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Abstract. Constrained Stochastic Shortest Path problems (CSSPs)
are a modelling framework for probabilistic problems with a primary
cost and constraints over secondary costs such as fuel consumption
or monetary budget. While the optimal solution for a CSSP is usually
a stochastic policy, practical considerations often demand determin-
istic solutions, for instance, in aviation and multi-agent systems. Pre-
vious works have addressed this issue for special cases of CSSPs; in
this work, we show the technical issues in generalising these results
and show how they can be addressed. Then, using these methods, we
extend the state-of-the-art heuristic search method for finding opti-
mal stochastic policies to efficiently find deterministic policies for
CSSPs. We show experimentally that our algorithm competes with
the state-of-the-art, and is able to solve the class of problems with
difficult-to-satisfy constraints on which the state-of-the-art fails.

1 Introduction

Constrained Stochastic Shortest Path problems (CSSPs) model plan-
ning problems with probabilistic action effects where the expected
cost of actions is minimised while satisfying resource constraints,
for instance, plan a flight route that minimises the expected fuel us-
age while arriving in a given time window and limiting the time spent
in bad weather zones [11]. Solutions to CSSPs are given by policies,
functions that map a state that the agent may encounter into a de-
cision. Policies can be deterministic, where the decision for a state
is a single action; or stochastic, where the agent must randomly se-
lect an action from a probability distribution. In contrast to its un-
constrained counterpart, there is no guarantee that any optimal pol-
icy for CSSPs will be deterministic. Moreover, for finding optimal
stochastic CSSP policies there are efficient polynomial-time algo-
rithms, whereas the best deterministic policies need not be optimal
and finding them is NP-complete [9]. Nevertheless, there are prac-
tical scenarios in which deterministic policies are preferred or re-
quired: in multi-agent systems it is difficult to coordinate between
agents with stochastic policies [8]; making probabilistic decisions in
medical contexts can have ethical issues [16]; aviation regulations
may not permit stochastic policies [11]; and more generally, there
can be issues with accountability and explainability [14]. To further
motivate why deterministic policies may be preferred to stochastic
ones, consider the following toy problem, which is over-simplified
(e.g. it only has deterministic actions) but reflects issues encountered
in practice (e.g. [21]). The task is to move from A to B with three
move actions that have different monetary (M ), fuel (F ), and time

(T ) costs: slow (M : 1, F : 1, T : 7), medium (M : 7, F : 5, T : 4),
and fast (M : 5, F : 9, T : 2). We want a policy that minimises M
under the constraints F ≤ 5 and T ≤ 5. The optimal stochastic pol-
icy is move slow with probability 0.6 and move fast with probability
0.4. Its expected costs are M = 2.6, F = 4.2, T = 5, but individu-
ally, slow and fast violate the time and fuel constraints respectively.
In many practical applications, the deterministic policy move medium
with probability 1 is preferred, even if its monetary cost is higher.1

In sections 2 and 3 we define Stochastic Shortest Path Problems
(SSPs), Markov Decision Processes (MDPs), their constrained coun-
terparts, and present the Linear Program (LP) for finding an optimal
stochastic policy that will be the foundation of our work. Then, in
section 4, we present Dolgov and Durfee [8]’s Mixed Integer Pro-
gram (MIP), which finds optimal deterministic policies for Con-
strained MDPs (CMDPs) and has been adapted to CSSPs. We ex-
plain that this approach is not fully defined for CSSPs because it
relies on M , an upper bound on flow through the MIP, and there is
no automatic way to derive it. In section 5, we make our first contri-
bution and address this issue: we introduce new theory and methods
for finding M for CSSPs, which are useful not only for our pur-
pose of finding deterministic policies for CSSPs, but more generally
for finding deterministic policies for SSPs with various constraints,
e.g., [19]. Then, in section 6, we move onto efficient algorithms for
solving CSSPs using heuristic search. We explain i2-dual, the state-
of-the-art algorithm for finding stochastic policies for CSSPs and
then present our second contribution: we adapt i2-dual to find de-
terministic policies, which we dub i2-dual-det. As part of this con-
tribution, we present techniques to make i2-dual-det more efficient.
In section 7 we explain LAny [14], the state-of-the-art algorithm for
finding deterministic policies for CSSPs. In section 8, we theoret-
ically analyse the strengths and weaknesses of the state-of-the-art
LAny and our new algorithm i2-dual-det. Our third contribution is to
introduce a categorisation of how challenging CSSP constraints are.
We present three categories: trivial, linearisable, and interesting. In
ascending order, these categories let us express how much the con-
straints of a CSSP affect its difficulty to solve. We motivate why,
theoretically, i2-dual-det performs better than the state-of-the-art on
interesting problems, and in section 9, we confirm experimentally
that i2-dual-det is the best current planner for interesting CSSPs.

1 Note that with a deterministic policy it can still happen that each execution
of the policy violates one of the constraints, but that is beyond the control
of a stationary policy. In scenarios where this is important, it makes sense
to avoid the issue wherever possible by restricting to deterministic policies.



2 Constrained Stochastic Shortest Path Problems

Stochastic Shortest Path problems (SSPs) [4] are given by the tuple
S = ⟨S, sI ,G,A, P, C⟩ where S is the finite set of states; sI ∈ S is
the initial state; G ⊂ S is the set of goal states; A is the finite set of
actions and A(s) denotes the actions applicable in state s; P (s′|s, a)
gives the probability of reaching s′ after applying a to s; C : A →
R>0 is the cost function where C(a) denotes the cost of applying a.

A deterministic policy π is a partial function π : S → A, which
tells the agent to apply action π(s) when in state s. Stochastic poli-
cies π : S → dist(A) are more general: given a state, they re-
turn a probability distribution over actions, from which the agent
should pick an action randomly; π(s, a) denotes the probability with
which a should be applied in s. A policy π is closed on S if π is
defined for all states that can be reached by following π from sI
on S. A policy π is proper if following π from sI reaches G from
sI with probability 1; π is improper otherwise. Let ϕπ

s (t) denote
the probability of being in state s after following π from sI for
t steps. Then, the expected cost of π, written C(π), is defined as
C(π) :=

∑∞
t=0

∑
s∈S,a∈A ϕ

π
s (t)π(s, a)C(a).

We make the following standard assumptions for SSPs: (1) im-
proper policies have positive infinite cost; and (2) from any s ∈ S,
there exists a sequence of actions that reach a goal with probability
greater than 0. The latter is known as the reachability assumption
and it implies the existence of a proper policy and ensures that all
non-goal states have at least one applicable action. An optimal pol-
icy for SSPs is any policy with minimal expected cost. For SSPs, at
least one of its optimal policies is deterministic [4].

Constrained SSPs [1] extend SSPs by adding secondary costs for
each action and imposing constraints over these. Formally, a CSSP
is the tuple C = ⟨S, sI ,G,A, P, C⃗, u⃗⟩ where C⃗ is a cost vector
[C0, . . . , Cn] with strictly positive primary cost C0 : A→ R>0 and
non-negative secondary costs Ci : A → R≥0 for i ∈ {1, . . . , n};
and u⃗ is a vector of upper bounds [u1, . . . , un] that induce the
secondary cost constraints, with ui ∈ R>0 for i ∈ {1, . . . , n}.
All other terms of the tuple are identical to SSPs. By ignoring the
secondary costs and constraints we get the SSP relaxation of C,
⟨S, sI ,G,A, P, C0⟩. The expected cost of a policy π w.r.t. cost func-
tion Ci is written Ci(π). A policy π is feasible for the CSSP only if
Ci(π) ≤ ui for all i ∈ {1, . . . , n}. For CSSPs, optimal policies π
must be feasible and minimise the expected primary cost C0(π). As
a consequence of adding secondary cost constraints, it is not guar-
anteed that among the optimal solutions for a CSSP there are any
deterministic ones [1, 20]. As discussed before, there may be reasons
to require deterministic policies, so we call a feasible deterministic
policy that minimises C0(π) an optimal deterministic policy.

Infinite-horizon Markov Decision Processes (MDPs), as used by
Dolgov and Durfee [8], are the tuple M = ⟨S,A, P,R⟩ where
S,A, P are defined identically to SSPs and R : A → R is a re-
ward function, replacing the SSP’s cost function. MDPs have no goal
states, and instead of an initial state, we must specify an initial con-
dition α ∈ dist(S), where α(s) ∈ [0, 1] can be interpreted as the
probability of starting in s. Additionally, we must specify a discount
factor γ ∈ [0, 1). Analogously to SSPs, let ϕπ

s (t) be the probability
of being in state s after following π from α in t steps. For MDPs,
optimal policies π maximise the total expected discounted reward
criterion U(π, α, γ) :=

∑∞
t=0

∑
s∈S,a∈A γ

tϕπ
s (t)π(s, a)R(a).

Constrained MDPs (CMDPs), again as used by Dolgov and Dur-
fee [8], introduce u⃗ ∈ Rn

>0 as for CSSPs, and replace the reward
function with C⃗ = [C0, . . . , Cn] with Ci : A→ R, where C0 is still
interpreted as a reward function, but C1, . . . , Cn are secondary costs.

For cost i ∈ {1, . . . , n}, π’s total expected discounted cost is given
by Ci(π, α, γ) :=

∑∞
t=0

∑
s∈S,a∈A γ

tϕπ
s (t)π(s, a)Ci(a). Policy π

is feasible iff it satisfies Ci(π, α, γ) ≤ ui for each i ∈ {1, . . . , n}.
As with SSPs and CSSPs, MDPs always have optimal policies that
are deterministic, whereas CMDPs may only have strictly stochastic
optimal policies.

To motivate that adapting methods for (C)MDPs to (C)SSPs is
non-trivial, we cite the result that infinite-horizon MDPs are a special
case of SSPs [3] 2. The intuition behind this result is that at each step
in infinite-horizon MDPs the agent “stops” with probability 1 − γ,
i.e., the accumulation of rewards stops. This is equivalent to every ac-
tion reaching the goal of an SSP with probability 1−γ [3]. Therefore,
all closed policies for MDPs are proper and have finite cost/reward,
in contrast to SSPs, where closed and improper policies do exist.

3 Finding Stochastic Policies for CSSPs

The fundamental algorithm for finding optimal stochastic policies for
CSSPs is the Linear Program (LP) over occupation measure shown
in LP 1 [7, 20]. Here, xs,a is the occupation measure of (s, a), [·] are
Iverson brackets, and in(s) and out(s) are macros that encode the
actions leading into and exiting s respectively. A solution x⃗ induces
the stochastic policy π(s, a) = xs,a/out(s). The value of xs,a can
be read as the expected number of times we encounter s and then
apply a when following the induced policy from sI .

LP 1 can be interpreted as a network flow problem, where a unit of
flow is injected into sI , and must be routed through a system of pipes
(representing actions) such that all flow reaches the goal states. Now,
in(s) represents the amount of flow that enters s from all other ac-
tions, weighted by the probability that they reach s; and out(s) is the
amount of flow leaving s through its outgoing actions. The network
respects preservation of flow, i.e., the amount of flow entering a state
must be equal to the flow exiting and can not leak, so out(s) = in(s)
(C1). The exceptions are sI where a unit of flow is injected, and the
goal states which are sinks. To ensure a proper policy we require the
unit of flow wholly enters the sink (C2). Each unit of flow repre-
sents how often, in expectation, the induced policy will pass through
the relevant states and actions, so xs,a gives the expected number of
times we encounter s and then apply a when following the induced
policy from sI .

min
x⃗

∑
s∈S,a∈A(s)

xs,a · C(a) s.t. C1–C6 (LP 1)

out(s)− in(s) = [s = sI ] ∀s ∈ S \ G (C1)∑
sg∈G

in(sg) = 1 (C2)

out(s) =
∑

a∈A(s)

xs,a ∀s ∈ S (C3)

in(s) =
∑

s′∈S,a′∈A(s′)

xs′,a′ · P (s|s′, a′) ∀s ∈ S (C4)

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C5)∑
s∈S,a∈A(s)

xs,a · Cj(a) ≤ uj ∀j ∈ {1, . . . , n} (C6)

2 This result requires SSPs to allow non-positive costs, but this detail is in-
significant to our motivating argument.



4 Finding Deterministic CSSP Policies with MIPs
Dolgov and Durfee [8] present a Mixed Integer Program (MIP) for
finding deterministic policies for CMDPs, which can be adapted to
CSSPs [14], as shown in MIP 1. This MIP extends LP 1 to find
optimal deterministic policies. The binary variable ∆s,a for each
s ∈ S, a ∈ A(s) is an indicator for whether xs,a > 0 by C9; C7
ensures that zero or one distinct actions are applied in each state, i.e.,
that the policy is deterministic. M is a constant value in R>0 which
must be large enough so that xs,a ≤ M , otherwise the MIP may
disallow the optimal solution or become infeasible.

min
x⃗,∆⃗

∑
s∈S,a∈A(s)

xs,a · C0(a) s.t. C1–C9 (MIP 1)

∑
a∈A(s)

∆s,a ≤ 1 (C7)

xs,a ≤M ·∆s,a ∀s ∈ S, a ∈ A(s) (C8)
∆s,a ∈ {0, 1} ∀s ∈ S, a ∈ A(s) (C9)

So far, adapting the MIPs to CSSPs has been straightforward, but
now we encounter the issue of selecting M . If M is too small the
optimal solution may become infeasible, or the whole MIP may be-
come infeasible. This presents a dangerous situation: if the user is not
certain that M is large enough, and the MIP is infeasible, they can
not be sure if it is because the model is really infeasible or M is too
small. If M is excessively large it can impact performance, introduce
numerical instability, and most may allow integrality constraints to
be violated (called trickle flow), yielding non-deterministic policies.
Often M is chosen manually by a user with domain knowledge, but
it is very difficult to find such upper bounds on large problems with
complex interactions and cycles. For CMDPs, Dolgov and Durfee [8]
present an LP whose optimal objective gives a valid M . Generalis-
ing to CSSPs, this LP would be maxx⃗

∑
s∈S,a∈A(s) xs,a s.t. C1–C5.

However, for CSSPs this LP may be unbounded — this is where the
techniques for CMDPs fail for CSSPs. As an example of this phe-
nomenon, consider the CSSP in fig. 1 with deterministic actions, unit
costs, and no secondary cost constraints. The solution xsI ,ag = 1
and xsI ,a1 = y = xs2,a2 satisfies the LP for any y ∈ R≥0, which
can be made arbitrarily large to maximise the objective, i.e., the LP
is unbounded. This problem occurs when a closed improper policy
exists in the CSSP. This is precisely why this issue does not exist for
CMDPs: as we explained in the background, all policies for CMDPs
are proper, thanks to the discount factor. We now present some theo-
retical results that help us find a valid M for CSSPs.

s2 sI g
ag

a1

a2

Figure 1. A CSSP where an improper policy exists and Dolgov and Durfee
[8]’s LP for finding M is unbounded.

5 Finding M for CSSPs
In this section, we first derive new theoretical results to bound M
for CSSPs. Then, using the new theory, we show practical ways to
derive M without domain knowledge.

For a given CSSP C, we define a lower bound on positive proba-
bilities pmin := min{P (s′|s, a) : s, s′ ∈ S, a ∈ A, P (s′|s, a) >
0} and bounds on primary action costs g := maxa∈A C0(a) and
g := mina C0(a). For a feasible solution x⃗ of MIP 1 which induces
a proper feasible policy for C, we define xmax := maxs∈S,a∈A xs,a.

Recall that M is valid as long as M ≥ x∗
max for x⃗∗ associated with

π∗. We start by giving a domain-independent formula for deriving an
upper bound on xmax over all deterministic policies:

Theorem 1. For any C and deterministic proper policy encoded by
x⃗, p−|S\G|

min is an upper bound for xmax. Moreover, C and x⃗ exist such
that the bound is tight.

Proof. To show this is an upper bound consider x⃗ that induces the de-
terministic proper policy π; and for contradiction, suppose for some
s ∈ S and a ∈ A(s) we have xs,a = xmax = (1 + ϵ) · p−|S\G|

min

where ϵ ∈ R>0. To derive a contradiction, we show that the amount
of flow that reaches goals from s, a exceeds 1. Since π is proper,
there exists an acyclic trajectory ⟨s1, . . . , sk⟩ with s1 = s and
sk ∈ G. Observe that for i ∈ {1, . . . , k − 1} we have in(si+1) ≥
out(si) ·P (si+1|si, π(si)) and out(si) ≥ in(si). We collapse these
inequalities into in(sk) ≥ out(s1) ·

∏k−1
i=1 P (si+1|si, π(si)) ≥

out(s1) · pk−1
min . Recall that s1 = s and xs,a = xmax, so out(s1) ·

pk−1
min = xmax · pk−1

min = (1 + ϵ) · pk−1−|S\G|
min . But, k − 1 ≤ |S \ G|

since an acyclic trajectory can pass through at most |S \G| states be-
fore encountering a goal. Therefore (1+ϵ) ·pk−1−|S\G|

min ≥ 1+ϵ > 1
which violates C2, yielding the desired contradiction.

Now, we show the bound is tight by giving C and x⃗ where xmax =

p
−|S\G|
min . We give a CSSP with a single cost function, i.e., an SSP.

The backwards-cycling chain SSP has S = {s0, . . . , sk}; s0 = sI ;
G = {sk}; A(si) = {ai} for 0 ≤ i < k; P (si+1|si, ai) = pmin

and P (s0|si, ai) = 1−pmin; and C is not important. This SSP has a
single solution x⃗ which satisfies xs0,a0 = p

−|S\G|
min for any k ∈ N>0,

which can be shown by straightforward induction proof.

Thm. 1 gives an easy way to compute valid M for any CSSP, but,
for a large state-space this bound is impractically large, so we turn
our attention to practical bounds. First, we enumerate some bounds
on xmax that work for deterministic policies in special cases:

1. If C is acyclic, then xmax = 1.
2. Consider the case where each action incurs some secondary

cost, i.e.,
∑n

i=1 Ci(a) > 0 ∀a ∈ A, and there are con-
straints associated with each of these costs. Then, we can con-
struct the LP maxx⃗

∑
s∈S,a∈A(s) xs,a s.t. C1–C6 that includes the

secondary cost constraints. This LP is bounded: if there were
some xs,a that tended to infinity, then there must be i for which∑

s∈S,a∈A xs,aCi(a) tends to infinity and violates its constraint.
The solution will yield an upper bound on xmax.

3. If we have an upper bound U for the primary cost, we observe that
MIP 1 has the same optimal solution under the constraint∑

s∈S,a∈A(s) xs,a · C0(a) ≤ U (C10)

For this new MIP, the LP maxx⃗

∑
s∈S,a∈A(s) xs,a

s.t. C1–C5, C10 will give an upper bound on xmax, and the
LP must be bounded because primary action costs are strictly
positive and C10 forces the LP’s primary cost to be bounded.
Subsequently, this is a valid choice of M for MIP 1, with the
important caveat that some solutions whose objectives exceed U
may be infeasible under this M . In this sense, a smaller value
of M can have positive impact on the solving time by pruning
suboptimal solutions.

4. Following on from the previous point, we observe that
U ≥

∑
s∈S,a∈A(s) x

∗
s,a · C0(a) ≥

∑
s∈S,a∈A(s) x

∗
s,a · g =

g
∑

s∈S,a∈A(s) x
∗
s,a, where x⃗∗ is the optimal solution. This lets

us relate U , the upper bound on cost, to the flow of x⃗∗ thus:



Algorithm 1: Find M automatically

1 Function solve(MIP L,M ∈ R>0, κ ∈ R>1)
2 for i ∈ {0, 1, . . . }
3 x⃗← optimise L with M = κi ·M0

4 until x⃗ is feasible
5 if obj(x⃗) · g−1 > M then
6 x⃗← optimise L with M = obj(x⃗) · g−1

7 return x⃗

U · g−1 ≥
∑

s∈S,a∈A(s) x
∗
s,a ≥ x∗

max. Note that action costs
must be strictly positive for this bound to be finite.

We now exploit these insights to develop alg. 1, which solves the
MIP and automatically finds a valid M . The idea is that we initialise
M with some value M0 ∈ R>0 that may be too small, and then
we increase M exponentially until we find a feasible solution for
the MIP. The objective of this feasible solution, denoted obj(x⃗), is an
upper bound U on the primary cost of the original MIP with arbitrary
M , so we can leverage special case 4: update M ← U · g−1, and
re-solve the MIP, now yielding an optimal policy. Importantly, this
algorithm only works if the input CSSP C has a feasible solution; if
C is infeasible, alg. 1 will never terminate.

To conclude this section, we show a way to avoid M altogether.
At the core of finding a deterministic policy, we want to ensure that
for each s, xs,a > 0 for at most one a ∈ A(s). Operations Re-
search has a mechanism for encoding this: an ordered set of variables
{x0, . . . , xk} can be added to an LP or MIP as Special Ordered Sets
of type 1 (SOS1), which enforces that xi may be non-zero for at most
one i [2]. These constraints are enforced with a branch-and-bound al-
gorithm. So, for forcing deterministic policies, instead of adding bi-
nary indicator variables and tying them to LP 1, we can add to LP 1
the ordered sets {xs,a : a ∈ A(s)} for each s ∈ S as SOS1 con-
straints. Note that the order of states can be chosen arbitrarily. SOS1
constraints are a standard feature in LP and MIP solving software,
e.g., Gurobi and CPLEX support them.

For the remainder of this paper, we refer to LP 1 modified to yield
deterministic policies a MIP, regardless whether it is implemented
with one of the big-M approaches or with SOS1 constraints.

6 i2-dual for Stochastic and Deterministic Policies
First, we familiarise the reader the state-of-the-art heuristic search
algorithm for stochastic policies, and then adapt this existing
technology to deterministic policies, yielding our novel algorithm
i2-dual-det. A key shortcoming of using LP 1 to find optimal stochas-
tic policies, is that it does not scale to large problems, since the LP re-
quires a variable per state-action pair and constraint per state. This is-
sue is addressed by the state-of-the-art algorithm i2-dual [22], which
uses a heuristic function H : S→ R to estimate how expensive states
are and focus on the subset of the search space that looks cheapest.
Note that the step from LP 1 to i2-dual is analogous to the step from
Dijkstra’s algorithm to A∗. We present high-level pseudocode of i2-
dual in alg. 2. At each step, i2-dual has a partial CSSP Ĉ, which is
a copy of C with a subset of states as normal; the remaining non-
goal states s are called fringes and are treated as artificial goals with
a single-time terminal cost vector of T⃗ (s), determined by a vector
of admissible heuristics. In each iteration of the inner loop, i2-dual
checks all the reachable states under its candidate policy π, called the
envelope of π, and expands any fringe states in the policy by adding
them to C as normal states. Then, i2-dual solves LP 1 for the new

Algorithm 2: i2-dual

1 Function find-opt-stoch-policy(CSSP C)
2 initialise partial CSSP Ĉ with fringe sI
3 initialise empty candidate policy π
4 while envelope(π) contains fringes do
5 Ĉ← expand fringes
6 x⃗← solve LP 1 for Ĉ with hc-pom

7 if infeasible then
8 return infeasible
9 π ← policy from x⃗

10 return π

Ĉ, and updates π accordingly. Importantly, the candidate policy will
avoid fringe states that are deemed expensive by the heuristics, with
the effect that these states are never expanded, enabling i2-dual to
ignore unpromising parts of the state-space.

The other defining feature of i2-dual is that, instead of calling an
external heuristic to determine the termination costs of partial CSSPs,
the LP for computing its heuristic is embedded within the LP for
solving the partial CSSPs. i2-dual uses as its heuristic hc-pom. We do
not have space to explain it in detail and refer the reader to [22], but
the idea is that hc-pom looks at multiple simplifications of the origi-
nal CSSP that preserve some of the structure of the original problem,
called atomic projections. Each of these projections is a CSSP that
can be solved with LP 1. hc-pom builds LP 1 for each projection, and
then ties these LPs together by forcing each action to be applied the
same number of times in expectation for each projection. Then, to
solve C, i2-dual merges LP 1 for C and the LP for hc-pom, so that
the search for the optimal policy and computation of hc-pom are in-
tertwined. Furthermore, the LPs together so that the costs incurred
by the candidate policy are considered by hc-pom, so that the heuristic
can more accurately prune states that lead to a violation of secondary
cost constraints.

Now, we introduce i2-dual-det, a novel heuristic search algorithm
for finding deterministic policies for CSSPs. This is a simple modi-
fication of i2-dual, where instead of using LP 1 to solve Ĉ in line 6,
we use MIP 1 with SOS1 constraints or equipped with a method
for deriving M automatically, as discussed in section 5. This MIP is
merged with the LP for hc-pom. Importantly, the LP for hc-pom is not
modified, and therefore remains admissible for stochastic policies,
and consequently also deterministic policies. Thus, each π is a deter-
ministic policy that must be cheaper than the optimal deterministic
policy due to the fringes’ admissibility, and once the policy envelope
contains no fringes it must be the optimal deterministic policy. The
optimality of i2-dual-det is inherited from i2-dual, and can be proved
with a simple modification of the proof for i-dual [20].

We conclude this section by discussing some performance im-
provements to i2-dual-det. One important implementation detail for
i2-dual-det is that solving the MIP for the current Ĉ should use the so-
lution from the previous iteration as a warm-start. This significantly
speeds up search because modern MIP solvers can use such warm-
starts to find a new solution faster, e.g., they can in some cases intel-
ligently transform the old solution into a feasible solution for the new
problem. Another technique for speeding up i2-dual-det, is to solve
relaxations of the intermediate partial CSSPs. An optimal solution
for Ĉ is not necessary to expand useful fringes, and an approximate
solution obtained from a relaxation can suffice. Of course, in the final
steps we must solve Ĉ optimally to ensure i2-dual-det is optimal, but
a lot of time can be saved by approximating the intermediate partial



CSSPs. Note that this is analogous to the improvement from LAO∗

to iLAO∗ [12]. We present some implementations of this approach:

1. Solve LP relaxations of each MIP and when a closed policy is
found, solve the MIPs. In other words, run i2-dual first, then use
its search tree and solution in i2-dual-det. This was done by Hong
and Williams [14] for i-dual [20].

2. Start by considering LP relaxations. Solve relaxations of each MIP
and when a closed policy π is found determine at which states
π is stochastic, then add determinising constraints only at these
states. Repeat these steps until the policy is deterministic. This is
effectively constraint generation.

3. MIP solvers keep track of the MIP gap, which refers to the gap
between its lower and upper bounds. Usually solvers run until the
gap is approximately zero, but we can specify a different gap re-
quirement, allowing the solver to stop sooner. Once i2-dual-det
finds a feasible solution to the original CSSP with a large MIP gap,
the permissible MIP gap is reduced. Then, with this as a starting
point, i2-dual-det will find an optimal deterministic policy.

Item 3 lets i2-dual-det behave like an anytime algorithm: when a
solution has no open fringes and is feasible for the MIP, regardless of
its MIP gap, it induces a feasible policy for the CSSP. Moreover, the
MIP gap of the solution is an optimality gap for the policy. Note that
both item 1 and item 2 can be combined with item 3. For maximum
performance, the key is to find a balance between finding a solution
quickly, obtaining a sufficiently informative solution so that useful
fringes are expanded, and maximising how effectively the solver can
reuse information from the previous iteration with warm starts.

7 Related work: LAny
In 2023, Hong and Williams [14] published an algorithm that we
call the Lagrangian Anytime algorithm (LAny). It is an anytime
heuristic-search planner for finding optimal deterministic policies.
LAny works in two stages. Stage 1 finds the Lagrangian dual for the
CSSP, which is effectively an approximation of the CSSP. Formally,
MIP 1 can be re-expressed as minπ∈Π f(π) s.t. gi(π) ≤ 0 for i ∈
{1, . . . , n} where Π is the set of deterministic policies, f(π) =
C0(π) and gi(π) = Ci(π) − ui. Given a vector λ ∈ Rn

≥0 with
a non-negative entry for each secondary cost function, the CSSP’s
Lagrangian function is L(λ, π) = f(π) + λT · g(π). Then, a La-
grangian relaxation of the problem is L(λ) = minπ∈Π L(λ, π). In
words, L(λ) relaxes the constraints associated with each gi, but pe-
nalises and rewards their violation or satisfaction by the linear term
λi respectively. We call the SSP associated with L(λ) the λ-SSP.
For any λ ∈ Rn

≥0, L(λ) is a lower bound on the cost of π∗ ∈ Π
for the original CSSP. Finally, the Lagrangian dual is the largest of
these lower bounds, i.e., L∗ = L(λ∗) = maxλ∈Rn

≥0
L(λ). For lin-

ear programs this dual has the same value as the optimal objective in
the original problem (strong duality), but since we are restricting to
deterministic policies we can only guarantee that λ∗ is a lower bound
on the cost of π∗ ∈ Π for the original CSSP (weak duality).

Finding λ∗ is a piece-wise linear concave optimisation problem
which LAny solves with an exact line search. This is an iterative
approach that (1) starts with λ = 0⃗, (2) solves λ-SSP, (3) com-
putes a new λ that will improve the Lagrangian, and then loops
back to (2) until it finds λ∗. LAny solves each λ-SSP with a ver-
sion of iLAO∗ [12] that has been modified to use a vector of value
functions V⃗ : S → Rn+1

≥0 . The vector of costs and value functions
are collapsed into a single value by taking their dot product with
λ′ = [1, λ0, . . . , λn]. Since iLAO∗ is a heuristic-search algorithm,

Algorithm 3: Stage 2 of LAny

1 Function closing-gap(C, λ∗ ∈ Rn+1
≥0 , πinc)

2 lb← L(λ∗)
3 for i ∈ {0, 1, . . . }
4 π ← ith cheapest policy on λ∗-SSP
5 lb← max{lb, L(λ∗, π)}
6 if π is C-feasible and C0(π) < C0(πinc) then
7 πinc ← π

8 until lb ≥ C0(πinc)
9 return πinc

it benefits from initialising V⃗ with an admissible vector of heuristics
H⃗ . For H⃗ to be admissible, H⃗ · λ′ must be admissible for λ-SSP,
which we can only guarantee in general by requiring that each Hi

is admissible w.r.t. cost function i. This precludes heuristics such as
hc-roc [22] that consider the interaction between cost functions.

Throughout stage 1, LAny tracks the incumbent solution πinc, i.e.,
the best feasible solution it has seen so far. Each time LAny solves
a λ-SSP to get policy π, it checks whether π is feasible for C and
has C0(π) < C0(πinc), and if so, sets π as the new incumbent. The
incumbent’s primary cost gives an upper bound (ub) on the optimal
policy cost. If no feasible solution has been found then there is no
incumbent, and we define C0(πinc) and respectively ub to be∞. At
the same time, we get a lower bound (lb) because L(λ) ≤ C0(π

∗)
for all λ, so LAny keeps as a lower bound maxλ L(λ) over all the λs
it has considered so far. It can happen the optimality gap ub − lb is
smaller than some ϵ ∈ R>0, which proves πinc is an optimal solution
(up to ϵ) and LAny can return it. It is also possible that there is no
incumbent, that it is not optimal, or that it is optimal but LAny can
not prove it is optimal because the lower bound is not tight. If stage
1 can not terminate by proving its incumbent is optimal, it keeps
searching until it finds λ∗, and then enters stage 2.

Stage 2 uses λ∗ to find the optimal policy. As we present in alg. 3,
stage 2 enumerates the policies on the λ∗-SSP in order of cost. Note
that there may be many policies with equal cost; for selecting the ith
cheapest policy we arbitrarily select one of the tied-cheapest policies,
and the remaining policies of same cost are picked next. To find the
ith cheapest policy the algorithm creates a copy of C where some
states’ applicable actions restricted in such a way that the previously
seen, cheaper policies are disallowed, and then uses the same variant
of iLAO∗ as before to find the cheapest new policy. For more details
and explanation for why this algorithm terminates optimally we defer
to the original paper [14]. Notice that compared to state-based search,
stage 2 can be an extremely inefficient algorithm since it searches
over the policy space, which is much larger than the state space. The
algorithm is only practical when the Lagrangian dual gives a good
approximation of the CSSP, and only a small number of policies have
to be enumerated. Hong and Williams [14] define an approximate
variant of stage 2 that prunes unpromising policies. This can speed
up search but sacrifices optimality and has no termination condition.

8 Theoretical Comparison
Optimal vs Anytime We define an algorithm to be optimal if it
is guaranteed to eventually terminate with a proven optimal solution
(up to ϵ); and anytime if it can produce feasible incumbent solutions
and improves on them over time. i2-dual-det and all its variants are
optimal. By default, i2-dual-det is not anytime, but variants that allow
large MIP gaps for intermediate partial CSSPs, as per item 3, are
anytime. LAny is both optimal and anytime.



Use of Heuristics Both LAny and i2-dual-det are heuristic search
algorithms, but they use them in different ways. LAny uses its vari-
ant of iLAO∗ in both stages. This iLAO∗ is supplied with a vector
of heuristics which must be admissible per cost function, and there-
fore can not take into account the interaction between cost functions
or the secondary cost constraints. These heuristics are computed by
projecting the CSSP onto each of its cost functions Ci and ignoring
the constraints, resulting in the SSP Si [20]. Then, any admissible
SSP heuristic can be used to obtain Hi, e.g., hlmc [13] or hroc [22].
On the other hand, hc-pom is embedded in i2-dual-det. Furthermore,
hc-pom does consider secondary cost constraints, and thanks to the
coupling between itself and LP 1, the secondary cost constraints can
be considered more effectively than by any cost projection approach,
since the heuristic can take into account the secondary costs incurred
by the policy being considered.

Infeasible Problems We are interested in feasible problems for this
paper, but it is worth noting the behaviour of the algorithms when the
problem is infeasible. LAny must iterate through every proper policy
in stage 2 before terminating without an incumbent, and can then de-
clare the problem unsolvable. i2-dual-det, as long as it does not use
alg. 1, can terminate and report the problem as unsolvable as soon as
one of its partial CSSPs is unsolvable. In the worst case i2-dual-det
must expand every state and solve the partial CSSPs for each itera-
tion, but with an informative heuristic the infeasible partial CSSP will
occur much sooner. E.g., on a Constrained Exploding Blocks World
problem (section 9) with 3 blocks that was made infeasible by its
secondary cost constraints, i2-dual-det determined that the problem
is infeasible within a second, and LAny was stopped before termina-
tion after enumerating 3000 policies over 30 mins.

Challenging Constraints Constraints in CSSPs can make solving
them more challenging in practice than SSPs despite both having the
same worst case complexity [1]. However, this is not true for all con-
straints, e.g., constraints that are trivially satisfiable do not yield chal-
lenging CSSPs. This is a clear parallel to probabilistically interesting
problems [15] where problems are probabilistically uninteresting if
their probabilities can be ignored and one still obtains a good quality
policy, and respectively interesting if ignoring probabilities leads to
poor policies for the SSP. We define three levels of how interesting
constraints are w.r.t. their CSSPs: (trivial) the optimal policy for the
SSP relaxation is feasible and automatically optimal for the CSSP;
(linearisable) there is a linearisation of costs s.t. the optimal policy
is feasible for the CSSP but need not be optimal, i.e., ∃λ s.t. the
optimal policy for the λ-SSP is feasible for the CSSP; (interesting)
when a problem is not linearisable. Trivial constraints are uninterest-
ing since they can be ignored during search. Being able to linearise
constraints suggests that they have minimal interaction, i.e., we do
not encounter the case where decreasing one cost function forces an-
other to increase in a way that requires a trade-off between the two.

LAny handles trivial problems very efficiently, since it starts by
solving the λ-SSP with λ = 0⃗, which yields an optimal feasible
policy π for the CSSP, so LAny can terminate and return π. If a
problem is linearisable and strong duality holds, then LAny may find
the optimal policy as an incumbent and can then prove its optimality
in stage 1. If strong duality does not hold then LAny has to enter
stage 2, but does not have to spend a lot of time if its incumbent is
optimal or close to optimal. On interesting problems, it is impossible
for LAny to find a feasible solution in stage 1, which forces LAny to
enter stage 2 and enumerate policies with a range of Lagrangian costs
before finding the optimal, which can take a long time. In contrast,
i2-dual-det is not affected by the type of CSSP being solved.

We present one result about the categorisation of problems: CSSPs
with one secondary cost constraint are linearisable. This is true be-
cause we just need to find λ = [λ1] with λ1 large enough so that
the secondary cost determines the cheapest policy in the λ-SSP, i.e.,
when λ1 is large enough an infeasible policy is strongly penalised
and a feasible policy strongly rewarded.

9 Empirical Evaluation
In this section we experimentally compare our new algorithm
i2-dual-det with LAny [14], the current state-of-the-art for finding
optimal deterministic policies for CSSPs; and MIP 1 [8], as a base-
line. All algorithms are implemented in C++ and the code is available
at [17]. For solving LPs and MIPs we use CPLEX Version 22.1.1. To
decide which planner settings to use we ran preliminary experiments
testing various setting combinations over a subset of the benchmarks
with three instances per problem, with 45 problem instances in total.
We now list planner specific settings:

i2-dual-det In the preliminary experiments we tested i2-dual-det
with combinations of ways to deal with big-M (SOS1 constraints
and alg. 1 with different settings) and different relaxations of the in-
termediate partial CSSPs (items 1 to 3 in section 6). With the relax-
ations from item 1 and item 3 it solves 39-45 instances, otherwise
23, i.e., the most important factor was the method for relaxing in-
termediate partial CSSPs. We selected the following two best per-
formers for the full experiments: (1) i2-dual-det-M uses alg. 1 with
M0 = 1, κ = 10, and only makes intermediate partial CSSPs eas-
ier to solve with the MIP gap approach (item 3), with a value of
1.0; (2) i2-dual-det-SOS1 uses SOS1 constraints, solves only the LP
relaxation of intermediate partial CSSPs (item 1), and then solves in-
termediate MIPs with an optimality gap requirement of 0.2 (item 3).
Note that i2-dual-det always uses the hc-pom heuristic, which is em-
bedded [22], and additionally uses hmax as a dead-end detector on
CSSPs that have dead ends before the finite penalty transformation.

LAny In the preliminary experiments, we tested LAny [14] with
combinations of the following three parameters: (1) different heuris-
tics hlmc [13] and hroc with hmax as a dead-end detector [22]; (2)
the number of iterations in stage 1 is either limited to n iterations,
where n is the number of secondary cost constraints, or it is unre-
stricted; (3) we tested the exact version of the algorithm, as described
in this paper, as well as the two approximate versions with “candidate
pruning”. The settings in (2) and (3) are suggested by the authors of
LAny, and used in their experiments. With hlmc, LAny solved 31-39
instances, with hroc it solved 23-31 problems. The number if itera-
tions in stage 1 did not have an effect on coverage. The approximate
variants solved fewer instances fully, and performed slightly worse
in the anytime setting. So, in the full experiments, we only consider
the exact version of LAny with hlmc and an unrestricted number of
iterations in stage 1. We also run it with hpom [22], which we discuss
and summarise later. The error tolerances are set to 0.0001. LAny re-
lies on an upper bound on each λi, which can be selected manually,
but we use the automatic method used by the algorithm’s authors in
their experiments. For more details see the documentation in [17].

MIP 1 We implemented this as LP 1 with SOS1 constraints.
We tested these algorithms on a suite of CSSPs. All our domains

are encoded in Probabilistic PDDL. Some of the problems we con-
sider violate the reachability assumption, which we address by ap-
plying the fixed-cost penalty formulation for dead ends [21], where
for each state we add an artificial action that leads to a goal with
probability 1 but incurs a large fixed-cost penalty. Since the separate



cost functions of the CSSP usually represent different resources with
different units, we require fixed-cost penalties to be specified for each
cost function [20]. We consider the following domains:

Search and Rescue (SAR) [20] There are multiple survivors scat-
tered on an n× n grid, and the agent must navigate a drone to bring
exactly one of the survivors to a safe location as quickly as possi-
ble. The agent can move faster or slower, but that uses more or less
fuel respectively. SAR problems have the single secondary cost con-
straint that fuel consumption should not exceed a given threshold.
The threshold is selected automatically per problem as a function of
the fuel usage of a policy in the SSP relaxation. We also consider
problems where these thresholds are halved, denoted h = T when
halved and h = F when original. SAR problems have a single con-
straint, so they are linearisable.

Elevators (Elev) [20] The agent must route e elevators through
an n-floor building so that all passengers arrive at their destinations.
There are w actively waiting passengers and h hidden passengers
who have not yet pressed the call button. Each problem has a bound
on all passengers’ waiting and travel times, i.e., there are 2(w + h)
constraints secondary cost functions and constraints; these bounds
are determined automatically based on n. Over 90% of the problem
instances we consider with e = 2 have trivial constraints. For e = 1
there is a mix of trivial, linearisable, and interesting problems.

Constrained Exploding Blocks World (ExBW) [20] Exploding
Blocks World [5] has N blocks that must be stacked on top of each
other in a particular arrangement, where each block is rigged with an
explosive, which with a certain probability explodes and destroys the
table or block that it is placed on. Nothing can be placed on top of
destroyed blocks and tables, and destroyed blocks can not be moved.
In the constrained version [20], the table can be fixed with a large pri-
mary cost, but blocks can not. The only secondary cost constraint is
that the number of destroyed blocks is bounded by threshold c, which
is selected manually to ensure the problem is feasible. We consider
interesting arrangements of blocks from IPPC’08 which we specify
by their id. This domain has a single secondary cost constraint, so
all its problems are linearisable.

Constrained PARC Printer (PARC) [22] PARC printer is an IPC
domain where the agent must print s pages using a modular printer
with various components. In this version, the printer has c unreli-
able components in which a page can get jammed with probability
0.1. Once jammed, the component can not be used for the remainder
of execution, and the relevant page must be reprinted. Using certain
components incurs a secondary cost whose expected cost must be
bounded by u, and the probability of failure must be bounded by f .
We fix s = 4 and vary c, u, f . In the problems we consider, they are
trivial when f = 1 and u =∞, otherwise linearisable or interesting.

Constrained Tireworld (CTW) This new domain is based on Tri-
angle Tireworld [15], where the agent must drive a car over a trian-
gular shaped network of roads and cities. Each time the agent drives
between cities it has a 50% chance of getting a flat tyre. If the agent
has a spare, it can fix the flat, otherwise it is unable to move. Spare
tyres can only be acquired in certain cities. In the constrained ver-
sion we make c copies of the action for getting a spare tyre, where
copy i incurs 1 unit of secondary cost i. Respectively, there are c con-
straints, one for each secondary cost. We use intermediate tireworld
problems [18], so problems are specified by n, the size of the triangle,
and d, the agent’s starting distance from the goal. CTW is linearisable
but, for any linearisation λ such that the optimal policy for λ-SSP is
CSSP-feasible, there are many other λ-SSP-optimal policies that are

MIP 1 LAny i2-dual-det-M i2-dual-det-SOS1
problem cov. runtime cov. runtime cov. runtime cov. runtime

SA
R

(n
,h

) (4, F) 0 26 142.3±53.9 15 753.2±229.0 25 605.8±235.5
(4, T) 0 26 179.0±99.7 1 494.3 1 309.0
(5, F) 0 30 229.2±71.1 5 264.9±276.4 0
(5, T) 0 27 249.8±73.8 2 564.4±633.4 0

E
le

v
(e

,w
,h

) (1, 2, 2) 30 9.9± 3.5 10 13.6± 3.2 30 247.6± 84.7 30 68.8± 42.8
(2, 1, 1) 30 5.2± 0.2 30 9.7± 2.3 24 667.2±199.9 30 118.8± 34.5
(2, 1, 2) 30 275.9±103.9 29 125.4±17.9 0 0
(2, 2, 1) 30 196.2±118.3 28 64.5±12.8 1 1260.3 8 527.7±192.1

E
xB

W
(i

d,
N

,c
) (4, 5, 0.17) 0 30 838.5±42.3 30 77.9± 20.2 30 16.6± 0.8

(4, 5, 0.2) 0 30 0.2 30 10.6± 1.1 30 1.6
(5, 7, 0.1) 0 30 10.9± 0.1 25 717.2±139.3 30 19.7± 0.2
(7, 8, 0.48) 0 30 1.8± 0.1 27 559.6±144.5 30 35.3± 2.6

PA
R

C
(c

,f,
u)

(1, 0.0, 1) 0 0 30 32.9± 5.9 30 17.0± 0.2
(1, 0.0, ∞) 0 30 53.7± 0.7 30 17.8± 0.1 30 16.7± 0.1
(1, 0.1, 1) 0 0 30 69.9± 24.2 25 121.6±123.1
(1, 1.0, ∞) 0 30 20.7± 0.4 0 0
(2, 0.0, 1) 0 0 30 32.8± 6.2 30 16.7± 0.1
(2, 0.0, ∞) 0 30 151.6± 1.7 30 17.3± 0.1 30 16.1± 0.2
(2, 1.0, ∞) 0 30 44.7± 0.5 0 0

C
T

W
(n

,d
,c

)

(4, 4, 2) 30 371.9± 58.0 30 349.0± 1.4 30 110.6± 16.3 30 29.6± 2.1
(4, 4, 4) 30 583.4± 63.5 0 29 330.4±101.2 30 44.9± 2.3
(4, 4, 6) 18 949.4± 91.6 0 29 513.9± 79.7 30 57.0± 2.1
(4, 5, 2) 14 1621.7± 60.6 0 30 385.9± 26.7 30 141.8± 14.7
(4, 5, 4) 0 0 27 850.2±108.6 30 205.7± 11.7
(4, 5, 6) 0 0 25 1021.1± 88.2 30 246.1± 15.6
(4, 6, 2) 0 0 0 30 1064.3±102.2
(4, 6, 4) 0 0 0 25 1376.7± 96.9
(4, 6, 6) 0 0 0 28 1281.5± 81.7

Table 1. Results for optimal planners. We present the coverage and the
mean and 95% C.I. of runtime (secs) among the instances on which the

planner converged in time. Maximum possible coverage is 30.

not CSSP-feasible. The effect is that solving the λ-SSP is unlikely to
yield a CSSP-feasible policy, so these problems will have the same
properties as interesting problems with high probability.

For a given problem, a problem instance on Elev and SAR refers
to a random instantiation of the problem, and on ExBW, PARC, and
CTW refers to the fixed problem paired with a random seed that is
passed to the planner. We ran each planner on 30 instances of each
problem on a cluster of Intel Xeon 3.2 GHz CPUs. For each instance,
the planner was limited to 30 minutes CPU time, 4GB memory, and
one CPU core. We now present and discuss the results.

What is the best optimal planner? We present the coverage and
runtimes of planner per problem in tab. 1. MIP 1 works well for
small problems, but fails as the problems grow large, so we focus
on comparing i2-dual-det and LAny. LAny performs best on triv-
ial problems, e.g., Elev with e = 2 and the trivial PARC problems.
i2-dual-det does best on interesting problems, e.g., interesting PARC
and Elev with e = 1 problems. i2-dual-det also does best on CTW
problems. Recall that CTW is linearisable, but for any linearisation
λ the λ-SSP has many optimal solutions that are not CSSP-feasible.
This causes LAny to struggle because it is unlikely to find a CSSP-
feasible policy in stage 1, and is forced to enter stage 2 and enumer-
ate many policies before finding a CSSP-feasible one. On ExBW
id = 4, N = 5, we see that i2-dual-det is faster on c = 0.17, and
LAny is faster on c = 0.2, i.e., i2-dual-det performs better on prob-
lems with more challenging constraints. Incidentally, all our ExBW
problems have strong duality except ExBW id = 4, N = 5, which
intuitively has an effect on LAny, since weak duality requires the
enumeration of more policies in stage 2. Strong and weak duality is
not directly related to how interesting a problem is, but it does cor-
relate with how well the λ∗-SSP approximates the CSSP. Compar-
ing LAny using hlmc and hpom (omitted due to space) we have that:
hlmc is 1.5-3× faster on SAR and 1.5-38× on ExBW; hpom has less
coverage on PARC and CTW; and both have comparable results on
Elev. LAny with hpom still has better coverage than i2-dual-det-SOS1
on SAR, is faster on the trivial Elev problems, but is slower than
i2-dual-det-SOS1 on all ExBW problems. Since hpom is closer to



LAny i2-dual-det-M i2-dual-det-SOS1
problem cutoff cov. opt. gap cov. opt. gap cov. opt. gap

SA
R

(n
,h

) (4, F) 1800 30 0.015±0.016 30 0.046±0.065 30 0.003±0.003
(4, T) 1800 30 0.010±0.016 30 0.720±0.157 22 0.153±0.144
(5, F) 229 30 0.008±0.008 26 0.775±0.161 0
(5, T) 1800 30 0.002±0.003 30 0.933±0.091 0

E
le

v
(e

,w
,h

) (1, 2, 2) 9.9 2 0.000 1 1.000 17 0.017±0.014
(2, 1, 1) 5.2 9 0.000 0 0
(2, 1, 2) 276 29 0.000 0 0
(2, 2, 1) 196 29 0.001±0.003 0 0

E
xB

W
(i

d,
N

,c
) (4, 5, 0.17) 16.6 30 0.005±0.001 0 30 0.002±0.001

(4, 5, 0.2) 0.2 16 0.000 0 0
(5, 7, 0.1) 10.9 30 0.000 0 0
(7, 8, 0.48) 1.8 19 0.000 0 0

PA
R

C
(c

,f,
u)

(1, 0.0, 1) 17.0 0 0 18 0.000
(1, 0.0, ∞) 16.7 0 0 18 0.000
(1, 0.1, 1) 69.9 0 21 0.000 21 0.000
(1, 1.0, ∞) 20.7 14 0.000 0 0
(2, 0.0, 1) 16.7 0 0 18 0.000
(2, 0.0, ∞) 16.1 0 0 10 0.000
(2, 0.1, 1) 1800 30 0.055 0 27 0.026
(2, 0.1, ∞) 1800 30 0.070 1 0.027 22 0.027
(2, 1.0, 1) 1800 30 0.003±0.001 0 0
(2, 1.0, ∞) 44.7 16 0.000 0 0

C
T

W
(n

,d
,c

)

(4, 4, 2) 29.6 0 9 1.000 17 0.000
(4, 4, 4) 44.9 0 4 0.990±0.020 14 0.000
(4, 4, 6) 57.0 0 17 1.000 13 0.000
(4, 5, 2) 142 0 12 0.997±0.007 19 0.000
(4, 5, 4) 206 0 14 1.000 13 0.000
(4, 5, 6) 246 0 13 1.000 14 0.000
(4, 6, 2) 1064 0 18 1.000 15 0.000
(4, 6, 4) 1800 0 14 0.993±0.009 25 0.000
(4, 6, 6) 1800 0 15 1.000 28 0.000

Table 2. Results for anytime planners. We show the cutoff (secs) per
problem, the anytime coverage (number of instances for which the planner
produces an incumbent before the cutoff), and the mean and 95% C.I. of
runtime (secs) for covered instances. Maximum possible coverage is 30.

hc-pom, the heuristic used by i2-dual-det, this suggests that LAny
is outperforming i2-dual-det on ExBW largely thanks to hlmc. For
SAR, this is only a small factor. Comparing i2-dual-det-SOS1 and
i2-dual-det-M , the former dominates almost everywhere, except on
large SAR problems and some PARC problems.

In summary, when considering optimal solutions, LAny is well
suited to uninteresting CSSPs, i.e., trivial and linearisable CSSPs
and generally underperforms on interesting problems and problems
that are linearisable but with high probability the optimal solution for
any λ-SSP is infeasible, such as CTW. In contrast, i2-dual-det is not
negatively affected by the complexity of the constraints and outper-
forms other planners in interesting CSSPs. Nonetheless, i2-dual-det
is unable to take advantage of simpler constraints structures and it
is outperformed by LAny in the uninteresting CSSPs. MIP 1 has a
similar tradeoff as i2-dual-det; however, it is unable to scale up to
large problems since, unlike i2-dual-det and LAny, it does not per-
form heuristic search in the planning search space and it is forced to
consider all states and actions.

Are anytime planners more practical than optimal planners? It
would be unfair to compare the anytime algorithms only within the
scope of solving problems optimally, so we look at how good their
incumbent solutions are before the optimal planners fully converge in
tab. 2. For each problem p we consider the optimal planners will full
coverage in tab. 1, and among these we define mp to be the minimum
mean time to solve. If no planner attains full coverage we set mp

to the deadline time. In tab. 2, the anytime coverage is the number
of instances where LAny has an incumbent solution before mp. We
define the optimality gap of a solution as |ub− lb|/|ub|.

LAny often finds incumbent solutions before the cutoff with very
tight optimality gaps. The important exceptions are CTW, which is
linearisable but an optimal policy for its λ-SSPs is very likely CSSP-

infeasible; and non-trivial PARC problems where LAny does not find
any incumbent solutions before the cutoff. On Elev e = 1, w =
2, h = 2 LAny finds incumbent solutions in time for trivial instances,
and for the non-trivial instances it finds none. This suggests that on
the problems where LAny performs poorly as an optimal planner, its
anytime capabilities can not redeem it. i2-dual-det-SOS1 has higher
coverage and better optimality gaps than i2-dual-det-M except in
SAR and CTW, where i2-dual-det-M has higher coverage but with a
large optimality gap; this is mostly a result of setting its intermediate
MIP tolerance to 1, compared to i2-dual-det-SOS1’s tolerance of 0.2.

10 Conclusion and Future Work

Dolgov and Durfee [8]’s MIP for finding optimal deterministic poli-
cies on CMDPs can be generalised to solve CSSPs, but we showed
that there is an important technical detail that must be considered: the
automatic derivation of the constant M relies on the inexistance of
improper policies in CMDPs, which is not true for the more general
model of CSSPs. This is an important issue that can not be swept
under the rug since poorly chosen M can affect correctness. We ad-
dressed this issue with new theory and algorithms.

We also introduced i2-dual-det, a new algorithm for finding opti-
mal deterministic policies, obtained by adapting the state-of-the-art
algorithm for optimal stochastic policies i2-dual [22] with the ap-
proaches we developed earlier. We enhanced the base algorithm with
various MIP solving techniques, which in the spirit of iLAO∗, solve
the intermediate partial CSSPs approximately. Not only do these en-
hancements improve performance, but one particular enhancement
endows i2-dual-det with anytime capabilities.

We compared our algorithm i2-dual-det with LAny [14], the state-
of-the-art for finding deterministic policies for CSSPs. Theoretical
differences include the kinds of heuristics that can be used, and that
LAny has to do a lot more work than i2-dual-det to prove infeasibil-
ity. We compared performance empirically on a set of benchmarks
and found that the algorithms perform well on different classes of
problems: LAny is the fastest algorithm for trivial and linearisable
problems, whereas i2-dual-det is the fastest for interesting problems
and linearisable problems where, for each λ-SSP whose optimal pol-
icy is CSSP-feasible, there are also many λ-SSP-optimal policies that
are not CSSP-feasible.

In 2024, Steinmetz et al. [19] published a paper that also adapts
i2-dual to find deterministic problems on a variant of SSPs. This
strengthens the contributions of our paper, because our techniques
for automatically finding M and speeding up i2-dual-det can be ap-
plied to their methods.

Our future agenda includes scaling heuristic search methods
to larger problems by developing domain-independent heuristics
specifically for deterministic policies. We considered i2-dual-det
with the hc-pom heuristic, which is admissible for stochastic policies;
but, the cost of stochastic policies is a loose lower bound on deter-
ministic ones, so there is room to make the heuristics more informa-
tive. Another direction to improve scalability is to develop admissible
heuristics for λ-SSPs that do not rely on cost-projection thus taking
into account the interaction between cost functions.

Another item in our future agenda is to combine our techniques
for finding deterministic policies with techniques for multi-objective
planning [10, 6] to compute the Pareto coverage set for SSPs/CSSPs,
i.e., the finite set of non-dominated deterministic policies.
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