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Abstract.
Constrained Stochastic Shortest Path Problems (CSSPs) model

problems with probabilistic effects, where a primary cost is min-
imised subject to constraints over secondary costs, e.g., minimise
time subject to monetary budget. Current heuristic search algorithms
for CSSPs solve a sequence of increasingly larger CSSPs as linear
programs until an optimal solution for the original CSSP is found.
In this paper, we introduce a novel algorithm CARL, which solves
a series of unconstrained Stochastic Shortest Path Problems (SSPs)
with efficient heuristic search algorithms. These SSP subproblems
are constructed with scalarisations that project the CSSP’s vector of
primary and secondary costs onto a scalar cost. CARL finds a max-
imising scalarisation using an optimisation algorithm similar to the
subgradient method which, together with the solution to its associ-
ated SSP, yields a set of policies that are combined into an optimal
policy for the CSSP. Our experiments show that CARL solves 50%
more problems than the state-of-the-art on existing benchmarks.

1 Introduction
Stochastic Shortest Path Problems (SSPs) model problems where the
effects of actions can be probabilistic and Constrained SSPs (CSSPs)
extend the model by allowing constraints over secondary costs, en-
forcing that the incurred secondary costs do not exceed a specified
threshold over expectation. This can represent interesting real-world
problems, e.g., planning an aeroplane’s route that minimises fuel
usage while avoiding bad weather and satisfying certain timing re-
quirements [14]. SSPs can be solved with the primal formulation,
where we optimise over variables that represent the agent’s cost-to-
go (a.k.a. value functions); or with the dual formulation over oc-
cupation measures, which represent the expected number of times
an action is applied in each state. Algorithms over the primal rep-
resentation tend to be faster and indeed, the state-of-the-art algo-
rithms for solving SSPs optimally use the primal representation,
e.g., iLAO∗ [18], LRTDP [8], CG-iLAO∗ [26]. In contrast, the only
heuristic search algorithms for CSSPs use the dual representation:
i-dual [31] and i2-dual [32]. In this paper, we present the first heuris-
tic search algorithm that solves CSSPs optimally using the primal
space, and show that it outperforms the existing algorithms.

Our algorithm CARL builds on existing work for finding determin-
istic policies for CSSPs (which are generally suboptimal) [22], with
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the key difference that CARL finds optimal (potentially stochastic)
policies. CARL works by running heuristic search in the primal space
using scalarisation, where a scalarisation λ projects the CSSP’s cost
vector onto a scalar cost function, thereby inducing an unconstrained
SSP. CARL searches for an optimal scalarisation λ∗ with optimsa-
tion techniques similar to the subgradient method [30] and solves
SSPs induced by the encountered λ scalarisations as subproblems.
Once CARL has found λ∗, it computes the optimal costs-to-go V ∗

associated with that scalarisation, and builds an optimal policy for the
CSSP by combining all of V ∗’s greedy policies. CARL’s subprob-
lems are solved efficiently with heuristic search algorithms for SSPs
and its outer problem over scalarisations is blind; this is reversed in
the dual methods (i-dual and i2-dual) where the construction of sub-
problems is guided with a heuristic, but the subproblems themselves
are solved blindly by the LP solver. In our experiments, this tradeoff
pays off and CARL can solve 1264 out of 1290 of our benchmark
problems, whereas the state-of-the-art dual methods only solve 808.
For some problems CARL is able to solve all instances while the
state-of-the-art is not able to solve any, and over the problems where
all algorithms solve all instances CARL offers an average speedup of
10× w.r.t. the strongest baseline.

2 Background

Stochastic Shortest Path Problems (SSPs) [4] are defined by the
tuple ⟨S, sI ,G,A, P, C⟩ where S is a finite set of states; sI ∈ S is
the initial state; G ⊂ S is a set of goal states that must be reached; A
is a finite set of applicable actions, and we write A(s) to denote the
applicable actions in state s; P is the probability transition function
where P (s′|s, a) is the probability of reaching s′ after applying a to
s; and C : A→ R>0 is a cost function where C(a) gives the cost of
applying the action a.

Policies map states to actions and describe solutions to SSPs. Poli-
cies come in two flavours: deterministic policies π : S → A and
stochastic policies π : S → distr(A), which respectively map each
state onto a single action, or onto a probability distribution over ac-
tions from which an action should be selected randomly; π(s, a) is
the probability that π applies a in s, and we may write π(s) = a
if π(s, a) = 1. The envelope of policy π from s, written Sπ,s, de-
notes the set of states reachable by following π from s. The policy
π is closed w.r.t. s if π is defined for all s′ ∈ Sπ,s, and π is proper
w.r.t. s if following π from s guarantees that G is reached with proba-



bility 1. If π is not closed or not proper it is called open or improper,
respectively. If s is omitted in these expressions, then we assume
s = sI . We extend the notion of an envelope, and write supp(π)
to denote the state-action pairs that might be encountered by π, i.e.,
supp(π) = {(s, a) : s ∈ Sπ, π(s, a) > 0}. We overload the C sym-
bol and write C(π) to denote the expected cost incurred by following
the proper policy π from sI . We make two standard assumptions for
SSPs: a proper policy exists from each state (reachability), and any
improper policy incurs infinite cost. Then, a policy π is optimal if it is
closed and minimises C(π). Under these assumptions, SSPs always
have an optimal deterministic policy [4].

Primal algorithms for SSPs work over value functions V : S →
R≥0, which represent the cost-to-go for each state, i.e., V (s) in-
dicates the expected cost that the agent must incur to reach the
goal from s. For each V , its Q-values are Q(s, a) = C(a) +∑

s′∈S P (s′|s, a)V (s′). V ∗ is the optimal value function and de-
notes the cheapest possible cost-to-go for each state. V ∗ is the unique
solution of the Bellman equations:

V (s) = min
a∈A(s)

Q(s, a) ∀s ∈ S \ G and V (s) = 0 ∀s ∈ G.

For V , its greedy policy πV is defined by πV (s) =
argmina∈A(s)Q(s, a), where the argmin operator breaks ties arbi-
trarily to yield a single policy. V ∗’s greedy policy gives an op-
timal deterministic policy for the SSP. To compute V ∗, we can
start with some V and iteratively apply Bellman backups V (s) ←
mina∈A(s) Q(s, a) over states s. Value Iteration (VI) [3] applies Bell-
man backups over the whole state space in each step, and converges
to V ∗ in the limit as the number of steps increases.

Heuristic search algorithms use heuristic functions to focus on
a promising subset of states and actions, and only apply backups
there. For deterministic problems the canonical heuristic-search al-
gorithm is A∗ [20], and the state-of-the-art algorithms iLAO∗ [18],
LRTDP [8], and CG-iLAO∗ [26] generalise A∗ to the SSP setting.
A heuristic function is a value function H : S → R≥0 that esti-
mates V ∗, so that the algorithm can avoid states with large H(s)
and prefer states with low H(s). We require heuristics to be ad-
missible, i.e., to be lower bounds on the optimal value function
H(s) ≤ V ∗(s) ∀s ∈ S. With admissible heuristics the heuristic-
search algorithms we consider can guarantee optimality. For VI,
we measure the change in successive value functions with Bellman
residual RES(s) = |V (s)−mina∈A(s) Q(s, a)|, and stop search once
the changes in V are sufficiently small. In heuristic search, we stop
when V is ϵ-consistent [7], i.e., when for some greedy policy πV we
have RES(s) ≤ ϵ ∀s ∈ SπV . This condition guarantees that V = V ∗

as ϵ → 0, and in practice, for sufficiently small ϵ, ϵ-consistent value
functions induce an optimal policy.

CG-iLAO∗ [26] is a heuristic search algorithm over the primal
space, which we explain because it provides crucial features to solve
our subproblems efficiently. CG-iLAO∗ is presented in alg. 1. It
works over value function V and a partial SSP Ŝ, which contains
a subset of the original SSP’s states and actions. Non-goal states in Ŝ
are called “expanded” if they have at least one applicable action in Ŝ,
and are called “fringes” if they have none. In each step, CG-iLAO∗

applies Bellman backups over the greedy policy π̂V ’s envelope E ,
and expands E’s fringes. Thus, CG-iLAO∗ simultaneously works to-
wards making π̂V closed by expanding fringes, and towards making
V ϵ-consistent with the Bellman backups. Since Ŝ need not contain
all actions, CG-iLAO∗ looks for expanded states s with actions a
such that Q(s, a) < V (s), because this suggests a can improve V (s)
and should be added if it is missing. Γ is a set of all state-action pairs

Algorithm 1: CG-iLAO∗

1 Function CG-iLAO∗ (SSP S, heuristic H , ϵ ∈ R>0)
2 Ŝ← partial SSP containing only sI
3 V ← value function initialised by H
4 repeat
5 π̂V , π̂old ← greedy policy for V , restricted to Ŝ
6 E ← post-order DFS traversal of π̂V from sI

7 Ŝ, E , π̂V ← expand fringes of E
8 V, RES, π̂V ,Γ← apply Bellman backups over E ,

recording increases and decreases to V in Γ

9 V, RES,Γ, Ŝ← fix cases of V (s) > Q(s, a) in Γ
10 until fringes(E) = ∅ and π̂old = π̂V and RES ≤ ϵ
11 return V

that potentially satisfy Q(s, a) < V (s), i.e., it is a superset of im-
proving actions. Γ is efficiently maintained by tracking changes to V
and line 9 fixes any issues by setting V (s) ← min{V (s), Q(s, a)}
for all (s, a) ∈ Γ and adding a as required. Note that this may in-
troduce more instances of V (s) > Q(s, a), which are themselves
recorded in Γ to be checked later.

Constrained SSPs (CSSPs) [1, 31] are extensions to SSPs defined
by C = ⟨S, sI ,G,A, P,C,u⟩ with two changes from SSPs: (1) the
vector cost function C : A → R>0 × Rn

≥0, where C0 : A →
R>0 is the primary cost, and Ci : A → R≥0 for i ∈ {1, . . . , n}
are the secondary costs; (2) we have a vector of upper bounds u ∈
Rn

≥0. Note that we use boldface to denote vectors. Ci(π) denotes the
expected cost of π on the ith cost; we assume reachability and that
improper policies incur infinite primary cost. A policy π is feasible
if it satisfies all its secondary-cost constraints, i.e., Ci(π) ≤ ui ∀i ∈
{1, . . . , n}, and π is optimal if it is closed, feasible, and minimises
the primary cost C0(π) w.r.t. the other feasible policies. In contrast
to SSPs, CSSPs may have no optimal deterministic policies and only
strictly stochastic ones [1, 31]. This difference occurs because there
may be deterministic policies that are infeasible on their own, but can
be mixed to satisfy the secondary-cost constraints over expectation.

There are no primal method for optimally solving CSSPs and all
optimal CSSP algorithms rely on the dual formulation. The dual for-
mulation optimises over the space of occupation measures x where
xs,a represents the expected number of times that s is reached and
then a applied. LP 1 is the occupation measure LP for CSSPs [31],
where J·K is the Iverson bracket and we use the macros out(s) =∑

a∈A(s) xs,a and in(s) =
∑

s′∈S,a′∈A(s′) xs′,a′P (s|s′, a′) for
each s ∈ S. LP 1 can be interpreted as a network flow, where a unit of
flow is injected into sI , and must be routed through the actions so that
all of it reaches the goals. An optimal solution x for LP 1 induces the
optimal policy πx with πx(s, a) = xs,a/out(s) ∀s ∈ S, a ∈ A(s).

min
x

∑
s∈S,a∈A(s)

xs,aC0(a) s.t. C1–C4 (LP 1)

out(s)− in(s) = Js = sIK ∀s ∈ S \ G (C1)∑
g∈G

in(g) = 1 (C2)

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C3)∑
s∈S,a∈A(s)

xs,aCi(a) ≤ ui ∀i ∈ {1, . . . , n} (C4)

There is an important connection between deterministic and
stochastic policies: any stochastic policy can be represented as a con-
vex combination (a.k.a. mixture) of deterministic ones [14]. We write
this decomposition of the stochastic policy π as π = µ0π0 + · · · +



µkπk where µ0, . . . , µk ∈ R>0, µ0 + · · ·+µk = 1, and π0, . . . , πk

are π’s constituent deterministic policies. We give an example of a
CSSP and its policies in appendix A.

3 Solving CSSPs with Scalarisation

In this section we explain how to solve CSSPs with scalarisation, and
implement this framework in our novel algorithm CARL. First, we
give a high-level overview of the algorithm, and then give details for
its three main steps.

Underlying the scalarisation approach is LP 2, the primal LP for
LP 1. Intuitively, the Vs variables represent the cost-to-go V (s), so
we will use V (s) and Vs interchangeably. In fact, if we construct
LP 2 for an unconstrained SSP, then the λi and ui terms disappear
and the LP becomes the standard primal LP for solving SSPs which
encodes the Bellman equations for V . If we fix λ, then LP 2 again
encodes the Bellman equations for an SSP, but with the modified cost
function Cλ(a) = [1 λ] ·C(a) (from C5) and the constant one-time
terminal cost −

∑n
i=1 λiui (from the objective). S(λ) denotes such

an SSP parameterised by λ.

Definition 1 (Scalarised SSP). Given C and a scalarisation λ ∈
Rn

≥0, S(λ) is an SSP relaxation of C with the cost function Cλ : A→
R≥0 s.t. Cλ(a) = [1 λ] ·C(a) and the terminal cost −

∑n
i=1 λiui,

which is incurred once when a goal is encountered, and is constant
for λ. We write a proper policy’s cost as Cλ(π) = [1 λ] · C(π) −∑n

i=1 λiui.

We can interpret each λ as a scalarisation that projects the CSSP’s
vector cost function onto a scalar cost function. An optimal solu-
tion V ∗,λ∗ for LP 2 gives the solution to the scalarised SSP’s Bell-
man equations that are maximal over all scalarisations. Thanks to the
strong duality of LPs, the solution V ∗,λ∗ can be transformed into an
optimal solution for LP 1 using complementary slackness, yielding
an optimal stochastic policy for the CSSP. This transformation can
be interpreted as extracting all the greedy deterministic policies for
V ∗, and combining them into an optimal policy.

max
V,λ

VsI −
n∑

i=1

λiui s.t. C5–C6 (LP 2)

Vs ≤ C0(a) +
n∑

i=1

λiCi(a) +
∑
s′∈S

P (s′|s, a)Vs′

∀s ∈ S\G, a∈A(s) (C5)

Vg = 0 ∀g ∈ G (C6)

λi ≥ 0 ∀i ∈ {1, . . . , n} (C7)

To avoid solving LP 2 directly, we separate the optimisation over
V and λ into maxλ L(λ), where L(λ) = maxV VsI −

∑n
i=1 λiui,

i.e., L(λ) is the optimal policy cost for S(λ). If we draw L(λ) for all
values of λ, we get a surface that is piecewise linear concave [22]; we
give some examples of this in appendix B. Thus, with an oracle that
gives L(λ) and a subgradient for each λ, we can use any subgradient
method to find λ∗ = maxλ L(λ). Finally, we must find V ∗ that
describes all optimal deterministic policies for S(λ∗), from which
we extract an optimal stochastic policy for the CSSP.

Alg. 2 presents the high-level pseudocode of this scalarisation al-
gorithm, named CARL. In the remainder of this section, we explain
CARL’s three steps: (1) finding λ∗ (line 3), (2) finding V ∗ given λ∗

(line 4), and (3) extracting the optimal stochastic policy (line 5). To
conclude, we prove CARL’s correctness, and give more detail about
CARL’s error terms.

Algorithm 2: Solve CSSP with Scalarisation

1 Function solve(CSSP C, heuristic H : S→ Rn+1
≥0 )

2 // λ∗ ∈ Rn
≥0,V : S→ Rn+1

≥0 , V ∗
∀ : S→ R≥0

3 λ∗,V ← find-λ∗(C,H)
4 V ∗

∀ ← find-all-opts-for-S(λ∗,V ,C,H)
5 π∗ ← extract-opt-policy(λ∗, V ∗

∀ ,C)
6 return π∗

7 Function find-λ∗(CSSP C, H : S→ Rn+1
≥0 )

8 // λ ∈ Rn
≥0,V : S→ Rn+1

≥0 , g ∈ Rn

9 λ← 0,V ←H
10 repeat
11 V ← solve-S(λ,V ,C)
12 subgradient g ← [V1(sI)− u1 · · · Vn(sI)− un]
13 λ← move from λ with g (see section 3.1)
14 until λ has converged (see section 3.5)
15 return λ,V

16 Function solve-S(λ,V ,C)
17 V ← solve S(λ) (see defn. 1) with SSP algorithm

modified to work on vector V (see section 3.1)
18 return V

19 Function find-all-opts-for-S(λ,C,H)
20 V ∗

∀ ← solve-S(λ,V ,C) with modification that satisfies
strong ϵ-consistency (see eq. (1) in section 3.2)

21 return V ∗
∀ s.t. V ∗

∀ (s) = [1 λ∗] · V ∗
∀ (s) ∀s ∈ S

22 Function extract-opt-policy(λ, V ∗
∀ , C)

23 x∗ ← solution to SOL 1 with λ, V ∗
∀ , C

24 return πx∗

We point out that CARL follows the concepts of Lagrangian de-
composition and uses the same framework for finding λ∗ as the al-
gorithm by Hong and Williams [22]. The novelty of CARL is that
it produces optimal (potentially stochastic) policies and improves on
previous techniques, which we discuss further in section 4.

3.1 Finding a Maximal Scalarisation

In this section, we describe find-λ∗ (line 7), which searches over
λs with a subgradient method (outer problem). This technique must
compute subgradients, which we do by solving S(λ) as subproblems

Outer optimisation over λ. Suppose that we have an oracle that
returns L(λ) and a subgradient g for each λ. Recall that our op-
timisation space, i.e., the surface obtained by plotting L(λ) for all
λs, is piecewise linear concave. This function has “sharp kinks”
and can not be differentiated there, which is why we need subgradi-
ents [30].1 To find maxλ L(λ), we can use any optimisation method
that accommodates concave and non-smooth search spaces. We fol-
low Hong and Williams [22] and use an exact line search within co-
ordinate search, which has been shown to be efficient for piecewise
linear concave models with few constraints.

Coordinate search maximises L(λ) by focusing on one coordinate
at a time. That is, it sequentially solves for each i ∈ {1, . . . , n}
the subproblem maxλi L(λ), where all λj for j ̸= i are fixed
from the previous step. Thus, for each coordinate i it maximises
L([λ1 . . . λn]) where λi is the only variable and all other terms
are fixed. This subproblem is solved with an exact line search which
exploits that the subproblem is a piecewise linear concave problem
with a single variable. The approach is reminiscent of binary search:

1 Concave functions technically have supergradients, but these are still called
subgradients in the literature.



it starts with l = 0 and u ∈ R>0 which give lower and upper bounds
on the optimal assignment to λi. Then, the subgradients are com-
puted at λ with λi = l and λi = u, the intersection of these subgra-
dients is computed as m, and either l or u is updated to m, depend-
ing on m’s subgradient. This process repeats until l and u converge
or their subgradients have the same sign (see [22] for more details).
We visualise how λ is updated with coordinate search in appendix B.
Unfortunately, coordinate search is incomplete for non-smooth prob-
lems [29], as we exemplify in appendix C. Fortunately, these edge
cases occur rarely, as we see in our experiments (section 5), and are
detectable: if we extract a stochastic policy from V †,λ† whose pri-
mary cost is greater than L(λ†), then we know that λ† ̸= λ∗, be-
cause L(λ∗) = C0(π

∗) where π∗ is extracted from V ∗,λ∗. If we
detect that coordinate search failed we can fall back on a complete
method to find λ∗; we use the subgradient method with projection to
ensure λ ≥ 0 [30]. Line 13 represents a single update of λ using co-
ordinate search or the subgradient method as a fall-back, as we have
described.

Oracle via S(λ) Subproblem. Recall that S(λ) (defn. 1) is an SSP
relaxation of the CSSP, and therefore solved optimally by determin-
istic policies. S(λ)’s optimal deterministic policy π∗

λ gives L(λ) and
a subgradient g ∈ Rn in the following way: L(λ) = Cλ(π

∗
λ) and

g = [C1(π
∗
λ) − u1 · · · Cn(π

∗
λ) − un] [22]. These two steps cor-

respond to lines 11 and 12, respectively. Thus, we can implement
an oracle for λ by finding π∗

λ and then evaluating it w.r.t. Cλ and
each secondary-cost function. To find π∗

λ, we can use any optimal
SSP algorithm with any heuristic that is admissible for SSPs, e.g.,
h-max [6], LMcut [21], or ROC [32]. In the remainder of this sec-
tion, we show how to implement solve-S (line 16) efficiently.

Efficient Heuristic Search over S(λ)s. The S(λ) subproblems
are unconstrained SSPs and can be solved efficiently with existing
heuristic-search algorithms such as CG-iLAO∗ [26], but we can im-
prove efficiency further by exploiting some additional properties.
First, instead of using a scalar value function V : S → R≥0,
we use a vector value function V : S → Rn+1

≥0 with entries for
each cost function. Then, we replace the scalar Bellman backups
with a vectorised variant, where a Q-value is defined as Q(s, a) =
C(a) +

∑
s′∈S P (s′|s, a)V (s′) and the Bellman backup becomes

V (s) ← Q(s, amin) for some amin that minimises [1 λ] ·Q(s, a).
With some minor technicalities (see appendix D for more details),
SSP algorithms can be modified to use this vector Bellman backup,
and they still solve S(λ) as an unconstrained SSP because the vector
value function is projected onto Vλ(s) = [1 λ] ·V (s). However, we
now work on V directly with the advantage that we simultaneously
find an optimal policy π∗ for S(λ) and evaluate the different costs of
π∗, giving us Ci(π

∗
λ) for each cost function i.

To ensure optimality, we require an admissible heuristic to solve
S(λ), i.e., H(s) ≤ V ∗

λ (s) ∀s ∈ S; in addition, we also require
that the heuristic is a vector in Rn+1

≥0 so that it can be used with
V . To address this, we introduce λ heuristics. These compute some
admissible scalar heuristic H(s), then identify which actions are se-
lected by H(s) and sum their vector costs to obtain a heuristic cost
vector H with [1 λ] · H(s) = H(s) ≤ V ∗

λ (s). For example, if
a scalar heuristic uses actions a0 and a1 to construct its estimate
H(s) = [1 λ] · C(a0) + [1 λ] · C(a1), then we assign H(s) ←
C(a0) + C(a1) which indeed satisfies [1 λ] ·H(s) = H(s). For
most heuristics, we can use their internal data-structures to extract the
selected actions, e.g., for LMcut [21] we consider the representative
action from each cut and its weight, and for ROC [32] we consider
actions’ operator counts. Another way to obtain admissible vector

heuristics is with ideal-point (IP) heuristics [15]. Such heuristics are
H = ⟨H0, . . . , Hn⟩ where Hi are all admissible w.r.t. their cost
function i. The advantage of λ heuristics is that they are computed
for the specific S(λ) and are therefore more informative, but with the
trade-off that they have to be recomputed for each S(λ), whereas an
IP heuristic is admissible for all S(λ)s.

Warm starting S(λ)s. Notice that all S(λ)s are the same problem
only differing in their cost functions. This makes V from a previ-
ous S(λold) a good candidate to start solving a new S(λnew), a tech-
nique known as warm start in Operations Research. However, we
have to be careful in reusing V . Suppose V is a solution to S(λold)
and we have Vλold with Vλold(s) = [1 λold] · V (s) ∀s ∈ S and
Vλnew with Vλnew(s) = [1 λnew] · V (s) ∀s ∈ S. Even if Vλold is
admissible for S(λold), there is no guarantee that Vλnew is admissi-
ble for S(λnew), which may break the optimality of heuristic search
algorithms. Conveniently, CG-iLAO∗ has a built-in mechanism for
efficiently handling potentially inadmissible states by tracking states
whose values have increased or decreased, i.e., we mark the states
where [1 λnew] · V (s) decreases or increases w.r.t. [1 λold] · V (s) in
Γ. As explained in section 2, this ensures that CG-iLAO∗ fixes any
issues in the value function and finds the optimal policy for S(λnew).
Reusing V in this way speeds up CARL significantly because the
optimal policy for one S(λ) is often good for the next one, and in the
best case, if the change in Cλ does not affect the optimal policy, then
V immediately solves the new S(λ′).

3.2 Finding an Optimal Value Function

Once we have λ∗, we need to compute V ∗ : S → R≥0 that de-
scribes all optimal deterministic policies for S(λ∗), which is done in
the pseudocode by find-all-opts-for-S (line 19). Let Π(V ) denote the
set of tied-greedy policies for V , that is, the greedy policies of V ob-
tained by breaking ties in all possible ways. Then, if V ∗ is the unique
solution to the Bellman equations, Π(V ∗) gives precisely all opti-
mal deterministic policies for the SSP. For us, V ∗ is produced by an
SSP algorithm that only guarantees ϵ-consistency [7]. This means V ∗

need only have a small error within one policy’s envelope, and any
other policies’ envelopes can have arbitrarily larger value functions,
i.e., V ∗ need only encode a single greedy policy. We give an exam-
ple to illustrate this in appendix E. In order to obtain a value function
that encodes all (approximately) optimal policies, without solving the
Bellman equations exactly, we introduce strong ϵ-consistency. This
condition requires a value function to be ϵ-consistent for all of its
greedy policies. Formally, V is strongly ϵ-consistent when

∀s ∈
⋃

π∈Π(V )

Sπ RES(s) ≤ ϵ. (1)

When a value function is strongly ϵ-consistent, we write it as V ∗
∀ .

Note that this has not been defined for SSPs before, because there
was no need for more than one policy.

Finding V ∗
∀ . Existing SSP algorithms are designed to find

ϵ-consistent solutions, so we must modify them to find strongly
ϵ-consistent solutions. This is done by updating the termination con-
dition, and ensuring that Bellman backups are applied for all greedy
policies for V . We make this modification concrete for the ver-
sion of CG-iLAO∗ from section 3.1, but it can be done for other
algorithms too. Recall that this version of CG-iLAO∗ works over
the vector value function V : S → Rn+1, so we are look-
ing for V ∗

∀ that induces V ∗
∀ with V ∗

∀ (s) = [1 λ∗] · V ∗
∀ (s). In-

stead of tracking the candidate policy π̂V , we track the union of



all tied-greedy policies (up to ϵ) with tied(s) = {a ∈ A(s) :
Qλ(s, a) ≤ mina′∈A(s) Qλ(s, a

′) + ϵ}. Then, CG-iLAO∗’s pol-
icy envelope E over all tied-greedy policies is found by running the
depth-first search from sI over tied. Additionally, any actions with
Qλ(s, a) ≤ Vλ(s) + ϵ must be added to Ŝ in line 9 so that new
tied-greedy actions are caught. Also, we replace the termination con-
dition π̂old = π̂V , now requiring that no new actions have been added
to any tied(s). We only care about new actions and do not track re-
movals, because they only shrink the envelope and do not affect V .
These changes ensure that CG-iLAO∗ outputs a strongly ϵ-consistent
solution which captures all ϵ-consistent policies. To prove this, we
use similar arguments to Schmalz and Trevizan [26] to obtain that
∀s ∈ E RES(s) ≤ ϵ. But E , obtained by DFS over the tied-greedy
actions (up to ϵ), captures all tied-greedy policies on V by construc-
tion, so V must be strongly ϵ-consistent.

3.3 Extracting Stochastic Policies

Suppose we have λ∗ and V ∗
∀ which encodes all optimal deterministic

policies for S(λ∗). The final step of CARL is to extract an optimal
(potentially stochastic) policy, which is done by extract-opt-policy
(line 22). To implement this, recall that V ∗

∀ and λ∗ give the pri-
mary cost of all (potentially stochastic) optimal policies for the CSSP
with C0(π

∗) = V ∗
∀ (sI)−

∑n
i=1 λ

∗
i ui. Furthermore, we can extract

π∗’s envelope and support from the envelopes and supports of V ∗
∀ ’s

greedy policies. We now show how to use these insights to extract
π∗, and thereby solve the CSSP optimally.

Given a policy π, we can evaluate its primary cost C0(π)
with LP 1 by restricting the LP’s variables to the support of π,
adding the constraints xs,a/out(s) = π(s, a) for all s, a ∈
supp(π), and removing the objective function. The resulting Sys-
tem of Linear Equations and Inequalities (SOL) finds C0(π) as∑

s,∈S,a∈A xs,aC0(a). Our case is the converse since we have π’s
cost C0(π) but do not have the distributions π(s, ·). So, instead
of adding the constraints xs,a/out(s) = π(s, a), we add the con-
straint

∑
s∈S,a∈A(s) xs,aC0(a) = C0(π

∗) = V ∗
∀ (sI)−

∑n
i=1 λ

∗
i ui;

and we approximate supp(π∗) with supp(V ∗
∀ ), which is defined as⋃

π∈Π(V ∗
∀ ) supp(π), noting that supp(V ∗

∀ ) ⊇ supp(π∗) as we ex-
plain later. This yields SOL 1 without C9 and C10 which we also
explain later. Thus, a solution x for SOL 1 (with or without C9 and
C10) induces a feasible policy πx with the same cost as an optimal
policy by construction. SOL 1’s only decision is how to distribute
the actions in supp(V ∗

∀ ) so that the resulting policy has the required
costs; in other words, it computes how to combine S(λ)’s determin-
istic policies into an optimal feasible policy for C.

find x s.t. C1–C3 over supp(V ∗
∀ ) and C8–C10 (SOL 1)∑

s,a∈supp(V ∗
∀ )

xs,aC0(a) = V ∗
∀ (sI)−

n∑
i=1

λ∗
i ui (C8)

∑
s,a∈supp(V ∗

∀ )

xs,aCi(a) ≤ ui ∀i ∈ {1, . . . , n} s.t. λ∗
i = 0 (C9)

∑
s,a∈supp(V ∗

∀ )

xs,aCi(a) = ui ∀i ∈ {1, . . . , n} s.t. λ∗
i > 0 (C10)

Formally, SOL 1 comes from complementary slackness, a tech-
nique that lets us transform an optimal solution of an LP into an
optimal solution for its dual [5]. Suppose V ∗

∀ ,λ∗ is an optimal basic
feasible solution for LP 2 that is non-degenerate; intuitively, a basic
feasible solution corresponds to a deterministic policy (rather than a
stochastic one) and non-degeneracy is a technical requirement that
the solution does not have too many variables set to zero. With such

V ∗
∀ ,λ∗, we can recover a solution for LP 2’s dual (LP 1) with com-

plementary slackness by constructing a system of linear equations
according to the following rules, and then solving it:

V ∗
∀ (s) > 0 =⇒ C1 for s is tight, i.e., out(s)− in(s) = Js = sIK

λi > 0 =⇒ C4 for i is tight, i.e.,
∑

s∈S,a∈A(s)

xs,aCi(a) = ui

C5 for s, a is loose, i.e., V ∗
∀ (s) < Q∗

∀(s, a) =⇒ xs,a = 0.

These rules describe the constraints of SOL 1. In particular, note
that these rules tighten the secondary-cost constraints to an equal-
ity

∑
s∈S,a∈A(s) xs,aCi(a) = ui whenever λ∗

i > 0, yielding the
constraints C9 and C10. Unfortunately, our V ∗

∀ ,λ∗ is often degener-
ate, so this system of linear equations is underspecified, and we must
include additional constraints from the original problem. In particu-
lar, we have to reintroduce the secondary cost constraints C4 where
λi = 0, which is what we do in C9. We also include C8 to ensure the
resulting policy is indeed optimal.

We have been claiming that supp(π∗) ⊆ supp(V ∗
∀ ) and that SOL 1

is constructing π∗ from the optimal deterministic policies of S(λ∗).
This follows from the last complementary slackness rule: occupation
measures xs,a are only allowed to be non-zero if V ∗

∀ (s) = Q∗
∀(s, a),

i.e., if a is a tied-greedy action and thereby π(s) = a for some π ∈
Π(V ∗

∀ ).

3.4 Correctness of CARL

In this section we show that CARL always finds an optimal solution.
First, find-λ∗(C,H) (alg. 2) is guaranteed to find λ∗. This is because
maxλ L(λ) is a piecewise linear concave problem, solving S(λ)s
yields subgradients [22], and we use a complete subgradient method
that is guaranteed to converge to λ∗ (if coordinate search fails, it
falls back on the subgradient method, see section 3.1). It remains to
show that CARL finds V ∗ for S(λ∗) such that the solution encodes
an optimal policy.

Lemma 1. If π∗ is an optimal policy for the CSSP, then its con-
stituent deterministic policies must be optimal for S(λ∗).

Proof. We first show that π∗ is optimal for S(λ∗), and then con-
clude that its constituent deterministic policies must also be op-
timal for S(λ∗). Policy π∗’s cost in S(λ∗) can be rewritten as
Cλ∗(π∗) = C0(π

∗)+
∑n

i=1 λ
∗
i (Ci(π

∗)−ui). But π∗ is feasible, so
Ci(π

∗) − ui ≤ 0 for all i ∈ {1, . . . , n}, and therefore Cλ∗(π∗) ≤
C0(π

∗). On the other hand, we know that Cλ∗(π) ≥ C0(π
∗) for

any policy π, due to the semantic of λ∗ within strong duality. Thus,
Cλ∗(π∗) = C0(π

∗), which is the minimal cost for S(λ∗), and π∗

is optimal for S(λ∗). We know that π∗ can be decomposed into the
convex combination of deterministic policies µ0π0+· · ·+µkπk, and
Cλ∗(πi) = Cλ∗(π∗) for each i ∈ {0, . . . , k}, because otherwise π∗

can not be optimal for S(λ∗).

Theorem 1. CARL’s find-all-opts-for-S(λ∗,C,H) finds V ∗
∀ so that

SOL 1 with λ∗ and V ∗
∀ constructed by V ∗

∀ (s) = λ∗ ·V ∗
∀ (s) produces

an optimal stochastic policy.

Proof. Suppose V ∗
∀ encodes all the optimal deterministic policies

for S(λ∗). If an optimal policy π∗ exists for the CSSP, then its con-
stituent deterministic policies must be optimal for S(λ∗) by lem. 1;
therefore its constituent policies are a subset of Π(V ∗

∀ ). It follows
that SOL 1 contains the whole support of such policy π∗. Since
C0(π

∗) = V ∗
∀ (sI)−

∑n
i=1 λ

∗
i ui due to strong duality, it must be the

case that SOL 1 induces an optimal policy, thanks to its connection



to LP 1. We have argued that the version of CG-iLAO∗ presented in
section 3.2 finds all policies for which V can be ϵ-consistent, which
gives approximately optimal policies for small ϵ, and precisely the
optimal policies as ϵ → 0. We give more detail about CARL’s error
terms in section 3.5.

3.5 Error Terms

In this section, we describe the error terms that are present in CARL
and explain how to bound their effects on CARL’s policies. We have
already discussed that CG-iLAO∗, which solves CARL’s S(λ) sub-
problems, uses strong ϵ-consistency with ϵ ∈ R>0 as its stopping
condition, extending regular ϵ-consistency for SSPs (see section 3.2).
The error associated with ϵ-consistency is well-understood and ac-
cepted in the SSP literature: for a fixed ϵ it is possible to construct
a pathological problem where an ϵ-consistent policy is arbitrarily
worse than the optimal policy, but for any SSP, as ϵ→ 0, ϵ-consistent
policies become optimal [7, 25, 17]. We inherit the same proper-
ties in strong ϵ-consistency, so our version of CG-iLAO∗ produces
V ′
∀ ≈ V ∗

∀ where the error disappears as ϵ → 0. Another error term
appears in find-λ∗, which we have omitted until now for simplicity.
Recall that to find λ∗ we use coordinate search, and if it fails we
fall back on the subgradient method (see section 3.1). Both require a
tolerance term η ∈ R>0. In practice, coordinate search stops when
it iterates over all coordinates and no single coordinate was able to
improve L(λ) by more than η. The subgradient method stops when
its step size (which is monotonically decreasing over the algorithm’s
iterations) is smaller than η. In both cases, this yields an approximate
solution λ′ ≈ λ∗, where the error disappears as η → 0.

Both ϵ and η can affect CARL’s solution, and we explain how
this can be mitigated. Assume for now that ϵ is sufficiently small. If
CARL finds λ′ ≈ λ∗ and an associated policy π, we have

L(λ′) ≤ C0(π
∗) ≤ C0(π)

where π∗ is an optimal policy for the CSSP. This gives us the opti-
mality gap C0(π)−L(λ′), which upper bounds how far π’s primary
cost deviates from π∗’s. If the gap is too large, we can reduce η. Now,
we return our attention to ϵ. The value of ϵ affects the subgradient
search oracle’s value of L(λ) and subgradient g at each λ, which in
turn can significantly affect the found policy’s quality and breaks the
optimality gap for η. Recall that this is standard for algorithms using
ϵ-consistency, and they only guarantee an optimal policy as ϵ → 0.
For additional guarantees, there are “outer loop” methods that run
the algorithm and select ϵ automatically in order to give the stronger
guarantee of ϵ-optimality [17, 19]. CARL is in a similar position,
and guarantees an optimal policy as ϵ → 0, but requires an outer
loop method to select ϵ automatically for stronger guarantees. The
outer loop methods for ensuring ϵ-optimality apply to the strongly
ϵ-consistent subproblems with minimal changes, which lets us re-
cover a correct optimality gap. Thus, it is possible to modify CARL
to produce solutions with stronger guarantees. In practice, values of
ϵ = η = 0.0001 are usually “good enough.”

4 Related Work
In the Operations Research (OR) community, it is common to con-
sider the Lagrangian dual of a constrained problem, and then use
some version of the subgradient method to find a solution. This
framework has been used to find plans for constrained deterministic
shortest path problems [16], stochastic policies for Constrained Par-
tially Observable Markov Decision Processes (POMDPs) [23], and

deterministic policies for CSSPs [22]. Our presentation differs from
theirs, but LP 2 is functionally identical to the Lagrangian dual of
LP 1, and CARL fits within this OR framework. They have the same
λ as our scalarisation term, but they call it a Lagrangian multiplier.

Hong and Williams [22]’s algorithm is the most similar to CARL.
Both solve CSSPs and start by finding the CSSPs’ λ∗. The differ-
ence is that CARL looks for optimal, potentially stochastic, policies
whereas they focus on deterministic ones. Our method for finding λ∗

is based on theirs but we make substantial algorithmic improvements.
They solve S(λ)s with iLAO∗ and reuse V as a warm start (see sec-
tion 3.1); however, they need to run VI on iLAO∗’s expanded states
to make V admissible for the next step. CARL uses CG-iLAO∗,
allowing it to focus only on the changes to λ as opposed to VI’s
blind search. As a result, CARL finds λ∗ up to 4.7× faster than their
method with a mean speedup of 2×.

Once λ∗ has been found, the similarities between our algorithms
end. Strong duality does not hold for deterministic policies, thus λ∗

does not directly produce an optimal deterministic policy for the orig-
inal CSSP. To overcome this, they use an expensive second stage
that enumerates deterministic policies until the optimal one is found.
CARL does not require this stage because strong duality holds for
stochastic policies. Instead, we must ensure that V ∗ encodes all op-
timal policies for S(λ∗), which can be done cheaply with dynamic
programming, and then we use SOL 1 to extract the optimal policy
for the CSSP. Both these steps have no analogue in their algorithm.
Thus, CARL is guaranteed to find an optimal policy, stochastic or
not, for CSSPs with relatively little computational effort after find-
ing λ∗, whereas Hong and Williams [22]’s method can only find an
optimal deterministic policy, which can cost more than the optimal
stochastic policy, and requires an expensive second stage to do so.

The algorithm by Lee et al. [23] shares with CARL that they get
deterministic policies from their subproblems, which must be com-
bined into a stochastic one. However, their setting and approach is
quite different: they use Monte-Carlo sampling to approximate their
Q-values, and their policies map histories onto action distributions,
obtained by solving an LP for each history. We compute V ∗ and its
Q-values with a modified SSP search, and then solve SOL 1 once.

Multi-Objective (MO) planning is also relevant. There are various
models of probabilistic MO problems, e.g., MOMDPs with queries
from model checking [13] and MOSSPs from planning [11]. These
models are similar to CSSPs in that they have multiple cost func-
tions, but the difference is that MO problems are solved by find-
ing all undominated trade-offs between cost functions, e.g., consider
π1, π2, π3 with C(π1) = [1 3],C(π2) = [3 1],C(π3) = [3 2]; π1

and π2 are undominated and give different trade-offs of C0 and C1,
and π3 is dominated by π2. The set of undominated policies is called
the Pareto front. In contrast, CSSPs are solved by a single policy
that minimises C0 while satisfying the secondary-cost constraints.
Consequently, MOSSPs are more general than CSSPs, and their al-
gorithms can be applied to solve CSSPs, e.g., [13, 11], but these are
much less efficient because they need to track an entire set of policies
in the Pareto front, rather than searching for a single policy.

Scalarisation is a standard technique in MO planning [12], and
has been applied to MOMDPs with queries [13]. Their algorithm’s
similarity to CARL is that both project the cost vector onto scalars
to induce single-objective SSPs (or MDPs) as their subproblems.
However, the way that the scalarisations are explored and the pur-
pose is completely different: they use different scalarisations to find
different trade-offs, and CARL uses scalarisation in the context of
Lagrangian optimisation where scalarisations λ are also called La-
grangian multipliers. Importantly, CARL’s scalarisation is a single-



objective technique, and it progressively finds a better scalarisation
vector, whereas Forejt et al. [13] accumulate a set of non-dominated
scalarisation vectors. Another difference is that Forejt et al. [13] use
Value Iteration to solve the subproblems, and we use heuristic search,
which increases CARL’s efficiency but presents technical challenges
as addressed in section 3.1 and section 3.2. Heuristic search has been
shown to dominate non-guided search approaches from model check-
ing, e.g., [2]. We point out that our method for efficiently solving
subproblems can be applied to the algorithm from Forejt et al. [13],
establishing another contribution of this work.

5 Experiments
We compare our novel algorithm CARL with i-dual [31] and
i2-dual [32], the state-of-the-art algorithms for finding optimal
stochastic policies for CSSPs. For CARL, we consider the heuris-
tics LMcut [21] and ROC [32] as λ heuristics (section 3.1), called
λ-LMcut and λ-ROC. In appendix F we also test LMcut and ROC
as ideal-point (IP) heuristics (section 3.1). For i-dual, we use ideal-
point LMcut (IP-LMcut) and C-ROC [32]. I2-dual uses C-POM [32],
which is built into the algorithm. In our test problems, we allow
CSSPs to have dead ends, but transform them into CSSPs without
dead ends with the finite-penalty transformation, which adds give-up
actions to each state that lead to a goal with a large cost penalty. We
require a user-specified dead-end penalty for each cost function [31].
For problems with dead ends before the finite-penalty transforma-
tion, we augment ROC and i2-dual’s built-in C-POM with h-max
as a dead-end detector [32]. We run experiments over the following
benchmark domains:

Search and Rescue (SAR) [31]. A drone must rescue one of mul-
tiple survivors on an n × n grid as quickly as possible (n ∈ N).
One survivor’s position is known and has distance d ∈ N from the
drone’s initial position. Some other locations, selected according to
a density r ∈ [0, 1], have a predetermined probability of having an-
other survivor. There is a single secondary-cost constraint over fuel
usage.

Elevators (Elev) [31]. In a 10-floor building, w ∈ N people have
called the elevator and are waiting, and h ∈ N hidden people have not
pressed the button yet, and do so probabilistically in each timestep.
The e ∈ N elevators must be routed to deliver all people to their des-
tinations in the fewest timesteps. Each person has a constraint over
the time spent waiting, and the time spent travelling in an elevator,
resulting in 2(w + h) secondary-cost constraints.

Exploding Blocks World (ExBW) [31]. Based on Exploding
Blocks World for SSPs [9], we must rearrange N ∈ N blocks into a
given arrangement with the minimal number of moves. This is com-
plicated by the blocks being rigged with an explosive that can ex-
plode, destroying the block or table immediately underneath it. In
the CSSP variant, the table can be repaired with a large primary cost,
but destroyed blocks can not be repaired. There is a single secondary-
cost constraint, limiting the expected number of destroyed blocks to
c ∈ R≥0. We consider specific starting and goal arrangements of
blocks from the 2008 International Probabilistic Planning Competi-
tion [10], and identify specific problems by the parameter id.

PARC Printer (PARC) [32]. Based on the IPC domain, a modular
printer must print four pages with various requirements. Three of the
printer’s components are unreliable, where a page can get jammed
with probability 0.1, simultaneously ruining the page and rendering
the component unusable. There are two secondary-cost constraints:
f ∈ [0, 1] constrains how many components are allowed to fail and

u ∈ N limits how often a particular component is allowed to be used
(u =∞ deactivates this constraint).

Triangle Tireworld (CTW) [27]. In the Triangle Tireworld for
SSPs we must drive across a triangular network of cities, where
n ∈ N specifies the size of the network, and d ∈ N gives the start-
ing distance from the goal [24, 26]. Between any two cities the car
gets a flat tyre with probability 0.5; with a spare tyre the flat can be
replaced and the journey can continue; if no spare is loaded, the car
is stuck and no actions are available. The car only fits one spare tyre
at a time, and spare tyres can only be acquired in select cities. In the
CSSP variant, tyres can be purchased in these cities for one of c ∈ N
currencies, and the problem has secondary-cost constraints over the
c-many currencies.

We ran each planner and heuristic on 30 instances of each problem
on a cluster with Intel Xeon 3.2 GHz CPUs limited to one CPU core
with 30 mins and 4GB RAM. For SAR and Elev, a problem instance
is a randomly generated problem for the specified parameters. For
the other domains, the parameters specify a unique problem and an
instance couples this problem with a random seed that is passed to
the algorithm. We use CPLEX Version 22.1.1 to solve LPs and SOLs.
The source code and benchmarks are available at [28].

The results of our experiments are presented in tab. 1. We give
each algorithm’s coverage (the number of instances solved within its
time and memory limits), and over the instances where the algorithm
converged we give its mean runtime (and 95% C.I.). We highlight the
fastest algorithms, where an algorithm is considered the fastest for a
particular problem if it has the maximum coverage and then its mean
time plus 95% C.I. is less than the next best algorithm’s mean time
minus 95% C.I. We now identify the best performing algorithm per
domain.

SAR, ExBW, and CTW. CARL dominates in these domains:
either CARL(λ-ROC) or CARL(λ-LMcut) is the best perform-
ing planner and, with exception of ExBW (1,5,.1) and (3,6,.91),
the second best performing planning is also CARL. Moreover,
CARL can obtain substantially larger coverage with the extreme
case of ExBW (6,8,.3) in which CARL using both heuristics
obtained full coverage while all other planners had zero cover-
age. Comparing only entries with full coverage in these domains,
CARL has 10×, 19×, and 42× speedup on average w.r.t. i-dual
(C-ROC), i-dual (IP-LMcut) and i2-dual, respectively. Between
CARL(λ-ROC) and CARL(λ-LMcut), there is no clear winner on
SAR; CARL(λ-LMcut) dominates on ExBW; and CARL(λ-ROC)
dominates on CTW.

Elev. With one elevator i-dual dominates, and with two elevators
CARL dominates. With one elevator, CARL fails to solve some in-
stances for one of two reasons: (1) CARL’s coordinate search fails
and falls back on the subgradient method, which is significantly
slower than coordinate search; (2) S(λ)s are too difficult to solve in
some cases, which suggests the heuristic does not give adequate guid-
ance. Regarding (1), we note that these Elev instances are the only
cases in our benchmarks where coordinate search fails and CARL is
forced to fall back on the subgradient method to ensure complete-
ness (see section 3.1). Here, the subgradient method is significantly
slower than coordinate search and failed to converge in time. How-
ever, we reiterate that falling back to the subgradient method ensures
that CARL is complete, and given enough time and memory CARL
would solve the instances. With two elevators, the problem structure
changes so that coordinate search succeeds and (1) does not occur,
and any instances where CARL fails to find a solution is because
of (2), that is, the coordinate search’s subproblems take too long to



algorithm CARL i-dual i2-dual
heuristic λ-ROC λ-LMcut C-ROC IP-LMcut

SA
R

(n
,d

,r
) 4, 3, .75 30 5.6± 1.4 30 4.3± 1.0 30 104.1± 51.0 30 45.8± 21.1 30 69.2± 56.4

4, 4, .75 30 41.9± 5.3 30 34.1± 4.2 5 1345.7±534.1 9 979.8±296.6 8 495.5±417.8
5, 3, .50 30 4.9± 0.9 30 4.8± 1.1 30 25.1± 8.5 30 13.1± 4.6 30 11.1± 4.0
5, 3, .75 30 12.3± 2.5 30 13.3± 2.9 30 253.8±110.6 30 113.3± 46.0 30 168.0±105.9
5, 4, .50 30 30.8± 6.8 30 36.2± 7.9 17 695.0±268.5 24 550.6±166.1 27 637.8±213.1
5, 4, .75 30 126.6± 45.2 30 142.5± 49.3 6 930.9±369.3 6 499.2±226.4 8 349.1±288.1

E
le

v
(e

,w
,h

)

1, 1, 1 30 1.6± 0.6 30 1.2± 0.3 30 1.5± 0.1 30 0.8± 0.1 30 6.2± 0.6
1, 1, 2 29 50.9± 26.8 29 35.0± 12.7 30 25.3± 1.0 30 21.1± 2.6 30 280.0± 46.5
1, 2, 1 25 14.2± 5.6 25 13.1± 4.2 30 13.9± 0.9 30 9.8± 1.4 30 174.2± 38.4
1, 2, 2 22 313.3±150.2 22 336.9±115.8 30 340.1± 35.7 30 392.5± 72.1 1 989.2
2, 1, 1 30 104.5± 23.2 30 121.8± 26.7 23 670.6±173.7 26 576.1±181.4 1 1799.7
2, 1, 2 20 1321.5±161.1 3 1344.2±341.5 1 1799.6 1 1799.1 0
2, 2, 1 28 569.2±131.7 23 890.5±164.2 5 1608.9±229.1 5 1444.4±352.4 0

E
xB

W
(i

d,
N

,c
)

1, 5, .1 30 8.6± 0.1 30 1.6 30 97.2± 1.0 30 7.9± 0.1 30 626.6± 18.8
2, 5, .07 30 40.4± 0.3 30 18.7± 0.1 0 30 732.9± 30.6 0
3, 6, .91 30 173.5± 5.1 30 7.5± 0.1 0 30 10.9± 0.2 0
4, 6, .16 30 161.2± 1.4 30 63.7± 0.5 0 27 1462.2± 79.6 0
5, 7, .01 30 30.7± 0.2 30 25.8± 0.2 30 82.7± 1.5 30 38.5± 0.6 30 451.0± 14.5
6, 8, .3 30 300.4± 10.9 30 91.6± 0.6 0 0 0
7, 8, .5 30 0.3 30 0.2 30 2.2± 0.1 30 0.9± 0.1 30 12.1± 0.4
8, 8, .63 30 35.1± 0.5 30 34.8± 0.4 6 1799.2± 0.1 13 1691.9± 45.5 0
9, 8, .4 30 177.9± 1.4 30 14.9± 0.1 0 30 202.3± 7.5 0

algorithm CARL i-dual i2-dual
heuristic λ-ROC λ-LMcut C-ROC IP-LMcut

PA
R

C
(f

,u
)

0.0, 1 30 311.2±13.6 30 270.9± 8.3 30 126.2± 9.1 30 103.1± 2.4 30 42.8± 3.1
0.0, ∞ 30 100.7± 0.8 30 141.3± 1.0 30 47.1± 2.5 30 42.1± 1.8 30 29.5± 1.8
0.2, 1 30 600.7± 3.6 30 863.4± 9.7 0 0 30 65.1± 11.1
0.2, ∞ 30 121.7± 1.9 30 185.7± 1.2 30 1537.7±72.8 0 30 41.7± 4.9
0.4, 1 30 882.8±31.7 30 564.1±12.8 0 0 3 801.5±536.2
0.4, ∞ 30 130.9± 2.5 30 188.1± 1.3 0 0 3 665.9±308.3
0.6, 1 30 318.4±10.3 30 255.4± 6.9 0 0 0
0.6, ∞ 30 25.5± 0.5 30 39.6± 0.3 26 1508.9±68.9 0 0
0.8, 1 30 345.5± 7.4 30 267.1± 8.0 0 0 0
0.8, ∞ 30 25.7± 0.6 30 39.8± 0.3 29 1375.1±89.9 0 0
1.0, 1 30 208.1± 6.8 30 226.0± 5.4 0 0 0
1.0, ∞ 30 25.6± 0.6 30 39.6± 0.3 30 1298.1±55.3 0 0

C
T

W
(n

,d
,c

)

4, 4, 2 30 1.6± 0.1 30 1.8± 0.1 30 4.5± 0.1 30 24.2± 0.7 30 24.3± 0.8
4, 4, 4 30 2.4 30 3.2 30 8.2± 0.5 30 43.0± 1.0 30 36.1± 2.0
4, 4, 6 30 3.1 30 4.6± 0.1 30 10.5± 0.4 30 56.0± 2.4 30 42.5± 1.5
4, 5, 2 30 3.9± 0.2 30 4.2± 0.3 30 18.7± 0.8 30 119.1± 5.5 30 115.3± 6.3
4, 5, 4 30 5.9± 0.1 30 7.5± 0.1 30 32.4± 1.0 30 239.5± 9.0 30 157.0± 5.3
4, 5, 6 30 7.3± 0.3 30 10.3± 0.4 30 41.7± 1.0 30 310.6±14.7 30 194.5± 7.1
4, 6, 2 30 9.3± 0.5 30 10.1± 0.6 30 90.9± 4.7 30 840.2±47.1 30 937.7± 45.7
4, 6, 4 30 13.9± 0.3 30 17.8± 0.3 30 187.0± 5.9 13 1656.6±76.8 30 1281.6± 64.0
4, 6, 6 30 18.2± 0.4 30 24.9± 0.7 30 225.1±10.0 4 1424.3±88.9 30 1238.9± 81.6

Table 1. For the benchmark problems, we show each planner and heuristic’s coverage (out of 30) and over the converged runs the mean runtime (secs) with
95% C.I. For each problem, the fastest planner and heuristic pairs are in bold.

solve. This contrasts i-dual and i2-dual, which are not affected by
problem structure but scale worse with the larger search spaces as
the second elevator is introduced.

PARC. i2-dual dominates when the constraint over failure is tighter
(f ≤ 0.2) and CARL dominates when the constraint is looser
(f ≥ 0.4). CARL struggles with the tight constraints because its
heuristic fails to take secondary-cost constraints into account. This
is supported by the result that CARL becomes competitive with
i2-dual on the tightly constrained problems when used with C-ROC,
a heuristic that takes secondary-cost constraints into account (see ap-
pendix F).2 I2-dual has the opposite weakness: its heuristic is very
informative for highly constrained problems and it prunes a lot of
the search space but, as the constraints become looser, its heuris-
tic becomes less effective. On problems with the loosest constraints,
namely (0.6, 1), (0.8, 1), and (1.0, 1), CARL completely dominates
by achieving full coverage while the baselines obtain zero coverage.

What makes CARL so effective on our benchmarks? The part of
CARL that takes the most time is solving S(λ)s and, over the solved
instances, CARL only solves a mean and maximum of 6.7 and 30
S(λ)s in its search. We identify two domain features that make co-
ordinate search efficient and let CARL solve so few subproblems:
single secondary-cost constraint and sparse λ. In the former, coordi-
nate search only has to solve a single coordinate and it is guaranteed
to converge to λ∗. SAR, ExBW, and PARC problems with u = ∞
have a single constraint. It is convenient if λ∗ = 0 because λ = 0
is the initial guess and coordinate search then only has to verify that
its candidate is optimal. CTW has λ∗ = 0 for almost all its prob-
lems. More generally, coordinate search tends to work well when λ∗

is sparse because it is inexpensive to determine these, but this trend
is not guaranteed and depends on the search space structure. Over
the solved instances, λ∗ is quite sparse having a mean and maximum
of 0.62 and 2 non-zero entries. Note that if Ci(π

∗) < ui, i.e., a
secondary-cost constraint is satisfied with some slack, then λ∗

i = 0
by complementary slackness, which suggests that many problems
will have a sparse λ∗. In contrast, we have seen that particular prob-
lems are structured such that coordinate search fails to find λ∗, e.g.,
some Elev instances with a single elevator. Fortunately, these seem to
appear infrequently. We emphasise that these benchmarks were taken

2 CARL (C-ROC) is not in the main results because C-ROC is inadmissible
for S(λ)s, so the algorithm has no optimality guarantee.

from the existing literature on CSSPs, and were not hand-picked to
accommodate CARL. This may suggest that problems are more often
amenable to CARL than not.

6 Conclusion and Future Work
We introduced CARL, a novel algorithm for finding optimal, poten-
tially stochastic, policies for CSSPs. It works by solving a sequence
of scalarised SSPs, called S(λ)s, with efficient heuristic search al-
gorithms for SSPs, and combining the optimal policies of the final
S(λ) solved into an optimal policy for the original CSSP. CARL is
the first heuristic search algorithm over the primal space for finding
optimal CSSP policies and, although CARL follows the Lagrangian
ascent framework from OR, this paper presents novel methods for
solving S(λ)s efficiently, adapting heuristics to S(λ)s and extract-
ing stochastic policies. CARL outperforms the state-of-the-art algo-
rithms on nearly all our benchmark problems, solving 50% more
instances and, for some problems, it solves all instances while the
state-of-the-art solve none. Over the problems where all algorithms
solved all problems, CARL offers an average 10× speedup.

In terms of future work, we believe more investigation is required
into optimisation procedures for finding λ∗. CARL uses coordinate
search, which works well and is significantly faster than the plain
subgradient method, but it is unsatisfying that it can not guarantee
an optimal solution and it may not scale well with many secondary-
cost constraints. We also believe it is important to better understand
the problems themselves and what features make them more or less
amenable to CARL’s search procedure.
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A CSSP Example
Here, we present an example of a CSSP.

Getting to Work. The agent needs to make its way from home
to work. It can run, use a taxi, or walk to the train station where it
can try to take the train. The train is cancelled with 50% probability.
Each action has a cost vector [t p e] in terms of time (t), price (p),
and personal effort (e). The agent’s task is to get to work in minimal
time s.t. price ≤ 15 and effort ≤ 10 over expectation. The CSSP is
shown in fig. 1. This problem has three proper deterministic policies:

• πrun = {sI 7→ run},
• πtaxi = {sI 7→ taxi},
• πtrain = {sI 7→ walk, s1 7→ train, s2 7→ train}.

This problem has a unique optimal policy π∗ which is stochastic with
π∗(sI , run) = 0.5 and π∗(sI , taxi) = 0.5 where

• C0(π
∗) = 1 (time),

• C1(π
∗) = 15 ≤ 15 (price),

• C2(π
∗) = 10 ≤ 10 (effort).

Note that π∗ can be expressed as π∗ = 0.5πrun + 0.5πtaxi.

B Visualisation of L(λ)
In this section, we visualise the surface of L(λ) for two different
CSSPs.

Getting to Work. First, we consider the “Getting to Work” exam-
ple from appendix A. Fig. 2 shows this problem’s L(λ) as λ varies.
Each linear surface of the plot corresponds to one of the determinis-
tic policies; we have labelled the linear surfaces associated with πrun

and πtrain with “run” and “train” respectively, and πtaxi is obscured. A
linear surface indicates that the corresponding policy is optimal for
the S(λ) at the relevant values of λ; edges and vertices indicate that
multiple deterministic policies are optimal at the S(λ). In particular,
note that at λ∗ = 0 we have an edge between πrun and πtaxi, and
πtrain does not intersect there; this indicates that the optimal (in this
case stochastic) policy consists of πrun and πtaxi, which we know to
be true. This example is not interesting in terms of coordinate search,
because λ∗ = 0 is found in the first step.

Interesting CSSP for Coordinate Search. Consider the CSSP in
fig. 3, with u1 = u2 = 15. Its optimal policy π∗ is stochastic with

• π∗(sI , a2) = 1
• π∗(s1, a4) =

1
4

π∗(s1, a5) =
3
4

and it has C0(π
∗) = 4 and C1(π

∗) = C2(π
∗) = 15. Fig. 4 shows

this CSSP’s L(λ) as λ varies. As before, each linear surface corre-
sponds to a deterministic policy that is optimal for the relevant S(λ).
We visualise the values of λ considered by coordinate search with
the red lines across the surface, i.e., the line starts at the initial value
of λ = 0, then moves to λ = [0.025 0], then λ = [0.025 0.025],
and so on, eventually converging to λ∗ = [0.2 0.2]. Recall that coor-
dinate search only changes a single coordinate per step, which gives
the red lines’ “stair-case” shape.

C Pathological Example for Coordinate Search
There are non-smooth problems where coordinate search fails. For
example, consider the CSSP in fig. 5 with two secondary-cost con-
straints u1 = u2 = 1, i.e., a policy π is feasible if C1(π) ≤ 1 and
C2(π) ≤ 1. The CSSP has three actions that lead deterministically
from sI to the goal with costs

s0 s1

s2

g
walk [1 0 1] train [1 20 0]

walk [3
0 6

]

run [1 0 20]

taxi [1 30 0]

Figure 1. The CSSP associated with the “Getting to Work” example.

Figure 2. L(λ) for the “Getting To Work” example.

sI s1 sg

[1 40 40]

a0

[5 5 5]

a1

[3 10 0]

a2

[1 0 20]

a3

[1 20 0]

a4

[1 0 20]

a5

Figure 3. A CSSP that is interesting for coordinate search. It has
u1 = u2 = 15.

• C(a0) = [10 1 1],
• C(a1) = [1 11 0], and
• C(a2) = [1 0 11],

inducing the three deterministic policies π0, π1, π2 with πi(sI) = ai

for i ∈ {0, 1, 2}. Taking into account the terminal costs, the policy
costs are



Figure 4. L(λ) for the “Interesting CSSP for Coordinate Search” example.

sI sg

[10 1 1]

a0

[1 11 0]

a1

[1 0 11]

a2

Figure 5. A pathological CSSP where coordinate search fails to find λ∗. It
has u1 = u2 = 1.

• Cλ(π0) = 10 + λ1(1− u1) + λ2(1− u2) = 10,
• Cλ(π1) = 1+λ1(11−u1)+λ2(0−u2) = 1+10λ1−λ2, and
• Cλ(π2) = 1 + λ1(0− u1) + λ2(11− u2) = 1− λ1 + 10λ2.

L(λ) selects the cheapest one of these, i.e., L(λ) = min{10, 1 +
10λ1 − λ2, 1 − λ1 + 10λ2}. This surface is shown in fig. 6; note
there are three linear surfaces corresponding to the three determinis-
tic policies (the flat one is π0, and the sloped ones are π1 and π2). If
we consider λ = 0 as a starting point then L([0 0]) = 1 and we can
see that there is no way to get a larger L(λ) by moving in a single
coordinate. Algebraically,

L([x 0]) = min{10, 1 + 10x, 1− x} = 1− x < 1

and symmetrically

L([0 x]) = min{10, 1− x, 1 + 10x} = 1− x < 1

for all x ∈ R>0. Thus, coordinate search gets stuck at λ = [0 0]
with L(λ) = 1 and fails to progress to an optimal solution such as
λ∗ = [2 2] with L(λ∗) = 10.

D Bellman Backups over Vector Value Function
Instead of using a scalar value function V : S → R≥0, we use a
vector value function V : S → Rn+1

≥0 , with entries for each cost
function. This modification still solves the S(λ) SSP by projecting

Figure 6. Surface of L(λ) for the pathological CSSP where coordinate
search fails to find λ∗.

the vector value function onto Vλ(s) = [1 λ] · V (s), but we now
apply Bellman backups on V directly. We write Q(s, a) = C(a) +∑

s′∈S P (s′|s, a)V (s′), then the λ modified Bellman backups are
given as follows:

Definition 2 (λ Bellman backup). Given the vector value function
V : S → Rn+1

≥0 and a scalarisation λ ∈ Rn
≥0, a vector Bellman

backup applied to state s sets

V (s)← Q(s, amin) for amin ∈ argmin
a∈A(s)

(
[1 λ] ·Q(s, a)

)
.

By applying λ Bellman backups, we can solve S(λ) and evaluate
its policy for each cost function Ci(π

∗
λ) at the same time. This idea

was used by Hong and Williams [22].
The λ Bellman backups introduce two technical issues. First, to

ensure that each Ci(π
∗
λ) is evaluated accurately, we must redefine the

Bellman residual so that each value function converges, otherwise
the backups may converge to an optimal vector value function for
the S(λ) without the scalar value functions converging. We can do
this by considering maxn

i=0 |Vi(s) − Q(s, amin)| for s’s amin. The
second technical issue follows from the redefined Bellman residual,
because it is possible to get stuck in cycles where actions with similar
scalarised Q-values change individual value functions significantly,
so that the new residual never goes to 0. To address this, we need to
use tie-breaking rules, e.g., if two actions have costs within ϵ of each
other, iterate through the value function indices and pick the action
that has a smaller Q-value first.

E Strong ϵ-consistency vs ϵ-consistency
For unconstrained SSPs, if a value function V is ϵ-consistent [7],
then it is guaranteed to induce a deterministic optimal policy (as
ϵ → 0); however, it may not induce all optimal deterministic poli-
cies. To produce all optimal deterministic policies, we require strong



sI
4

s1
3

s2
1

s3
2

sg
0

4

a′
0

1
a0

1

a′
1

1
a1

5
a2

2
a3

Figure 7. An SSP with a value function that is ϵ-consistent but not
strongly ϵ-consistent, and fails to describe all optimal policies.

ϵ-consistency. We give an example where ϵ-consistency fails to cap-
ture all optimal deterministic policies: consider the SSP in fig. 7, with
the value function V specified in the bottom of each node. The SSP
has two optimal policies:

• π∗
0 = {sI 7→ a′

0}
• π∗

1 = {sI 7→ a0, s1 7→ a1, s3 7→ a3}.

V has two greedy policies: the optimal π∗
0 and a suboptimal policy

• π′ = {sI 7→ a0, s1 7→ a′
1, s2 7→ a2}.

V is ϵ-consistent w.r.t. the greedy policy π∗
0 , and V is admissible;

so, V could be produced by an optimal SSP algorithm such as CG-
iLAO∗ [26] (which is what we use to solve our S(λ) SSPs). Impor-
tantly, V is not ϵ-consistent w.r.t. the other greedy policy π′ because
RES(s2) = |1− 5| > ϵ (assume small ϵ such as 0.0001), and there-
fore V is not strongly ϵ-consistent. This has the effect that V fails to
capture the second optimal policy π∗

1 , i.e., π∗
1 is not a greedy policy

w.r.t. V .

F More Results
We present an extended table of results in tab. 2. It has the same
entries as tab. 1, and additionally includes CARL with ideal-point
heuristics and C-ROC. Recall that C-ROC is not admissible for
CARL’s S(λ)s, so it provides no guarantee of optimality nor conver-
gence. Nevertheless, in our experiments, wherever CARL(C-ROC)
has a coverage entry, it found the optimal solution.
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CARL i-dual i2-dual
λ-ROC IP-ROC C-ROC λ-LMcut IP-LMcut C-ROC IP-LMcut

SA
R

(n
,d

,r
)

(4, 3, 0.75) 30 5.6± 1.4 30 11.5± 2.3 30 12.1± 2.4 30 4.3± 1.0 30 9.2± 1.8 30 104.1± 51.0 30 45.8± 21.1 30 69.2± 56.4
(4, 4, 0.75) 30 41.9± 5.3 30 75.5± 7.6 30 79.5± 8.3 30 34.1± 4.2 30 65.3± 7.6 5 1345.7±534.1 9 979.8±296.6 8 495.5±417.8
(5, 3, 0.50) 30 4.9± 0.9 30 9.0± 1.6 30 9.3± 1.7 30 4.8± 1.1 30 10.0± 2.4 30 25.1± 8.5 30 13.1± 4.6 30 11.1± 4.0
(5, 3, 0.75) 30 12.3± 2.5 30 26.2± 5.8 30 27.9± 6.0 30 13.3± 2.9 30 33.1± 9.0 30 253.8±110.6 30 113.3± 46.0 30 168.0±105.9
(5, 4, 0.50) 30 30.8± 6.8 30 52.3± 9.5 30 54.7± 9.8 30 36.2± 7.9 30 70.5± 12.9 17 695.0±268.5 24 550.6±166.1 27 637.8±213.1
(5, 4, 0.75) 30 126.6± 45.2 30 270.0± 80.7 30 282.9± 83.9 30 142.5± 49.3 30 353.9±105.7 6 930.9±369.3 6 499.2±226.4 8 349.1±288.1

E
le

v
(e

,w
,h

)

(1, 1, 1) 30 1.6± 0.6 30 2.0± 0.4 30 2.1± 0.3 30 1.2± 0.3 30 1.4± 0.3 30 1.5± 0.1 30 0.8± 0.1 30 6.2± 0.6
(1, 1, 2) 29 50.9± 26.8 29 42.7± 12.6 29 42.2± 11.9 29 35.0± 12.7 29 44.4± 14.1 30 25.3± 1.0 30 21.1± 2.6 30 280.0± 46.5
(1, 2, 1) 25 14.2± 5.6 25 17.7± 3.7 25 17.7± 3.7 25 13.1± 4.2 25 15.8± 4.3 30 13.9± 0.9 30 9.8± 1.4 30 174.2± 38.4
(1, 2, 2) 22 313.3±150.2 22 399.8± 99.9 22 407.9±102.0 22 336.9±115.8 22 460.1±118.5 30 340.1± 35.7 30 392.5± 72.1 1 989.2
(2, 1, 1) 30 104.5± 23.2 30 131.7± 26.2 30 126.9± 25.1 30 121.8± 26.7 30 149.7± 31.5 23 670.6±173.7 26 576.1±181.4 1 1799.7
(2, 1, 2) 20 1321.5±161.1 4 1281.0±114.2 5 1309.1±230.8 3 1344.2±341.5 0 1 1799.6 1 1799.1 0
(2, 2, 1) 28 569.2±131.7 28 830.8±160.8 28 796.4±158.7 23 890.5±164.2 18 1157.4±180.4 5 1608.9±229.1 5 1444.4±352.4 0

E
xB

W
(i

d,
N

,c
)

(01, 5, 0.1) 30 8.6± 0.1 30 8.5± 0.1 30 8.5± 0.1 30 1.6 30 1.2 30 97.2± 1.0 30 7.9± 0.1 30 626.6± 18.8
(02, 5, 0.07) 30 40.4± 0.3 30 36.0± 0.2 30 35.3± 0.3 30 18.7± 0.1 30 15.2± 0.1 0 30 732.9± 30.6 0
(03, 6, 0.91) 30 173.5± 5.1 30 138.0± 1.4 30 135.7± 1.2 30 7.5± 0.1 30 3.3 0 30 10.9± 0.2 0
(04, 6, 0.16) 30 161.2± 1.4 30 142.9± 1.0 30 142.1± 1.7 30 63.7± 0.5 30 45.6± 0.3 0 27 1462.2± 79.6 0
(05, 7, 0.01) 30 30.7± 0.2 30 28.1± 0.2 30 27.2± 0.3 30 25.8± 0.2 30 12.8± 0.1 30 82.7± 1.5 30 38.5± 0.6 30 451.0± 14.5
(06, 8, 0.3) 30 300.4± 10.9 30 276.0± 3.1 30 276.7± 4.1 30 91.6± 0.6 30 48.2± 0.4 0 0 0
(07, 8, 0.5) 30 0.3 30 0.5 30 0.5 30 0.2 30 0.2 30 2.2± 0.1 30 0.9± 0.1 30 12.1± 0.4
(08, 8, 0.63) 30 35.1± 0.5 30 40.5± 0.8 30 41.1± 1.0 30 34.8± 0.4 30 35.5± 0.7 6 1799.2± 0.1 13 1691.9± 45.5 0
(09, 8, 0.4) 30 177.9± 1.4 30 374.6± 3.3 30 374.2± 5.2 30 14.9± 0.1 30 24.5± 0.1 0 30 202.3± 7.5 0

PA
R

C
(f

,u
)

(0.0, 1) 30 311.2± 13.6 30 183.7± 6.9 30 1.5± 1.4 30 270.9± 8.3 30 252.5± 8.7 30 126.2± 9.1 30 103.1± 2.4 30 42.8± 3.1
(0.0, ∞) 30 100.7± 0.8 30 52.1± 0.9 30 0.1 30 141.3± 1.0 30 64.7± 0.5 30 47.1± 2.5 30 42.1± 1.8 30 29.5± 1.8
(0.2, 1) 30 600.7± 3.6 30 234.8± 3.1 13 184.2± 3.5 30 863.4± 9.7 30 337.1± 3.8 0 0 30 65.1± 11.1
(0.2, ∞) 30 121.7± 1.9 30 91.0± 1.3 30 56.9± 0.6 30 185.7± 1.2 30 79.2± 0.6 30 1537.7± 72.8 0 30 41.7± 4.9
(0.4, 1) 30 882.8± 31.7 30 247.5± 3.8 30 241.8± 3.2 30 564.1± 12.8 30 308.2± 4.0 0 0 3 801.5±536.2
(0.4, ∞) 30 130.9± 2.5 30 98.0± 1.8 30 94.0± 1.7 30 188.1± 1.3 30 82.0± 1.2 0 0 3 665.9±308.3
(0.6, 1) 30 318.4± 10.3 30 186.0± 3.6 30 148.3± 2.3 30 255.4± 6.9 30 141.0± 2.1 0 0 0
(0.6, ∞) 30 25.5± 0.5 30 40.0± 0.9 30 40.4± 0.9 30 39.6± 0.3 30 40.9± 0.3 26 1508.9± 68.9 0 0
(0.8, 1) 30 345.5± 7.4 30 185.3± 2.4 30 148.2± 2.2 30 267.1± 8.0 30 148.1± 2.2 0 0 0
(0.8, ∞) 30 25.7± 0.6 30 40.4± 1.1 30 40.8± 1.0 30 39.8± 0.3 30 41.3± 0.4 29 1375.1± 89.9 0 0
(1.0, 1) 30 208.1± 6.8 30 184.6± 2.2 30 150.3± 3.1 30 226.0± 5.4 30 148.6± 1.6 0 0 0
(1.0, ∞) 30 25.6± 0.6 30 40.5± 1.1 30 41.5± 1.1 30 39.6± 0.3 30 41.1± 0.4 30 1298.1± 55.3 0 0

C
T

W
(n

,d
,c

)

(4, 4, 2) 30 1.6± 0.1 30 2.7± 0.1 30 3.2± 0.1 30 1.8± 0.1 30 1.8± 0.1 30 4.5± 0.1 30 24.2± 0.7 30 24.3± 0.8
(4, 4, 4) 30 2.4 30 4.6± 0.1 30 5.4± 0.1 30 3.2 30 3.2 30 8.2± 0.5 30 43.0± 1.0 30 36.1± 2.0
(4, 4, 6) 30 3.1 30 6.6± 0.1 30 7.4± 0.1 30 4.6± 0.1 30 4.7± 0.1 30 10.5± 0.4 30 56.0± 2.4 30 42.5± 1.5
(4, 5, 2) 30 3.9± 0.2 30 6.3± 0.3 30 7.4± 0.3 30 4.2± 0.3 30 4.2± 0.2 30 18.7± 0.8 30 119.1± 5.5 30 115.3± 6.3
(4, 5, 4) 30 5.9± 0.1 30 11.3± 0.3 30 13.4± 0.6 30 7.5± 0.1 30 7.6± 0.2 30 32.4± 1.0 30 239.5± 9.0 30 157.0± 5.3
(4, 5, 6) 30 7.3± 0.3 30 15.9± 0.4 30 18.6± 0.5 30 10.3± 0.4 30 11.1± 0.5 30 41.7± 1.0 30 310.6± 14.7 30 194.5± 7.1
(4, 6, 2) 30 9.3± 0.5 30 14.9± 0.6 30 17.8± 0.8 30 10.1± 0.6 30 9.8± 0.6 30 90.9± 4.7 30 840.2± 47.1 30 937.7± 45.7
(4, 6, 4) 30 13.9± 0.3 30 27.1± 0.8 30 31.3± 0.9 30 17.8± 0.3 30 18.5± 0.3 30 187.0± 5.9 13 1656.6± 76.8 30 1281.6± 64.0
(4, 6, 6) 30 18.2± 0.4 30 37.7± 0.9 30 44.7± 0.9 30 24.9± 0.7 30 26.5± 0.6 30 225.1± 10.0 4 1424.3± 88.9 30 1238.9± 81.6

Table 2. For the benchmark problems, we show each planner and heuristic’s coverage (out of 30) and over the converged runs the mean runtime (secs) with
95% C.I. The fastest planner and heuristic per problem are in bold.
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