the number of potentially instantiated propositions after decomposition is
significantly less than before decomposition. For a n-ary predicate p(?a, ?b, ?c, ...) (n ⩾
3), assuming the number of objects of each parameter is m, the number of potentially
instantiated propositions would be mn. If we use the relational decomposition method
to decompose this n-ary predicate into p1(?a, ?b), p2(?a, ?c), p3(?b, ?c), ..., the resulting

number of potentially instantiated propositions would be m2 ·Cn
2 =

n(n− 1)

2
·m2. When

m > 3, the number of potentially instantiated propositions after decomposition is less
than before decomposition, and the difference between them exponentially increases as
n and m increase. For example, for a 3-ary predicate p(?a, ?b, ?c) with 4 objects of each
parameter, the number of potentially instantiated propositions is 64, while the number
of potentially instantiated propositions after decomposition is 48.

However, when solving the decomposed domain and problem, the planner needs to con-
sider the paths to each intermediate state generated by the decomposition, increasing the
number of states in the search space. Considering just one n-ary predicate p(?a, ?b, ?c, ...)
(n ⩾ 3), and assuming the number of objects of each parameter is m, the search space
after decomposition would contain (m2)C

n
2 = mn(n−1) states, which is more than the

mn states in the search space before decomposition, with the difference between them
exponentially increasing as n and m increase. Therefore, relational decomposition ex-
pands the search space, leading to the planner potentially expanding more states, thus
consuming more time and memory, and increasing the difficulty of solving the prob-
lem. For instance, for a 3-ary predicate p(?a, ?b, ?c), assuming each of the parameters
has 4 objects, considering only the predicate p, the search space after decomposition
would have 4096 states, significantly more than the 64 states in the search space before
decomposition.

Although relational decomposition leads to an expansion of the search space, the increase
in the number of expanded states is limited, allowing for the solving of medium difficulty
domains and problems within a reasonable time and memory. Table 4.1 shows the
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Table 4.1: The comparison of the number of expanded states before and after relational
decomposition

Grippers with 2 robots,
3 rooms, 4 balls

Rovers with 1 rover, 4 way-
points, 2 objectives, 1 camera

Original 1665 1534

Relational Decomposition 1761 2756

comparison of the number of expanded states before and after decomposition in solving
problems in Grippers and Rovers domains using the A∗ algorithm and blind heuristic in
Fast Downward.

Additionally, relational decomposition results in information loss:

1. Loss of global information: Higher-arity predicate can describe the higher-arity
relationship among objects from a global perspective. After decomposition into
binary relationships, only local information between pairs of objects is retained,
losing the global information among objects.

2. Weakening of constraints: Higher-arity predicate can precisely express com-
plex constraints among objects. After decomposition, these constraints are sim-
plified into weaker local constraints, leading to weakened and incomplete original
constraints. This introduces a critical issue, assuming the original domain and
problem:

(define (domain decomposition)

...

(:types object)

(:predicates (p ?a - object ?b - object ?c - object))

(:action add

:parameters (?a - object, ?b - object, ?c - object)

:effect (and (p ?a ?b ?c))

)

(:action del

:parameters (?a - object, ?b - object, ?c - object)

:precondition (and (p ?a ?b ?c))

:effect (and (not (p ?a ?b ?c)))

)

)

(define (problem decomposition-01)

(:domain decomposition)
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(:objects A B C D - object)

...

)

decomposed domain and problem:

(define (domain decomposition)

...

(:types object)

(:predicates

(p_1 ?a - object ?b - object)

(p_2 ?a - object ?c - object)

(p_3 ?b - object ?c - object)

)

(:action add

:parameters (?a - object, ?b - object, ?c - object)

:effect (and

(p_1 ?a ?b)

(p_2 ?a ?c)

(p_3 ?b ?c)

)

)

(:action del

:parameters (?a - object, ?b - object, ?c - object)

:precondition (and

(p_1 ?a ?b)

(p_2 ?a ?c)

(p_3 ?b ?c)

)

:effect (and

(not (p_1 ?a ?b))

(not (p_2 ?a ?c))

(not (p_3 ?b ?c))

)

)

)

(define (problem decomposition-01)

(:domain decomposition)

(:objects A B C D - object)

...

)

The issue manifests in two cases:

1. Assume state = {}, and actions add(A,B,C), add(A,B,D), del(A,B,C) are exe-
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4 GBFS-GNN for Domains with Higher-arity Predicates

cuted in sequence:

• In the original domain, the resulting state = {p(A,B,D)} meets the pre-
condition PRE(del(A,B,D)), allowing for the further execution of action
del(A,B,D).

• In the decomposed domain, the resulting state = {p2(A,D), p3(B,D)} does
not meet the precondition PRE(del(A,B,D)), preventing the execution of
action del(A,B,D), which is inconsistent with the scenario in the original
domain.

2. Assume state = {}, and actions add(A,B,D), add(A,D,C), add(D,B,C) are exe-
cuted in sequence:

• In the original domain, the resulting state = {p(A,B,D), p(A,D,C), p(D,B,
C)} does not meet the precondition PRE(del(A,B,C)), preventing the exe-
cution of action del(A,B,C).

• In the decomposed domain, the resulting state = {p1(A,B), p2(A,D), p3(B,
D), p1(A,D), p2(A,C), p3(D,C), p1(D,B), p2(D,C), p3(B,C)} meets the pre-
condition PRE(del(A,B,C)), allowing for the further execution of action
del(A,B, C), which is inconsistent with the scenario in the original domain.

In these two cases, after executing the same action in the same initial state, the states
obtained by using the original and decomposed domain are different. In the first case,
the inability to execute certain legal actions may prevent finding an optimal solution or
make a solvable problem unsolvable. In the second case, executing certain illegal actions
results in a plan that is infeasible in the original domain. This indicates that relational
decomposition cannot guarantee the correctness of the plans, suggesting that this de-
composition method weakens the original constraints and cannot ensure the integrity.
Therefore, it is necessary to explore a alternative decomposition approach to maintain
the consistency and integrity at the same time.

4.1.2 Token-Based Decomposition

To address the issue present in the relational decomposition method, an alternative
decomposition approach named “token-based decomposition” can be employed. This
approach involves introducing extra relation token to represent the relationship among
parameters of higher-arity predicate, and decomposing the higher-arity relationship into
multiple binary relationships between each parameter and the relation token while ensur-
ing consistency and integrity. For example, in an ecosystem, the predicate p(?t, ?w, ?s)
denotes “a tree t depends on water source w and soil s for growth.” By introducing
a relation token r to represent a specific growth environment, p(?t, ?w, ?s) can be de-
composed into p1(?r, ?t) indicating “under growth environment r, tree t can grow”,
p2(?r, ?w) indicating “growth environment r includes water source w”, and p3(?r, ?s)
indicating “growth environment r includes soil s”.
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The specific decomposition involves:

• Modify the domain

1. For each higher-arity predicate p, introduce a new object type relation p.

2. Decompose all higher-arity predicates p(?a− T1, ?b− T2, ...) in the domain into
p1(?r− relation p, ?a− T1), p2(?r− relation p, ?b− T2), ..., i.e., generating new
binary predicates by combining each parameter of the higher-arity predicate
with a relation parameter to replace the previous higher-arity predicate.

3. For each higher-arity predicate p, introduce a new unary predicate
available relation p(?r− relation p) to indicate whether a relation object is in
use, ensuring that relation objects currently in use are not reused.

4. Modify actions involving higher-arity predicates:

a) For each higher-arity predicate p in an action, add a parameter ?r−relation p
to the action.

b) Decompose each higher-arity predicate p in the precondition and effect of
action as above:

– p(?a, ?b, ...) → p1(?r, ?a), p2(?r, ?b), ...

– (not p(?a, ?b, ...)) → (not p1(?r, ?a)), (not p2(?r, ?b)), ...

c) For higher-arity predicate p in the add effect, add
(not available relation p(?r)) to the effect; for those in the del effect, add
available relation p(?r) to the effect.

• Modify the problem

1. For static higher-arity predicate p, generate a relation object r pn (n = 1, 2, ...)
for each proposition p(A,B, ...) in the initial state. Here, n is used to distinguish
objects corresponding to different propositions derived from the same higher-
arity predicate;

2. For non-static higher-arity predicate p, generate a relation object r pn (n =
1, 2, ...) for each potentially instantiated proposition derived from higher-arity
predicate p;

3. Decompose all propositions derived from higher-arity predicate, such as p(A,B,
...), in the initial state and goal into p1(r pn, A), p2(r pn, B), ..., i.e., generating
new propositions by combining each instance of parameter of the higher-arity
predicate with a relation object to replace the previous proposition.

4. Add propositions available relation p(r pn+1), available relation p(r pn+2), ...
for unused relation objects r pn+1, r pn+2, ... in the initial state.
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4 GBFS-GNN for Domains with Higher-arity Predicates

Taking Rovers domain as an example, the original domain and problem (where can traverse
is a static higher-arity predicate):

(define (domain rover)

...

(:types rover waypoint mode objective ...)

(:predicates

(can_traverse ?r - rover ?x - waypoint ?y - waypoint)

(have_image ?r - rover ?o - objective ?m - mode)

...

)

(:action navigate

:parameters (?x - rover ?y - waypoint ?z - waypoint)

:precondition (and (can_traverse ?x ?y ?z) ...)

:effect (and ...)

)

(:action take_image

:parameters (?r - rover ?o - objective ?m - mode ...)

:precondition (and ...)

:effect (and (have_image ?r ?o ?m) ...)

)

...

)

(define (problem rover-01)

(:domain rover)

(:objects

rover0 - rover

waypoint0 waypoint1 waypoint2 waypoint3 - waypoint

...

)

(:init

(can_traverse rover0 waypoint3 waypoint0)

(can_traverse rover0 waypoint0 waypoint3)

...

)

...

)

decomposed domain and problem:

(define (domain rover)

...

(:types

rover waypoint mode objective ...
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4.1 Decomposition

relation_can_traverse relation_have_image

)

(:predicates

(can_traverse_1 ?r_decomposition - relation_can_traverse ?r - rover)

(can_traverse_2 ?r_decomposition - relation_can_traverse ?x - waypoint)

(can_traverse_3 ?r_decomposition - relation_can_traverse ?y - waypoint)

(available_relation_can_traverse ?r_decomposition - relation_can_traverse)

(have_image_1 ?r_decomposition - relation_have_image ?r - rover)

(have_image_2 ?r_decomposition - relation_have_image ?o - objective)

(have_image_3 ?r_decomposition - relation_have_image ?m - mode)

(available_relation_have_image ?r_decomposition - relation_have_image)

...

)

(:action navigate

:parameters (

?x - rover ?y - waypoint ?z - waypoint ?r_1 - relation_can_traverse

)

:precondition (and

(can_traverse_1 ?r_1 ?x)

(can_traverse_2 ?r_1 ?y)

(can_traverse_3 ?r_1 ?z)

...

)

:effect (and ...)

)

(:action take_image

:parameters (

?r - rover ?o - objective ?m - mode ... ?r_1 - relation_have_image

)

:precondition (and ... (available_relation_have_image ?r_1))

:effect (and

(have_image_1 ?r_1 ?r)

(have_image_2 ?r_1 ?o)

(have_image_3 ?r_1 ?m)

(not (available_relation_have_image ?r_1))

...

)

)

...

)

(define (problem rover-01)

(:domain rover)

(:objects
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4 GBFS-GNN for Domains with Higher-arity Predicates

r_can_traverse_1 - relation_can_traverse

r_can_traverse_3 - relation_can_traverse

r_have_image_2 - relation_have_image

r_have_image_4 - relation_have_image

...

)

(:init

(can_traverse_1 r_can_traverse_1 rover0)

(can_traverse_2 r_can_traverse_1 waypoint2)

(can_traverse_3 r_can_traverse_1 waypoint1)

(can_traverse_1 r_can_traverse_3 rover0)

(can_traverse_2 r_can_traverse_3 waypoint3)

(can_traverse_3 r_can_traverse_3 waypoint1)

(available_relation_have_image r_have_image_2)

(available_relation_have_image r_have_image_4)

...

)

...

)

The token-based decomposition method allows us to convert domains containing higher-
arity predicates into those with only low-arity predicates while ensuring consistency and
completeness. This enables us to fed the decomposed domain and problem into the orig-
inal GBFS-GNN for training and inference, allowing us to solve problems in domains
containing higher-arity predicates without altering the original GBFS-GNN architecture.
Moreover, this decomposition method introduces extra relation token to represent the
relationship between parameters of the higher-arity predicate, preserving global infor-
mation and the integrity of the original constraints. As a result, it prevents information
loss and addresses the issue of relational decomposition that cannot guarantee the cor-
rectness of the plan. We use the same example as before, assuming the original domain
and problem:

(define (domain decomposition)

...

(:types object)

(:predicates (p ?a - object ?b - object ?c - object))

(:action add

:parameters (?a - object, ?b - object, ?c - object)

:effect (and (p ?a ?b ?c))

)

(:action del

:parameters (?a - object, ?b - object, ?c - object)
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:precondition (and (p ?a ?b ?c))

:effect (and (not (p ?a ?b ?c)))

)

)

(define (problem decomposition-01)

(:domain decomposition)

(:objects A B C D - object)

...

)

decomposed domain and problem:

(define (domain decomposition)

...

(:types object relation_p)

(:predicates

(p_1 ?r - relation_p ?a - object)

(p_2 ?r - relation_p ?b - object)

(p_3 ?r - relation_p ?c - object)

(available_relation_p ?r - relation_p)

)

(:action add

:parameters (

?a - object, ?b - object, ?c - object, ?r - relation_p

)

:precondition: (and (available_relation_p ?r))

:effect (and

(p_1 ?r ?a)

(p_2 ?r ?b)

(p_3 ?r ?c)

(not (available_relation_p ?r))

)

)

(:action del

:parameters (

?a - object, ?b - object, ?c - object, ?r - relation_p

)

:precondition (and

(p_1 ?r ?a)

(p_2 ?r ?b)

(p_3 ?r ?c)

)

:effect (and

(not (p_1 ?r ?a))

51



4 GBFS-GNN for Domains with Higher-arity Predicates

(not (p_2 ?r ?b))

(not (p_3 ?r ?c))

(available_relation_p ?r)

)

)

)

(define (problem decomposition-01)

(:domain decomposition)

(:objects

A B C D - object

r_p_1 r_p_2 r_p_3 r_p_4 - relation

...

)

(:init

(available_relation_p r_p_1)

(available_relation_p r_p_2)

(available_relation_p r_p_3)

(available_relation_p r_p_4)

...

)

...

)

In the same two cases as above:

1. Assume state = {}, and actions add(A,B,C), add(A,B,D), del(A,B,C) are exe-
cuted in sequence:

• In the original domain, the resulting state = {p(A,B,D)} meets the pre-
condition PRE(del(A,B,D)), allowing for the further execution of action
del(A,B,D).

• In the decomposed domain, the resulting state = {p1(r p2, A), p2(r p2, B)
, p3(r p2, D), available relation(r p1), available relation(r p3)} also satisfies
the precondition PRE(del(A,B,D)), enabling the execution of action del(A,
B,D), which is consistent with the scenario in the original domain.

2. Assume state = {}, and actions add(A,B,D), add(A,D,C), add(D,B,C) are exe-
cuted in sequence:

• In the original domain, the resulting state = {p(A,B,D), p(A,D,C), p(D,B,
C)} does not meet the precondition PRE(del(A,B,C)), preventing the exe-
cution of action del(A,B,C).

• In the decomposed domain, the resulting state = {p1(r p1, A), p2(r p1, B
), p3(r p1, D), p1(r p2, A), p2(r p2, D), p3(r p2, C), p1(r p3, D), p2(r p3, B), p3
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(r p3, C)} also does not satisfy PRE(del(A,B,C, r p1)), PRE(del(A,B,C,
r p2)), ..., preventing the execution of action del(A,B,C), which is consistent
with the scenario in the original domain.

In both scenarios described, executing the same actions from the same initial state
results in the same state whether using the original or the decomposed domain. Hence,
plans derived from domains and problems decomposed by the token-based decomposition
method are also applicable to the original domains and problems. This demonstrates that
the token-based decomposition method ensures the correctness of the plans, indicating
that this decomposition approach does not result in information loss and maintains the
consistency and integrity.

However, the token-based decomposition introduces a large number of new relation ob-
jects to the problem, leading to a substantial increase in nodes and edges when encoding
the state. This greatly increases the complexity of the state graph, significantly ex-
tending training time and memory. Moreover, the number of potentially instantiated
propositions after the token-based decomposition far exceeds before decomposition. For
a n-ary predicate p(?a, ?b, ?c, ...) (n ⩾ 3), assuming the number of objects of each pa-
rameter is m, the number of potentially instantiated propositions would be mn. If
we use the token-based decomposition method to decompose this n-ary predicate into
p1(?r, ?a), p2(?r, ?b), p3(?r, ?c), ..., available relation p(?r), the resulting number of po-
tentially instantiated propositions would be mn · m · n + mn = (mn + 1) · mn, which
is significantly higher than the count before decomposition, and the difference increases
exponentially with n and m. For example, for a 3-ary predicate p(?a, ?b, ?c) with 4 ob-
jects of each parameter, the number of potentially instantiated propositions is 64, while
the number of potentially instantiated propositions after decomposition is 624.

Additionally, solving the decomposed domain and problem requires the planner to con-
sider paths to each intermediate state generated by the decomposition, which increases
the number of states in the search space. Considering only one n-ary predicate p(?a, ?b,
?c, ...) (n ⩾ 3) and ignoring newly generated predicates available relation p, assuming
each parameter a, b, c, ... hasm objects, the search space after token-based decomposition
contains (mn ·m)n = mn(n+1) states far more than the mn states before decomposition
and the mn(n−1) states after relational decomposition, with the difference exponentially
growing with n and m. For instance, for a 3-ary predicate p(?a, ?b, ?c) with each pa-
rameter having 4 objects, considering only the predicate p and ignoring newly generated
predicates available relation p, the search space after token-based decomposition con-
tains 16777216 states, significantly more than the 64 states before decomposition and
the 4096 states after relational decomposition.

Thus, compared to relational decomposition, token-based decomposition extremely ex-
pands the search space, requiring the planner to potentially explore far more states,
greatly increasing the difficulty of problem-solving. Solving easy domains and problems
within a reasonable time and memory becomes unfeasible after token-based decomposi-
tion. Table 4.2 shows the comparison of the number of expanded states before decom-
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4 GBFS-GNN for Domains with Higher-arity Predicates

Table 4.2: The comparison of the number of expanded states before decomposition, after
relational decomposition, and after token-based decomposition

Grippers with 2 robots,
3 rooms, 4 balls

Rovers with 1 rover, 4 way-
points, 2 objectives, 1 camera

Original 1665 1534

Relational Decomposition 1761 2756

Token-Based Decomposition 10755387 281637

position, after relational decomposition, and after token-based decomposition in solving
problems in Grippers and Rovers domains using the A∗ algorithm and blind heuristic in
Fast Downward.

4.1.3 Summary

When using the relational decomposition method, the search space does not expand
significantly, hence not considerably increasing the difficulty of solving the problem.
Moreover, since no relation nodes and edges are introduced during decomposition, the
complexity of the state graph does not increase. Therefore, for certain medium difficulty
domains and problems, it remains feasible to find the solution within reasonable time
and memory after decomposition. However, due to global information loss and weakened
constraints during decomposition, the correctness of the plans obtained in some cases
cannot be ensured, making this approach unfeasible for general domains.

On the other hand, since the token-based decomposition method prevents the global
information loss and maintains the integrity of the original constraints, it ensures the
correctness of the plans. In theory, this decomposition approach is feasible. However,
this decomposition method significantly expands the search space, greatly increasing the
difficulty of problem-solving. Furthermore, the introduction of numerous relation nodes
and edges during decomposition considerably increases the complexity of the state graph.
Consequently, in practice, solving easy domains and problems within reasonable time
and memory becomes infeasible.

In conclusion, both decomposition methods require additional decomposition prepro-
cessing steps and face serious issues, making such method unable to perfectly address
the problem that the original GBFS-GNN cannot handle domains with higher-arity
predicates.
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4.2 Architecture Modification

Besides the decomposition method mentioned previously, another approach to addressing
the limitation of GBFS-GNN’s inability to handle higher-arity predicates is to modify
the architecture of GBFS-GNN. This modification enables directly encoding higher-arity
predicates as graph components, eliminating the need to convert domains with higher-
arity predicates, allowing them to be directly inputted into GBFS-GNN for training and
inference. This approach can reduce preprocessing steps, significantly enhancing the
overall pipeline efficiency. Moreover, through reasonable optimization of the architecture,
it is possible to ensure the correctness of the plans without increasing the search space
and state graph complexity, allowing the GBFS-GNN to train and infer on domains with
higher-arity predicates within reasonable time and memory, thereby addressing the issues
of the decomposition method. An intuitive idea is to simulate the two decomposition
methods mentioned above to encode higher-arity predicates as graph components. These
two modification methods will be introduced in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Simulating Relational Decomposition

We can simulate the relational decomposition method discussed previously to modify
the state and effect encoding method within GBFS-GNN, considering the higher-arity
predicate p(?a, ?b, ?c, ...) and proposition p(A,B,C, ...) as p(?a, ?b), p(?a, ?c), p(?b, ?c), ...
and p(A,B), p(A,C), p(B,C), ..., respectively, to encode the state and effect. The specific
modifications are as follows:

• Modification of State Encoding Method

1. Modification of edge: Modify the illegal edges deletion method to ensure it
does not remove edges between nodes of higher-arity predicate parameter types.
For example, for a predicate p(?a − T1, ?b − T2, ?c − T3), edges between nodes
of types T1, T2, T3 are considered legal edges and should not be deleted by the
illegal edges deletion method.

2. Modification of edge feature

a) For each n-ary predicate p(?a, ?b, ?c, ...) (n ⩾ 3), introduce new edge fea-
tures p1, p2, ..., pm (m = Cn

2 ). These newly added edge features correspond
to the binary predicates p1(?a, ?b), p2(?a, ?c), p3(?b, ?c), ... decomposed from
the higher-arity predicate p(?a, ?b, ?c, ...) in the relational decomposition
method.

b) Simulate the decomposition of the proposition p(A,B,C, ...) into p1(A,B
), p2(A,C), p3(B,C), ... in the relational decomposition method, setting the
feature p1 of the edge eAB, the feature p2 of the edge eAC , the feature p3
of the edge eBC , ..., to 1, with all others set to 0.

3. All other aspects of the state encoding method remain the same as in the original
GBFS-GNN.
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Figure 4.2: The example of part of the state graph of the Grippers domain. The left side
shows the PDDL description of the state, and the right side shows the edge
encodings of the same state

Taking Grippers domain as an example, the state encoding is illustrated in Fig-
ure 4.2.

• Modification of Effect Encoding Method

For each n-ary effect p(?a, ?b, ?c, ...) (n ⩾ 3) in the action, it can be treated as Cn
2

binary effects p(?a, ?b), p(?a, ?c), p(?b, ?c), ... for encoding, with the same effect en-
coding method as in the original GBFS-GNN. Taking the action pick(robot1, ball1,
room1, rgripper1) in the Grippers domain as an example, the effect encoding is
illustrated in Figure 4.3.

This architecture modification method enables directly encoding higher-arity predicates
as graph components, eliminating the need to convert domains with higher-arity predi-
cates, allowing them to be directly inputted into GBFS-GNN for training and inference.
This method has several advantages:

1. It reduces the preprocessing steps, significantly improving the efficiency of the
overall pipeline.

2. It does not introduce any extra nodes and edges, keeping the complexity of the
state graph unchanged, thus allowing GBFS-GNN to train and infer on domains
with higher-arity predicates within reasonable time and memory.

3. Since it does not change the original domain and problem, it does not increase the
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Figure 4.3: The effect encodings of the action pick(robot1, ball1, room1, rgripper1). Or-
ange blocks represent state embeddings and blue blocks represent one-hot
effect feature vectors.
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search space and the difficulty of solving the problem.

4. Since in GBFS-GNN, legal actions and whether goal state is achieved are deter-
mined by the successor state generator based on the original domain and state,
and only the policy for selecting the action is derived from the neural network, this
ensures the correctness of the resulting plan.

However, this modification method suffers from the same potential issue as relational
decomposition: during state encoding and effect encoding, it implicitly decomposes a
higher-arity relation into multiple binary relations. This implicit decomposition results
in the model learning only local information from a set of binary relations during train-
ing, without capturing the global information inherent in a higher-arity relation. Conse-
quently, it fails to fully and accurately represent the information within the higher-arity
predicates and their groundings in states and effect.

4.2.2 Simulating Token-Based Decomposition

Introducing Relation Node for Proposition

We can also simulate the token-based decomposition method to modify the state and ef-
fect encoding method within GBFS-GNN, considering the higher-arity predicate p(?a, ?
b, ...) and proposition p(A,B, ...) as p(?r, ?a), p(?r, ?b), ... and p(r p,A), p(r p,B), ..., re-
spectively, to encode the state and effect. The specific modifications are as follows:

• Modification of State Encoding Method

1. Modification of node: Generate a node vr pn (n = 1, 2, ...) called relation
node or hub node for each potentially instantiated proposition derived from
higher-arity predicate p. These generated relation nodes correspond to the re-
lation objects r pn created in the token-based decomposition method. Here, n
is used to distinguish nodes or objects corresponding to different propositions
derived from the same higher-arity predicate.

2. Modification of node feature: Introduce a new node feature relation p for
each higher-arity predicate p. These newly added node features correspond to
the new object type relation p introduced in the token-based decomposition
method. If a node corresponds to a relation object and the type of this relation
object is relation p, then set the node’s feature relation p to 1, otherwise to
0.

3. Modification of edge: Modify the illegal edges deletion method to pre-
vent the deletion of edges between relation nodes and nodes of higher-arity
predicate parameter types. For example, edges between all relation nodes
introduced for the predicate p(?a − T1, ?b − T2, ?c − T3) and nodes of types
T1, T2, T3 are considered legal edges and should not be deleted by the illegal
edges deletion method.

4. Modification of edge feature
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Figure 4.4: The example of part of the state graph of the Grippers domain. The left side
shows the PDDL description of the state, and the right side shows the nodes
and edges encodings of the same state

a) For each n-ary predicate p(?a, ?b, ...) (n ⩾ 3), introduce new edge features
p1, p2, ..., pn. These newly added edge features correspond to the binary
predicates p1(?r, ?a), p2(?r, ?b), ... decomposed from the higher-arity pred-
icate p(?a, ?b, ...) in the token-based decomposition method.

b) Simulate the decomposition of the proposition p(A,B, ...) into p1(r p,A
), p2(r p,B), ... in the token-based decomposition method, setting the fea-
ture p1 of the relation edge eA,r p, the feature p2 of the relation edge eB,r p,
..., to 1, with all others set to 0.

5. Since the GBFS-GNN uses a successor state generator to obtain legal actions
from the original domain and state, it is not necessary to simulate the pred-
icate available relation p and its groundings introduced in the token-based
decomposition method.

6. All other aspects of the state encoding method remain the same as in the
original GBFS-GNN.

Taking Grippers domain as an example, the state encoding is illustrated in Fig-
ure 4.4.

• Modification of Effect Encoding Method

For each n-ary effect p(?a, ?b, ?c, ...) (n ⩾ 3) in the action, it can be treated as
n binary effects p(?r, ?a), p(?r, ?b), ... for encoding, with the same effect encoding
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Figure 4.5: The effect encodings of the action pick(robot1, ball1, room1, rgripper1). Or-
ange blocks represent state embeddings and blue blocks represent one-hot
effect feature vectors

method as in the original GBFS-GNN. Taking the action pick(robot1, ball1, room1,
rgripper1) in the Grippers domain as an example, the effect encoding is illustrated
in Figure 4.5.

This architecture modification method enables directly encoding higher-arity predicates
as graph components, eliminating the need to convert domains with higher-arity predi-
cates, allowing them to be directly inputted into GBFS-GNN for training and inference.
This method has several advantages:

1. It reduces the preprocessing steps, significantly improving the efficiency of the
overall pipeline.

2. Since it does not change the original domain and problem, it does not increase the
search space and the difficulty of solving the problem.

3. Since in GBFS-GNN, legal actions and whether goal state is achieved are deter-
mined by the successor state generator based on the original domain and state,
and only the policy for selecting the action is derived from the neural network, this
ensures the correctness of the resulting plan.

4. It has a similar advantage to the token-based decomposition method: the model
can learn global information between objects of parameters of the higher-arity
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predicate during training through the introduced relation nodes, enabling a more
comprehensive and accurate expression of the information of higher-arity predi-
cates and their groundings.

However, this modification approach introduces a significant number of relation nodes
and edges during state encoding. For example, under the use of illegal edges deletion, a
simple Grippers problem including two robots and four balls would require the addition
of 32 relation nodes and 320 relation edges. More complex domains and problems might
necessitate adding hundreds of relation nodes and thousands of relation edges. This could
result in a state graph that is too complex for training and inference on domains with
higher-arity predicates within a reasonable time and memory. Therefore, it is necessary
to optimize this modification method to reduce the number of added relation nodes and
edges.

Introducing Relation Node for Predicate

The primary issue with the modification approach mentioned above is the generation of
a relation node for each potentially instantiated proposition derived from higher-arity
predicate, resulting in an overly complex state graph. In fact, the generation of a relation
object for each potentially instantiated proposition in the token-based decomposition
method is to ensure legal actions remaining consistent before and after decomposition.

For example, consider a scenario within the grippers domain where state = {carry(robot1,
ball1, rgripper1), carry(robot2, ball2, rgripper2), at-robby(robot1, room1), ...}. In the
original domain, the action drop(robot1, ball2, room1, rgripper1) cannot be executed
since its precondition carry(robot1, ball2, rgripper1) is not satisfied. Introducing a sin-
gle relation object r carry results in a decomposition state = {carry1(r carry, robot1),
carry2(r carry, ball1), carry3(r carry, rgripper1), carry1(r carry, robot2), carry2(r carry,
ball2), carry3(r carry, rgripper2)}, which allows the execution of the action drop(robot1,
ball2, room1, rgripper1, r carry) since its precondition {carry1(r carry, robot1), carry2(
r carry, ball2), carry3(r carry, rgripper1), at-robby(robot1, room1)} is satisfied, incon-
sistent with the original domain. Conversely, introducing two distinct relation objects
r carry1 and r carry2 for the two propositions derived from higher-arity predicate within
the state leads to a decomposition state = {carry1(r carry1, robot1), carry2(r carry1,
ball1), carry3(r carry1, rgripper1), carry1(r carry2, robot2), carry2(r carry2, ball2),
carry3(r carry2, rgripper2)}, which prevents the execution of the action drop(robot1,
ball2, room1, rgripper1, r carry1) or drop(robot1, ball2, room1, rgripper1, r carry2)
since their preconditions are not satisfied, consistent with the original domain.

If we can reduce the number of introduced relation nodes and edges while ensuring that
the legal actions and policy for selecting the action remain consistent before and after
optimising the architecture modification, it would be possible to solve complex domains
and large-size problems within a reasonable time and memory. In fact, generating a rela-
tion node for each higher-arity predicate instead of one for each potentially instantiated
proposition and connecting it with nodes of higher-arity predicate parameter types can
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4 GBFS-GNN for Domains with Higher-arity Predicates

Figure 4.6: The simplified state graphs obtained using two different methods of simulat-
ing the token-based decomposition

achieve the desired outcome.

Firstly, in the GBFS-GNN, legal actions are obtained using a successor state generator
based on the original domain and state, with the policy for selecting the action derived
from the neural network. Therefore, as long as the state remains the same, the correct
legal actions can be determined regardless of how to encode the state.

Secondly, GBFS-GNN concatenates effect feature vector and state embedding as the ef-
fect encoding, which is then input into the neural network for training to obtain the effect
embedding. Subsequently, the sum-pooling operation of the embeddings of each action’s
effects is performed to obtain the action embedding. Suppose the domain contains the
predicate p(?a, ?b, ?c) and action del(?a, ?b, ?c), PRE(del) = {p(?a, ?b, ?c)}, EFF+(del) =
{}, EFF−(del) = {p(?a, ?b, ?c)}, and state = {p(A,B, C), p(X,Y, Z)}. The simplified
state graphs obtained using the modification method of introducing a relation node for
proposition and predicate are as Figure 4.6. In both of these two modification methods,
the initial encoding for the introduced relation nodes and edges is identical:

vA1 = vA3

vR1 = vR3

eR1A1 = eR3A3

eA1R1 = eA3R3

Taking the two-layer GN block in GBFS-GNN as an example, in the first GN block
layer:
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1. According to the edge update method ẽij = ϕ([eij , vi]), it can be derived that

ẽR1A1 = ϕ([eR1A1 , vR1 ]) = ϕ([eR3A3 , vR3 ]) = ẽR3A3

ẽA1R1 = ϕ([eA1R1 , vR1 ]) = ϕ([eA3R3 , vR3 ]) = ẽA3R3

2. According to the node update method hij = ϕ([vj , ẽij ]), mi = ψ(hij), ṽi =
ϕ([mi, u]), it can be derived that

hR1A1 = ϕ([vA1 , ẽR1A1 ]) = ϕ([vA3 , ẽR3A3 ]) = hR3A3

mA1 = ψ(hR1A1) = ψ(hR3A3) = mA3

ṽA1 = ϕ([mA1 , u]) = ϕ([mA3 , u]) = ṽA3

In the second GN block layer, according to the edge update method ẽij = ϕ([eij , vi]), it
can be derived that

êA1R1 = ϕ([ẽA1R1 , ṽA1 ]) = ϕ([ẽA3R3 , ṽA3 ]) = êA3R3

where êA1R1 and êA3R3 are the final embeddings of edges A1R1 and A3R3 obtained
through GNN training.

Similarly, it can be derived that

êB1R1 = êB3R3

êC1R1 = êC3R3

êX2R2 = êX3R3

êY2R2 = êY3R3

êZ2R2 = êZ3R3

Therefore, both modification methods get the same action embedding and policy:

embedding(del(A1, B1, C1)) = sum(

ϕe([êA1R1 , ...,−1, 0, 0]),

ϕe([êB1R1 , ..., 0,−1, 0]),

ϕe([êC1R1 , ..., 0, 0,−1]),

)

embedding(del(A3, B3, C3)) = sum(

ϕe([êA3R3 , ...,−1, 0, 0]),

ϕe([êB3R3 , ..., 0,−1, 0]),

ϕe([êC3R3 , ..., 0, 0,−1]),

)

embedding(del(A1, B1, C1)) = embedding(del(A3, B3, C3))

embedding(del(X2, Y2, Z2)) = sum(

ϕe([êX2R2 , ...,−1, 0, 0]),

ϕe([êY2R2 , ..., 0,−1, 0]),

ϕe([êZ2R2 , ..., 0, 0,−1]),

)

embedding(del(X3, Y3, Z3)) = sum(

ϕe([êX3R3 , ...,−1, 0, 0]),

ϕe([êY3R3 , ..., 0,−1, 0]),

ϕe([êZ3R3 , ..., 0, 0,−1]),

)
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4 GBFS-GNN for Domains with Higher-arity Predicates

embedding(del(X2, Y2, Z2)) = embedding(del(X3, Y3, Z3))

policyintroducing relation node for proposition = softmax(

ϕ(embedding(del(A1, Y1, Z1))),

ϕ(embedding(del(X2, Y2, Z2))),

...

)

policyintroducing relation node for predicate = softmax(

ϕ(embedding(del(A3, Y3, Z3))),

ϕ(embedding(del(X3, Y3, Z3))),

...

)

policyintroducing relation node for proposition = policyintroducing relation node for predicate

Therefore, by generating a relation node for each higher-arity predicate and connecting
it with nodes of higher-arity predicate parameters type, we can significantly reduce the
number of introduced relation nodes and edges while ensuring that the legal actions and
policy for selecting the action derived from both modification methods remain consis-
tent. Utilizing the same Grippers example as before, the state encoding is illustrated in
Figure 4.7. Under the use of illegal edges deletion, the approach of introducing a relation
node for predicate necessitates the addition of only 1 relation node and 10 relation edges.
This is substantially less than the 32 relation nodes and 320 relation edges required when
introducing a relation node for proposition.

An additional point of clarification is the choice to use the embedding of eother node→relation node

rather than the embedding of erelation node→other node concatenated with effect feature
vector as the effect encoding. Continuing with the previous example, suppose the domain
contains the predicate p(?a, ?b, ?c) and action del(?a, ?b, ?c), PRE(del) = {p(?a, ?b, ?c)},
EFF+(del) = {}, EFF−(del) = {p(?a, ?b, ?c)}, and state = {p(A,B,C), p(X,Y, Z)}. If
the embedding of erelation node→other node is used, the embeddings for actions del(A,B,
C) and del(X,Y, Z) would be:
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4.2 Architecture Modification

Figure 4.7: The example of part of the state graph of the Grippers domain. The left side
shows the PDDL description of the state, and the right side shows the nodes
and edges encodings of the same state.

embedding(del(A,B,C)) = sum(

ϕe([êRA, 0, ...,−1, 0, 0]),

ϕe([êRB, 0, ..., 0,−1, 0]),

ϕe([êRC , 0, ..., 0, 0,−1])

)

embedding(del(X,Y, Z)) = sum(

ϕe([êRX , 0, ...,−1, 0, 0]),

ϕe([êRY , 0, ..., 0,−1, 0]),

ϕe([êRZ , 0, ..., 0, 0,−1])

)

During message passing in GNN, the edge update method is ẽij = ϕ([eij , vi]). As a
result, even if the encodings of vA, vB, vC , vX , vY , vZ are distinct, the updated edges
êRA, êRB, êRC , êRX , êRY , êRZ become identical. Consequently, embedding(del(A,B,C))
= embedding(del(X,Y, Z)). This means that even though the actions del(A,B,C) and
del(X,Y, Z) are performed on different objects, they would have identical embeddings,
making it impossible for the neural network to differentiate between these two actions.
This issue does not arise when using the embedding of eother node→relation node.

The approach of introducing relation node for predicate and proposition shares the
same advantages, but only introduces a minimal number of relation nodes and edges,
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4 GBFS-GNN for Domains with Higher-arity Predicates

maintaining the complexity of the state graph almost unchanged. Therefore, it enables
the GBFS-GNN to train and infer on domains with higher-arity predicates within a
reasonable time and memory, also achieving better outcomes. However, this solution has
a potential issue: since each relation node is connected to nodes of higher-arity predicate
parameter types, when the domain contains a large number of higher-arity predicates
and associated objects, it still introduces many relation edges. For instance, in a domain
with 3 higher-arity predicates, if there are 50 objects related to each predicate parameter,
this would result in the addition of 150 relation edges, increasing the complexity of the
state graph.
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Chapter 5

Evaluation

In this chapter, we conduct extensive experiments on the improved GBFS-GNN to eval-
uate the performance of our proposed improvement methods. Section 5.1 describes the
dataset we used. Section 5.2 outlines the training and testing procedure and introduces
the baselines used for comparison. Section 5.3 – 5.6 present the relevant experimental
results and provide a thorough discussion.

5.1 Dataset

The original GBFS-GNN train and infer on their own ad-hoc datasets. Their experi-
mental results depend heavily on the quality, quantity, and difficulty of the problems
in the datasets, making it challenging to evaluate the models’ performance fairly and
accurately. Therefore, we use the IPC 2023 Learning Track dataset, an public dataset
in the learning for planning field, to conduct experiments and compare the performance
with other models participating in the IPC 2023 Learning Track to ensure fairness and
accuracy.

Each domain in the IPC 2023 Learning Track dataset comprises of a training set and a
testing set, where the training set contains 99 problems arranged from easy to hard, and
the testing set includes problems categorized into easy, medium, and hard difficulties,
with 30 problems in increasing order of difficulty with each category. The IPC 2023
Learning Track dataset includes many domains, such as Blocksworld, Satellite, and
Rovers, but only the Rovers domain contains higher-arity predicates. Therefore, we
construct the Grippers domain dataset mimicking the structure and difficulty of the IPC
2023 Learning Track dataset to test our model, which is also suitable for experiments
on other models in domains with higher-arity predicates.

We evaluate our four proposed improvement methods and two architecture modifica-
tion methods in the Blocksworld, Satellite, Rovers, and Grippers domains. These four
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domains are classic and representative within the planning field, and we will introduce
them below:

• Blocksworld: A robotic arm needs to rearrange a stack of blocks from an initial
configuration to a specified target configuration through a series of moves. This
domain is a classic in the planning field, with simple rules that are easy to un-
derstand and visualize. However, the search space grows exponentially with the
number of blocks, making it an excellent test for the model’s basic performance
and state space search capabilities. This domain has predicates of arity no larger
than 2.

• Satellite: Simulates the activities of satellites in orbit, requiring adjustments to
their instruments’ settings to perform various observation tasks. With multiple
satellites with different observational capabilities and observation targets, this do-
main effectively demonstrates a model’s capacity for coordinated planning among
multiple agents in a resource-constrained environment. Additionally, the Satellite
domain contains many object types and a small proportion of legal edges. This
characteristic highlights the effect of illegal edges deletion. This domain has pred-
icates of arity no larger than 2.

• Grippers: A Gripper variant with multiple robots and more than two rooms,
where robots need to move between rooms and pick up and drop balls. This
domain is simple and intuitive, effectively demonstrating the model’s path planning
capabilities and suitable for testing the model’s basic performance on domains with
higher-arity predicates. This domain includes the higher-ary predicate carry(?r−
robot, ?o− ball, ?g − gripper).

• Rovers: Describes various Mars rover exploration tasks, including moving across
the Martian surface, collecting rock and soil samples, taking images, and trans-
mitting data back to Earth. This domain involves more complex decision-making
and excellently illustrates the model’s planning capabilities for multi-objective,
multi-constraint tasks in complex environments, suitable for testing the model’s
advanced decision-making abilities on domains with higher-arity predicates. It con-
tains higher-ary predicates can traverse(?r−rover, ?x−waypoint, ?y−waypoint)
and have image(?r − rover, ?o− objective, ?m−mode).

5.2 Experimental Setup

5.2.1 Training and Testing Pipeline

We select 90% of simpler problems from the IPC 2023 Learning Track training set as
our training set and the remaining 10% of more challenging problems as our validation
set, using the data from the IPC 2023 Learning Track testing set as our testing set.
In each domain, we train our model using the training set, observe model convergence
and choose the best model using the validation set, and test the planning performance
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Table 5.1: The problem sizes of each domain’s training, validation, and test sets.

Domain Type Training Validation
Testing

Easy Medium Hard

Blocksworld blocks 2 – 26 27 – 29 5 – 30 35 – 150 160 – 500

Satellite

satellites

instruments

modes

directions

1 – 10

1 – 18

1 – 3

2 – 10

10

19 – 20

3

10

3 – 10

3 – 20

1 – 3

4 – 10

15 – 40

15 – 80

3 – 5

15 – 30

50 – 100

50 – 200

5 – 10

40 – 100

Rovers

rovers

waypoints

objectives

cameras

1 – 4

4 – 10

1 – 9

1 – 4

4

10

9 – 10

4

1 – 4

4 – 10

1 – 10

1 – 4

5 – 15

15 – 90

15 – 80

5 – 50

15 – 30

100 – 200

100 – 200

60 – 100

Grippers

robots

rooms

balls

1 – 5

2 – 5

3 – 15

6 – 7

6 – 7

16 – 30

1 – 7

2 – 7

3 – 30

8 – 13

8 – 13

40 – 70

14 – 19

14 – 19

80 – 110

of the model with the testing set. For each domain, we sequentially tested the model
using easy, medium, and hard testing sets. Due to the incremental difficulty of test
problems, the testing stops if the model fails to solve three consecutive problems to
conserve computational resources and testing time. We use Fast-downward with LAMA-
first as a non-learning baseline. We run LAMA-first on each domain with a fixed time
limit of 10 minutes per problem. In the Blocksworld domain, we use improved GBFS-
GNN with the same time constraint, while in the Grippers and Rovers domains, we use
improved GBFS-GNN with a 20-minute limit, and in the Satellite domain, a 30-minute
limit per problem. The problem sizes for each domain’s training, validation, and testing
sets are illustrated Table 5.1.

We use the same hyperparameters across all domains: a hidden layer size of 256, ReLU
activation function, a batch size of 300, a PPO clipping ratio of 0.2, a KL divergence
cutoff parameter of 0.01, an entropy coefficient of 0.01, a reward discount factor of 0.99,
and a learning rate of 0.0001. We trained each domain for up to 1000 iterations, rolling
out 100 episodes and performing 20 gradient updates in each training iteration.
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Our code is implemented in Python, utilizing PyTorch for neural network construction.
We use Pyperplan, a Python based planner, as the successor state generator. All ex-
periments are performed on a single machine with a Intel Xeon Gold 5218R CPU and a
NVIDIA V100 GPU.

5.2.2 Evaluation Metrics

We use success rate against plan length, number of expanded states, and planning time
as evaluation metrics to compare the planning performance of different models. Higher
success rates under the same plan length, number of expanded states, and planning time
indicate better planning performance; shorter plan lengths, fewer expanded states, and
less planning time at the same success rates demonstrate better planning performance.
Moreover, we compare the convergence speed of different models using training time
against each epoch as a evaluation metric. Less training time per epoch indicates faster
convergence. Additionally, we use the average number of actions against each epoch as
a evaluation metric to assess training outcomes. Fewer actions per epoch suggest better
training outcomes.

5.2.3 Baselines

We use Fast-downward with LAMA-first (Helmert, 2006) and models participating in
the IPC 2023 Learning Track, such as GOFAI (the Winner) (Alvaro and Gnad, 2023),
Muninn (Simon et al., 2023), and ASNets (Mingyu et al., 2023), as baselines for our
experiments. GOFAI and Muninn directly utilized competition data from the IPC 2023
Learning Track. Since the ASNets code submitted to IPC 2023 Learning Track had a bug,
we contacted the ASNets authors, who provided us with bug-free ASNets’ experimental
data on the IPC 2023 Learning Track dataset. Since the test environments for improved
GBFS-GNN and the baselines differed and the baselines lacked experimental data in
terms of the number of expanded states, we compare them only in terms of plan length,
and with Fast-downward with LAMA-first in terms of the number of expanded states.

GOFAI, Muninn, and ASNets are run on a fixed time limit of 30 minutes for each
problem. Due to computational constraints, we apply timeouts ranging from 10 to
30 minutes for different domains. Additionally, improved GBFS-GNN, implemented
in Python and PyTorch without any inference acceleration techniques, requires more
than 1 second (3 to 5 seconds in the Rovers domain) for each inference on medium and
hard problems, even if excluding the time to run Python code such as encoding. In
contrast, GOFAI, Muninn, and Fast-downward implemented in C++ and ASNets using
compiled TensorFlow are significantly faster in inference. Based on these differences,
directly comparing of improved GBFS-GNN with the baselines on all test problems can
be misleading. For this reason, we also provide results considering only the subset of
test problems solved by improved GBFS-GNN.
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Figure 5.1: Results for the training outcomes of different epochs per split in the
Blocksworld domain. On the left: the average number of actions against
each epoch. On the right: the cumulative average number of actions against
each epoch.

5.3 Results for Incremental Training Procedure

We conduct comparative experiments on incremental training procedures with different
training parameters in the Blocksworld and Rovers domains to identify the optimal
training parameters.

5.3.1 Determining Numbers of Epochs per Split

We compare three different epochs per split: 20, 40, and 60 epochs per split with 3 splits
in the Blocksworld domain, with each approach training for 300 epochs. Figure 5.1
shows the average number of actions per epoch during training. The figure indicates
that the training outcome of 40 and 60 epochs per split is similar and better than that
of 20 epochs per split. Figure 5.2 illustrates the planning performance during testing,
demonstrating that the planning performance of 60 epochs per split is better than that
of 20 epochs per split, which is better than that of 40 epochs per split.

5.3.2 Determining Numbers of Splits

Next, we compare three different numbers of splits: 3 splits with 60 epochs per split, 5
splits with 40 epochs per split, and 10 splits with 20 epochs per split in the Blocksworld
domain. We train 200 epochs for each approach, at which time all three approaches
have been trained with the entire dataset to ensure the fairness and accuracy of the
comparison. Figure 5.3 shows the average number of actions per epoch during training.
The figure indicates that the training outcome is better as the number of splits increases.
Figure 5.4 illustrates the planning performance during testing, demonstrating that the
planning performance of 3 and 10 splits is almost identical and slightly better than that
of 5 splits.

Given the comparable planning performance of 3 splits with 60 epochs per split and
10 splits with 20 epochs per split in the Blocksworld domain, we also experiment with

71



5 Evaluation

Figure 5.2: Results for the planning performance of different epochs per split in the
Blocksworld domain.

Figure 5.3: Results for the training outcomes of different numbers of splits in the
Blocksworld domain.
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Figure 5.4: Results for the planning performance of different numbers of splits in the
Blocksworld domain.

Figure 5.5: Results for the training outcomes of different numbers of splits in the Rovers
domain. On the left: the results of improved GBFS-GNN (relational). On
the right: the results of improved GBFS-GNN (token).

these two approaches in the Rovers domain. Figure 5.5 shows the average number
of actions per epoch for improved GBFS-GNN (relational) and improved GBFS-GNN
(token) during training. The figure indicates that the training outcomes of these two
models are significantly better for 10 splits than for 3 splits. Figure 5.6 and Figure 5.7
illustrate the planning performance for these two models during testing, demonstrating
that the planning performance of these two models is better for 10 splits than 3 splits.

5.3.3 Discussion

The planning performance in the Blocksworld domain is nearly identical across different
numbers of splits, while in the Rovers domain, the planning performance varies more
significantly. We think this is due to different domain characteristics. More splits im-
ply a smaller range of problem difficulty per split, enabling the model to easily learn
generalized policies gradually across splits. In the Blocksworld domain, there exists a
straightforward generalized policy of “unstack all blocks then stack blocks according to
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Figure 5.6: Results for the planning performance of improved GBFS-GNN (relational)
for different numbers of splits in the Rovers domain.

Figure 5.7: Results for the planning performance of improved GBFS-GNN (token) for
different numbers of splits in the Rovers domain.
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the goal,” which allows the model to learn an optimal policy even with a large difficulty
range in a split. Thus, the model in the Blocksworld domain is less sensitive to the
number of splits. In contrast, the Rovers domain lacks such straightforward generalized
policies, making it challenging for the model to learn an optimal policy with larger dif-
ficulty ranges in a split. Therefore, the model in the Rovers domain is very sensitive to
the number of splits, and using more splits leads to better planning performance.

From these results, we conclude that for large problem-size datasets, compared to train-
ing directly on the entire dataset, using an incremental training procedure can signif-
icantly reduce training time and computational resources. Moreover, increasing the
number of epochs per split can enhance the model’s performance. In domains with
straightforward generalized policies, the number of splits has a minor impact; however,
in complex domains lacking such generalized policies, increasing the number of splits
greatly improves model performance.

5.4 Comparison of Original GBFS-GNN and Improved GBFS-
GNN

We compare the training time and planning performance of the original GBFS-GNN
and the improved GBFS-GNN in the Satellite domain to evaluate the performance of
our proposed improvement method, including advantage normalization, selecting the
most likely action, and illegal edges deletion. Figure 5.8 shows the training time per
epoch of the original GBFS-GNN and the improved GBFS-GNN in the Satellite domain,
indicating that the improved GBFS-GNN requires less training time in almost every
epoch than the original GBFS-GNN. Figure 5.9 shows the planning performance of the
original GBFS-GNN and the improved GBFS-GNN in the Satellite domain, indicating
that the improved GBFS-GNN outperforms the original GBFS-GNN.

From these results, we conclude that our proposed improvement methods, including
advantage normalization, selecting the most likely action, and illegal edges deletion, sig-
nificantly reduce the training time and accelerate convergence. Moreover, these methods
considerably enhance the plan quality and planning efficiency.

5.5 Comparison of Improved GBFS-GNN (relational) and
Improved GBFS-GNN (token)

We conduct comparative experiments with the improved GBFS-GNN (relational) and
the improved GBFS-GNN (token) in Rovers and Grippers domains to explore the ap-
propriate architecture modification method for different domains.
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Figure 5.8: Results for the training time against each epoch of original GBFS-GNN and
improved GBFS-GNN in the Satellite domain.

Figure 5.9: Results for the planning performance of the original GBFS-GNN and the
improved GBFS-GNN in the Satellite domain.
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Figure 5.10: Results for the training time against each epoch of the improved GBFS-
GNN (relational) and the improved GBFS-GNN (token) in the Rovers do-
main.

5.5.1 Rovers Domain

We compare training time and planning performance of the improved GBFS-GNN (rela-
tional) and the improved GBFS-GNN (token) in Rovers domain. Figure 5.10 shows the
training time per epoch of these two model in the Rovers domain. The figure indicates
that the improved GBFS-GNN (relational) requires less training time in almost every
epoch than the improved GBFS-GNN (token). Figure 5.11 illustrates the planning per-
formance of these two models in the Rovers domain, demonstrating that the improved
GBFS-GNN (relational) significantly outperforms the improved GBFS-GNN (token).

5.5.2 Grippers Domain

We compare training time and planning performance of the improved GBFS-GNN (re-
lational) and the improved GBFS-GNN (token) in Grippers domain. Figure 5.12 shows
the training time per epoch of these two model in the Grippers domain. The figure
indicates that the improved GBFS-GNN (token) requires less training time in almost
every epoch than the improved GBFS-GNN (relational). Figure 5.13 illustrates the plan-
ning performance of these two models in the Grippers domain, demonstrating that the
improved GBFS-GNN (token) outperforms the improved GBFS-GNN (relational).
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Figure 5.11: Results for the plan performance of the improved GBFS-GNN (relational)
and the improved GBFS-GNN (token) in the Rovers domain.

Figure 5.12: Results for the training time against each epoch of the improved GBFS-
GNN (relational) and the improved GBFS-GNN (token) in the Grippers
domain.
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Figure 5.13: Results for the plan performance of the improved GBFS-GNN (relational)
and the improved GBFS-GNN (token) in the Grippers domain.

5.5.3 Discussion

From these results, we conclude that both improved GBFS-GNN (relational) and im-
proved GBFS-GNN (token) can solve problems in domains with higher arity. Improved
GBFS-GNN (token) is more suited for simpler domains, while improved GBFS-GNN
(relational) is better suited for more complex domains.

We think that the performance of improved GBFS-GNN (relational) is roughly the same
in both the Rovers and Grippers domains, while improved GBFS-GNN (token) performs
better in the simpler Grippers domain and worse in the more complex Rovers domain.
This may be due to the Grippers domain having fewer predicates (4 predicates) than
the Rovers domain (22 predicates). Each predicate represents a dimension of informa-
tion and the more predicates in a domain, the greater the amount of information each
node contains. A relation node represents the relations among connected nodes, and
information it needs to learn and express is proportional to the sum of the information
of the connected nodes. If a relation node in these two domains is connected to the
same number of nodes, then a relation node in the Rovers domain would need to learn
and express 5.5 times more information as in the Grippers domain. Thus, a relation
node might perfectly learn all the information of its connected nodes in the Grippers
domain and fully express their relations. In contrast, in the Rovers domain, a relation
node might struggle to learn all the information of its connected nodes nor completely
express their relations.
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Figure 5.14: Results for the planning performance of improved GBFS-GNN and baselines
in the Blocksworld domain.

5.6 Comparison with Baselines

5.6.1 Domains with Low-arity Predicates

Blocksworld Domain

We compare the improved GBFS-GNN with baselines in the Blocksworld domain to
evaluate the performance of our proposed improvement methods. The result is shown
in Figure 5.14 and indicate that improved GBFS-GNN significantly outperforms other
baselines.

Satellite Domain

We compare the improved GBFS-GNN with baselines in the Satellite domain to evaluate
the performance of our proposed improvement methods.

The left of Figure 5.15 shows the plan length of the improved GBFS-GNN and base-
lines for all test problems. The improved GBFS-GNN exhibits higher plan quality than
Muninn and ASNets, is comparable to GOFAI, but is below Fast-downward with LAMA-
first. The right of Figure 5.15 illustrates the plan length of these models for the subset
of test problems solved by improved GBFS-GNN, indicating that at the same success
rate, the plan quality of the improved GBFS-GNN and Fast-downward with LAMA-first
are roughly equivalent.

Figure 5.16 shows the number of expanded states of the improved GBFS-GNN and
baselines for all test problems and the subset of test problems solved by the improved
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Figure 5.15: Results for the plan length of improved GBFS-GNN and baselines in the
Satellite domain. On the left: the results of all test problems. On the right:
the results considering only the subset of test problems solved by improved
GBFS-GNN.

GBFS-GNN in the Satellite domain. The figure demonstrates that improved GBFS-GNN
exhibits a significantly higher planning efficienc than Fast-downward with LAMA-first.

Discussion

From these results, we conclude that for domains with low-arity predicates, the plan
quality of the improved GBFS-GNN surpasses or equals that of the best performance
learning model GOFAI and the traditional heuristic search algorithm LAMA-first. In
the meantime, the planning efficiency of improved GBFS-GNN is much higher than that
of LAMA-first.

5.6.2 Domains with Higher-arity Predicates

Rovers Domain

We compare the improved GBFS-GNN (relational), improved GBFS-GNN (token), and
baselines in the Rovers domain to evaluate the performance of our proposed architecture
modification methods.

The left of Figure 5.17 shows the plan length of the improved GBFS-GNN (relational),
improved GBFS-GNN (token), and baselines for all test problems. The improved GBFS-
GNN (token) exhibits higher plan quality than Muninn and ASNets, while the plan
quality of improved GBFS-GNN (relational) is below that of GOFAI and Fast-downward
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Figure 5.16: Results for the number of expanded states of improved GBFS-GNN and
baselines in the Satellite domain. On the left: the results of all test prob-
lems. On the right: the results considering only the subset of test problems
solved by improved GBFS-GNN.

with LAMA-first. The right of Figure 5.17 illustrates the plan length of these models for
the subset of test problems solved by the improved GBFS-GNN (relational), indicating
that at the same success rate, the plan quality of the improved GBFS-GNN (relational),
GOFAI, and Fast-downward with LAMA-first are roughly equivalent.

Figure 5.18 shows the number of expanded states of the improved GBFS-GNN (re-
lational), improved GBFS-GNN (token), and baselines for all test problems and the
subset of test problems solved by the improved GBFS-GNN (relational) in the Rovers
domain. The figure demonstrates that improved GBFS-GNN (relational) and improved
GBFS-GNN (token) exhibit a significantly higher planning efficienc than Fast-downward
with LAMA-first.

Grippers Domain

We compare the improved GBFS-GNN (relational), improved GBFS-GNN (token), and
baselines in the Grippers domain to evaluate the performance of our proposed architec-
ture modification methods.

The right of Figure 5.19 shows the number of expanded states of the improved GBFS-
GNN (relational), improved GBFS-GNN (token), and Fast-downward with LAMA-first
for all test problems in the Grippers domain. The figure demonstrates that improved
GBFS-GNN (relational) and improved GBFS-GNN (token) exhibit a significantly higher
planning efficienc than Fast-downward with LAMA-first. The left of Figure 5.19 show
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Figure 5.17: Results for the plan length of improved GBFS-GNN (relational), improved
GBFS-GNN (token), and baselines in the Rovers domain. On the left: the
results of all test problems. On the right: the results considering only the
subset of test problems solved by improved GBFS-GNN (relational).

Figure 5.18: Results for the number of expanded states of improved GBFS-GNN (rela-
tional), improved GBFS-GNN (token), and baselines in the Rovers domain.
On the left: the results of all test problems. On the right: the results con-
sidering only the subset of test problems solved by improved GBFS-GNN
(relational).
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Figure 5.19: Results for the plan performance of improved GBFS-GNN (relational), the
improved GBFS-GNN (token), and Fast-downward with LAMA-first in the
Grippers domain.

the plan length of these three models for all test problems, indicating that the plan
quality of improved GBFS-GNN (relational) and improved GBFS-GNN (token) is below
that of Fast-downward with LAMA-first.

Discussion

From these results, we conclude that for domains with higher-arity predicates, the plan-
ning efficiency of improved GBFS-GNN (relational) and improved GBFS-GNN (token)
is much better than the traditional heuristic search algorithm LAMA-first, and their
plan quality is significantly higher than Muninn and ASNets, but slightly lower than
GOFAI and LAMA-first.
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Chapter 6

Conclusion and Future Work

In this chapter, we provide a summary of our main contributions in this thesis and
propose several future research directions for GBFS-GNN.

6.1 Contributions

The main objective of this thesis is to improve and address the limitations of GBFS-
GNN, enabling GBFS-GNN to train on domains with arbitrary arity predicates and large
problem-size datasets within a reasonable time while enhancing model performance and
reducing the training time. The contributions of this thesis include:

Improving Training and Inference Performance

The original GBFS-GNN’s planning performance for complex domains and large-size
problems is poor, and its training times are too long. Additionally, the original GBFS-
GNN cannot complete training on large problem-size datasets within a reasonable time.
Therefore, we replicate the original GBFS-GNN and introduce four optimization meth-
ods to address these limitations:

• Advantage Normalization: We use the advantage normalization technique to
standardize advantage estimation in the reinforcement model, reducing its vari-
ance, enhancing training stability, accelerating model convergence, and improving
planning performance.

• Selecting Most Likely Action: Instead of sampling the action, we select the
action with the highest probability during inference. This method fully utilizes
the trained policy, converging more quickly to the optimal solution and enhancing
planning performance.
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• Illegal Edges Deletion: We remove illegal edges between nodes with no binary
relations in the original state graph to reduce training and inference time and
enhance planning performance.

• Incremental Training Procedure: We sort the dataset by problem size and
divide it into multiple splits. Starting training with the first split, after several
epochs, the next split is merged into the current training set and training is re-
sumed. This process is repeated until the full dataset is utilized for training.
Training is stopped if there is no improvement in performance on the validation
set after several consecutive evaluations. This method allows GBFS-GNN to train
on large problem-size datasets within a reasonable time while saving computational
resources and training time.

Handling Domains with Higher-arity Predicates

The original GBFS-GNN encodes low-arity predicates as features in the state graph.
However, it is unable to solve problems in domains with higher-arity predicates. To
address this limitation, we introduce two types of solutions:

• Decomposition: We decompose higher-arity predicates in the domain into bi-
nary predicates. Then, the decomposed domain and problem are input into the
original GBFS-GNN for training and inference. We propose two decomposition
methods, relational decomposition and token-based decomposition, and compare
their characteristics.

• Architecture Modification: We modify the architecture of the original GBFS-
GNN to directly encode higher-arity predicates as the graph components. We
develop two modification methods: (1) simulating the relational decomposition
by representing higher-arity predicates as binary predicates to encode states and
effects; (2) simulating the token-based decomposition by introducing the hub nodes
in the state graph representing the relation between parameters of higher-arity
predicates to encode states and effects.

Standardized Evaluation

The original GBFS-GNN trains and infers on their ad-hoc datasets. Their experimental
results depend heavily on the quality, quantity, and difficulty of the problems in the
datasets, making it challenging to fairly and accurately evaluate the models’ perfor-
mance. Therefore, we utilize the IPC 2023 Learning Track dataset to conduct experi-
ments and compare the performance with other models participating in the IPC 2023
Learning Track to ensure fairness and accuracy.

Additionally, since only the Rovers domain in the IPC 2023 Learning Track dataset
contains higher-arity predicates, we construct the Grippers domain dataset that mimics
the structure and difficulty of the IPC 2023 Learning Track dataset to evaluate our
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model. This dataset can also be used for experiments with other models in domains
containing higher-arity predicates.

6.2 Future work

Although our proposed improved GBFS-GNN achieved good experimental results, there
are still many areas for future exploration, which can be categorized into three themes:
improving performance, improving the training procedure, and extending to more com-
plex domains. We will discuss them in detail in the next sections.

6.2.1 Improving Performance

Optimizing Implementation

Our code is implemented in Python, using the Python-based Pyperplan as the succes-
sor state generator and PyTorch for constructing neural networks. However, Python’s
performance is considerably slower than C++ and Pyperplan is primarily designed as
a teaching tool rather than a high-performance planner. Moreover, we do not use any
accelerated inference techniques for PyTorch. Consequently, the computational perfor-
mance of improved GBFS-GNN is lacking.

In the future, we could refactor our code in C++ and use Fast-downward, a highly opti-
mized classical planner, as the successor state generator. We could also implement JIT
compilation or static runtime compilation for PyTorch and employ high-performance
inference engines like TensorRT and ONNX Runtime. Additionally, we can draw inspi-
ration from Asynchronous Advantage Actor-critic (A3C) (Mnih et al., 2016) to perform
parallel training and inference on multiple CPU cores and GPUs. We anticipate that
these optimizations could significantly enhance the training and inference speed of im-
proved GBFS-GNN.

Combining Sampling Action and Selecting Most Likely Action

As mentioned in Subsection 3.2.2, sampling the action and selecting the most likely action
each have advantages and disadvantages, suitable for different models, domains, and
problems. In the future, we can design a method that combines these two approaches:
for the action probability distribution, when the highest probability or the difference
between the highest probability and the second highest probability reaches a certain
threshold, it indicates high confidence in the most likely action, thereby, we select the
most likely action to quickly converge to the optimal plan. Otherwise, we sample the
action to reduce backtracking and maintain exploration.

Combining Supervised Learning and Reinforcement Learning

Supervised learning can learn the inherent patterns from large datasets and converge
quickly, but it may not make the optimal decision in state spaces not covered by the
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training data. On the other hand, reinforcement learning learns problem-solving policies
through interaction with the environment, enabling it to make good decisions in unseen
states. However, reinforcement learning struggles to obtain reward signals in the early
stages of training and converges slowly.

AlphaGo (Silver et al., 2016) achieved great success by combining these two approaches:
First, it uses supervised learning with professional Go game records to learn local strate-
gies. Then, reinforcement learning is used to learn global strategies such as situation
assessment. In the future, we could use this method of combining supervised learn-
ing and reinforcement learning. In the early stages of training, we can use traditional
planning algorithms to acquire optimal solutions of simple problems and use supervised
learning with these data to train the GBFS-GNN, enabling it to quickly learn the optimal
foundational policy. Then, we could use reinforcement learning to train the GBFS-GNN
to explore and learn advanced policy. At this stage, GBFS-GNN has a better starting
point and avoids aimless exploration and trial-and-error in large state spaces. We expect
this approach to accelerate the convergence rate and yield superior final policy.

6.2.2 Improving Train Procedure

Adaptive Incremental Training Procedure

Our proposed incremental training procedure needs to adjust hyperparameters like the
number of epochs per split and the number of splits according to the characteristics and
difficulty of different domains and datasets. In the future, we can design an adaptive
incremental training procedure: starting training with the simplest problem, the next
more difficult problem is merged into the training set when accuracy converges to a
certain threshold. This process is repeated until training on the entire dataset. In the
meantime, the threshold should be adjusted automatically based on training progress.
We expect that this approach could enable the incremental training procedure to be
applied to different domains and datasets without adjusting hyperparameters.

Never-end Learning

Most learning for planning models learn generalized policies during the training phase,
and only utilize the generalized policies solve the planning problem during the testing
phase without using the test data to enhance the model performance. In practical
industrial scenario, this leads to a significant waste of valuable data, preventing the model
from self-evolving with feedback. In contrast, human learning is a continuous process.
We learn basic knowledge from courses and continuously gain practical experience to
enhance our problem-solving abilities.

Mitchell et al. (2018) proposes the concept of never-ending learning and presents Never-
Ending Language Learner (NELL), which continuously learns from the data on the
Internet 24 hours a day to enrich and optimize its knowledge base. We can draw in-
spiration from never-ending learning: during the testing phase, for unsolved problems
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or problems with poor plan quality, we could simplify them until the model can oc-
casionally solve them. These simplified problems are then used for training until the
model can efficiently solve them. Then, we increase the complexity of these problems
until the model can occasionally solve them again and continue to train the model with
these adjusted problems. This process is repeated until the model can efficiently solve
the original problems. We expect this approach will enable models to self-evolve and
continually learn stronger generalized policies from new test data.

6.2.3 Extending to More Complex Domains

Probabilistic Problem

In the probabilistic domain, actions can lead to stochastic outcomes, each with a different
probability. Probabilistic planning aims to generate a plan that reaches a goal state
with 100% probability and minimal cost. For instance, the Triangle Tireworld domain
is a typical probabilistic domain simulating a vehicle navigating a triangular grid map
from an initial location to a target location. The vehicle has a certain probability of
experiencing a flat tire with each move, and without a spare tire, it cannot proceed.
Spare tires are only available at certain locations on the map. Planners must consider
these locations with spare tires to address potential flat tires while finding the shortest
path from the start to the destination.

Determinization relaxes a probabilistic planning problem to a deterministic problem
by converting probabilistic actions into one or more deterministic actions (Bonet and
Geffner, 2003). This method ignores the probability of outcomes and undesirable impacts
of probabilistic actions, performing poorly in domains like Triangle Tireworld, which
have avoidable dead ends. The non-determinization heuristics hpom and hroc (Trevizan
et al., 2017a) achieve good performance across various probabilistic domains. However,
these heuristics are difficult to construct and have high computational complexity.

ASNets (Toyer et al., 2018, 2020) could solve problems in probabilistic domains and have
learned optimal generalized policy in the Triangle Tireworld domain. ASNets enable the
model to automatically learn possible outcomes during training instead of encoding the
probabilities of outcomes into feature vectors. However, this approach may miss some
outcomes during training if preconditions for certain probabilistic actions are hard to
meet or the probability of undesirable outcomes is low. For example, in a medical
domain, a surgical action of a rare disease has a 5% probability of resulting in patient
death, which may never occur during training. Moreover, not all practical scenarios
strictly require a 100% probability of solving a problem. For instance, there may be a
0.01% chance of a traffic accident on the way to work, yet we still choose to go to work
every day. Therefore, developing a model capable of making trade-off decisions is also
critical.

In the future, we could redesign GBFS-GNN architecture to encode the probabilities of
outcomes into the action representation and redesign the reward function to penalize
the actions that lead to dead ends. The training set should also be specifically designed
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to include all possible situations. We expect these optimizations to effectively address
problems in probabilistic domains.

Constrained Problem

A constrained planning problem is a deterministic or probability planning problem with
secondary constraints, for instance, maximum fuel allowed to be used and sequence
of states that cannot happen or must happen with low probability. Several planning
models exist for this class of problems based on the type of constraints being modeled, for
instance, C-SSPs (Trevizan et al., 2017b), C-SSPS with PLTL constraints (Baumgartner
et al., 2018; Mallet et al., 2021), and MO-Models (Geisser et al., 2022; Chen et al., 2023).
All the algorithms to solve these models are much more computationally expensive than
algorithms for classical planning. At the same time, the heuristics for such models are
not as informative, resulting in less efficient heuristic search, that is, much more nodes
expanded to find a solution. In the future, we could redesign GBFS-GNN architecture
to encode the constraints into state and action representations and redesign the reward
function to penalize agents for constraint violations. The search algorithm used in GBFS-
GNN should also be redesigned to correct constraint violations by the neural network.
We hope these improvements could provide an efficient alternative to compute sub-
optimal solutions to some of these models.
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