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Abstract

Current methods for solving Stochastic Shortest Path Prob-
lems (SSPs) find states’ costs-to-go by applying Bellman
backups, where state-of-the-art methods employ heuristics to
select states to back up and prune. A fundamental limitation
of these algorithms is their need to compute the cost-to-go
for every applicable action during each state backup, lead-
ing to unnecessary computation for actions identified as sub-
optimal. We present new connections between planning and
operations research and, using this framework, we address
this issue of unnecessary computation by introducing an ef-
ficient version of constraint generation for SSPs. This tech-
nique allows algorithms to ignore sub-optimal actions and
avoid computing their costs-to-go. We also apply our novel
technique to iLAO∗ resulting in a new algorithm, CG-iLAO∗.
Our experiments show that CG-iLAO∗ ignores up to 57% of
iLAO∗’s actions and it solves problems up to 8× and 3×
faster than LRTDP and iLAO∗.

1 Introduction
Planning is an important facet of AI that gives efficient al-
gorithms for solving current real-world problems. Stochas-
tic Shortest Path problems (SSPs) (Bertsekas and Tsitsik-
lis 1991) generalise classical (deterministic) planning by in-
troducing actions with probabilistic effects, which lets us
model problems where the actions are intrinsically proba-
bilistic. Value Iteration (VI) (Bellman 1957) is a dynamic
programming algorithm that forms the basis of optimal al-
gorithms for solving SSPs. VI finds the cost-to-go for each
state, which describes the solution of an SSP. A state s’s
cost-to-go is the minimum expected cost of reaching a goal
from s, and similarly a action a’s cost-to-go is the minimum
after applying a. VI finds the optimal cost-to-go by itera-
tively applying Bellman backups, which update each state’s
cost-to-go with the minimal outgoing action’s cost-to-go.

LRTDP (Bonet and Geffner 2003) and iLAO∗ (Hansen
and Zilberstein 2001), the state-of-the-art algorithms for
optimally solving SSPs, build on VI and offer significant
speedup by using heuristics to apply Bellman backups only
to promising states and pruning states that are deemed too
expensive. A shortcoming of such algorithms is that each
Bellman backup must consider all applicable actions. For
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instance, let s and a be a state and an applicable action, even
if all successors of a will be pruned because they are too ex-
pensive, a Bellman backup on s still computes the Q-value
of a, so these algorithms can prune unpromising states but
not actions. This issue is compounded because algorithms
for SSPs require arbitrarily many Bellman backups on each
state s to find the optimal solution, thus wasting time on
computing Q-values for such actions many times.

This issue of computing unnecessary Q-values for a state
s is addressed by action elimination (Bertsekas 1995), which
can be implemented in search algorithms to prune useless
actions. Action elimination looks for pairs (a, â) of applica-
ble actions in a state, such that a lower bound on â’s cost-to-
go exceeds an upper bound on a’s cost-to-go, in which case â
is proved to be a useless action and can be pruned. Although
domain-independent lower bounds (heuristics) can be com-
puted efficiently, finding an efficient, domain-independent
upper bound remains an open question to the best of our
knowledge. This gap has limited the use of action elimina-
tion in domain-independent planning. In the context of op-
timal heuristic planning for SSPs, the only algorithm we
are aware of that utilises action elimination to prune ac-
tions is FTVI (Dai, Weld et al. 2009). Other algorithms,
such as BRTDP (McMahan, Likhachev, and Gordon 2005),
FRTDP (Smith and Simmons 2006) and VPI-RTDP (San-
ner et al. 2009), use upper bounds in conjunction with lower
bounds to guide their search. However, unlike FTVI, they do
not perform action elimination.

We present a general technique for ignoring actions that
does not rely on upper bounds. In contrast to action elimina-
tion that incrementally prunes useless actions, our approach
initially treats all actions as inactive, i.e., not contributing
to the solution. It then iteratively adds actions to the search
that are guaranteed to improve the current solution. To de-
velop our approach, we strengthen the connections between
planning and operations research by relating heuristic search
to variable and constraint generation. Similar to heuristic
search, variable and constraint generation enable the solving
of large Linear Programs (LPs) by considering only a subset
of variables and constraints. We show that algorithms such
as iLAO∗ implicitly perform constraint generation, albeit in
a trivial manner, to the LP encoding of VI. Building on this,
we introduce an efficient algorithm for constraint generation
for SSPs that leads to inactive actions being ignored. We ap-



ply our approach to iLAO∗ to get the novel algorithm: CG-
iLAO∗.

In our experiments, CG-iLAO∗ solves problems up to 8×
and 3× faster than LRTDP and iLAO∗, respectively. CG-
iLAO∗ is faster than the others over various problem difficul-
ties: its improvement is apparent from problems that require
only 4 minutes to solve, and the improvement gap increases
as problems take longer to solve. To explain this, we quan-
tify that CG-iLAO∗ only considers 43–65% of iLAO∗’s total
actions thus fewer actions’ costs-to-go are computed. Inves-
tigating further, we empirically show that CG-iLAO∗ com-
bines iLAO∗’s efficient use of backups and LRTDP’s strong
pruning capability, thereby displaying the best characteris-
tics of both in a single algorithm.

The structure of this paper is as follows: we first introduce
the background for SSPs and existing methods for solving
SSPs. Second, we give a brief background to linear pro-
gramming and connect linear programming techniques to
heuristic search. Then we explain and motivate our novel
algorithm CG-iLAO∗ and prove its correctness. Finally, we
empirically evaluate the performance of CG-iLAO∗.

2 Background
A Stochastic Shortest Path problem (SSP) (Bertsekas and
Tsitsiklis 1991) is a tuple ⟨S, s0,G,A, P, C⟩ where: S is a
finite set of states; s0 ∈ S is the initial state; G ⊂ S are the
goal states with G ̸= ∅; A is a finite set of actions and A(s) ⊆
A denotes the actions applicable in state s; P (s′|s, a) gives
the probability that applying action a in state s results in
state s′; C(s, a) ∈ R>0 is the cost of applying a in s.

The states immediately reachable by applying a to s are
called successors and are given by succ(s, a) := {s′ ∈ S :
P (s′|s, a) > 0}. A solution to an SSP is given by a map
π : S → A, called a policy. A policy π is closed w.r.t. s0 if
each state s that can be reached by following π from s0 is
either a goal or π is defined for s. A policy is proper w.r.t.
s0 if it reaches the goal with probability 1 from s0 and it
is improper otherwise. An optimal policy π∗ is any proper
policy that minimises the expected cost to reach the goal
from the initial state s0.

For simplicity, we make two standard assumptions: (i)
there exists at least one proper policy w.r.t. s0, this is called
the reachability assumption; and (ii) all improper policies
have infinite expected cost. A consequence of assumption
(ii) is that A(s) ̸= ∅ for all S \ G. Note that we de-
fine C to be strictly positive in order to avoid zero-cost
cycles that would violate assumption (ii). In our experi-
ments, we relax the reachability assumption by applying the
fixed-penalty transformation of SSPs (Trevizan, Teichteil-
Königsbuch, and Thiébaux 2017) resulting in a new SSP
without dead ends. Other approaches for handling SSPs
such as S3P (Teichteil-Königsbuch 2012) are also compati-
ble with our approach.

An SSP’s optimal solution is uniquely represented by the
optimal value function V ∗, which is the unique fixed-point
solution to the Bellman equations:

V (s) =

{
0 if s ∈ G

mina∈A(s) Q(s, a) otherwise
∀s ∈ S (1)

where Q(s, a) := C(s, a) +
∑

s′∈A(a) P (s′|s, a)V (s) is
known as the Q-value of s and a. A (optimal) value func-
tion V (s) and the associated Q-value Q(s, a) represent the
(minimum) expected cost to reach the goal from state s and
after executing action a on state s, respectively. Given a
value function V , the policy associated with it is defined
as πV (s) := argmina∈A(s) Q(s, a) and is known as the
greedy policy for V . Ties can be broken arbitrarily thanks
to assumption (ii), and for simplicity we assume some tie-
breaking rules that ensure the greedy policy is unique.

The Bellman equations (1) can be iteratively solved by
Value Iteration (VI) (Bellman 1957): VI starts with an
arbitrary value function V 0 and computes V t+1(s) :=
mina∈A(s) Q(s, a) over all states, where Q(s, a) uses the
previous value function V t. This process of computing
V t+1(s) using V t is called a Bellman backup. VI is guar-
anteed to asymptotically converge to V ∗ regardless of V 0.
For practical reasons, VI is terminated at iteration t when the
Bellman residual RES(s) := |V t(s)−mina∈A(s) Q(s, a)| is
less than or equal to ϵ ∈ R>0 for all s ∈ S.

Given a policy π, its policy envelope Sπ ⊆ S is the set
of all reachable states when following π from s0. Note that
VI explores the complete state space S regardless of the opti-
mal policy envelope Sπ∗’s size. To address this shortcoming,
heuristic search algorithms such as iLAO∗ (Hansen and Zil-
berstein 2001) and LRTDP (Bonet and Geffner 2003) use
a heuristic function H to initialise V 0, which guides the
exploration of the state space S in a way that expands as
few states as possible. To find V ∗, heuristic search algo-
rithms require the heuristic to be admissible, that is, H(s) ≤
V ∗(s) ∀s ∈ S. Often heuristics are also monotonic, which
immediately implies admissibility. A value function V is
monotonic if V (s) ≤ mina∈A(s) Q(s, a) ∀s ∈ S, and
the definition is analogous for H . Similar to VI, heuristic
search algorithms converge to V ∗ asymptotically and re-
quire a practical stop criterion. This stop criterion is known
as ϵ-consistency (Bonet and Geffner 2003) and is defined as:
Definition 1 (ϵ-consistency). A value function V is
ϵ-consistent if RES(s) ≤ ϵ ∀s ∈ SπV .
Notice that ϵ-consistency checks the residual only on the
policy envelope of a greedy policy and states outside the en-
velope are permitted to have a residual larger than ϵ.

We close this section by reviewing iLAO∗ (Hansen and
Zilberstein 2001). iLAO∗ (alg. 1) is an iterative algorithm
which works by incrementally growing a partial SSP:1

Definition 2 (Partial SSP). Given an SSP ⟨S, s0,G,A, P, C⟩
and a heuristic H , a partial SSP Ŝ is an SSP with terminal
costs defined by Ŝ = ⟨Ŝ, s0, Ĝ, Â, P, C,H⟩ with Ŝ ⊆ S, Ĝ ⊂
Ŝ,G ∩ Ŝ ⊆ Ĝ, Â(s) ⊆ A(s) ∀s ∈ Ŝ and terminal cost H .

SSPs with terminal costs have a one-time terminal cost
of H(ĝ) that is incurred when ĝ ∈ Ĝ is reached, so their
Bellman equations are (1) with the goal case replaced by
V (ĝ) = H(ĝ) for all ĝ ∈ Ĝ. It is trivial to see that SSPs
with terminal costs are equivalent to SSPs, and we use them
to simplify our presentation. In a partial SSP Ŝ, we refer to

1Called the explicit graph in the original paper.



Algorithm 1: iLAO∗

1 Function iLAO∗ (S, H, ϵ)

2 Ŝ← partial SSP ⟨{s0}, s0, {s0}, ∅, P, C,H⟩
3 V ← Value Function initialised by H
4 repeat
5 E ← post-order DFS traversal of π̂V from s0

6 Ŝ← EXPAND-FRINGES(S, Ŝ, E)
7 F← Sπ̂V ∩ (Ĝ \ G)
8 V, RES, π̂old ← BACKUPS(Ŝ, E , V,F)
9 until F = ∅ and π̂old = π̂V and RES < ϵ

10 return V

11 Function EXPAND-FRINGES(S, Ŝ, E)
12 for sf ∈ E ∩ (Ĝ \ G) do
13 Ĝ← Ĝ \ {sf}
14 ADD-ACTIONS(S, Ŝ, sf ,A(sf ))

15 return Ŝ

16 Function ADD-ACTIONS(S, Ŝ, s,A′)

17 Â(s)← Â(s) ∪ A′

18 for a ∈ A′ do
19 Ĝ← Ĝ ∪ (succ(s, a) \ Ŝ)
20 Ŝ← Ŝ ∪ succ(s, a)

21 Function BACKUPS(Ŝ, E , V,F)
22 π̂old ← π̂V

23 repeat
24 RES ← 0

25 for s ∈ E \ Ĝ do
26 Qmin ← mina∈Â(s) Q(s, a)

27 RES ← max(|V (s)−Qmin|, RES)
28 V (s)← Qmin

29 until RES < ϵ or π̂V ̸= π̂old or F ̸= ∅
30 return V, RES, π̂old

states in Ĝ \G as artificial goals, and we define π̂V to be the
greedy policy over V restricted to Ŝ \ Ĝ.

At each iteration, iLAO∗ expands its partial SSP Ŝ by
expanding the artificial goals reachable by π̂V into regular
states. To expand ĝ ∈ Ĝ \ G, iLAO∗ adds ĝ’s applicable ac-
tions to Ŝ and adds new reachable states as artificial goals
(alg. 1 line 6). This artificial goal expansion is done to make
π̂V eventually closed w.r.t. s0 for the original SSP S. Simul-
taneously, iLAO∗ also works towards making V ϵ-consistent
by applying a Bellman backup to all the states reachable by
π̂V (alg. 1 line 8). These Bellman backups are ordered by a
post-order DFS traversal of π̂V , so states that occur closer
to artificial goals are updated first, and s0 is updated last.
Note that, when a state is expanded, it may have a successor
s already within the partial SSP. If this happens, the DFS in
alg. 1 line 5 must keep traversing π̂V from s to ensure the
policy envelope E is accurate.

In the next section, we show how to interpret iLAO∗

through the lens of Operations Research by relating it to
techniques used for handling large linear programs.

3 iLAO∗ as Linear Program
SSPs can be solved by the Linear Program (LP) presented
in LP 1. This LP is known as the primal LP or VI LP since
it directly encodes the Bellman equations.

max
V

Vs0 (LP 1)

s.t. Vs ≤ C(s, a) +
∑
s′∈S

P (s′|s, a)Vs′ ∀s ∈ S\G, a∈A(s) (C1)

Vg ≤ 0 ∀g ∈ G (C2)

Each variable Vs ∈ V represents V (s), and for each state
s ∈ S \ G the relevant constraints C1 encode V (s) ≤
mina∈A(s) Q(s, a). When clear from context, we use V (s) to
represent Vs, and Q(s, a) for the right-hand side of s and a’s
constraint C1. Together with the objective that maximises
V (s0), we obtain the Bellman equations (1) for the states
in the optimal policy envelope Sπ∗, i.e., the constraints are
active (tight) for the pairs (s, π∗(s)) for all s ∈ Sπ∗ and inac-
tive (slack) everywhere else. We reframe iLAO∗’s incremen-
tal growing of its partial SSP as solving LP 1 with variable
and constraint generation (Bertsimas and Tsitsiklis 1997).2

Variable generation is a technique from Operations Re-
search that enables us to solve LPs with a large number of
variables by considering only a subset of variables. Given an
LP with missing variables called the Reduced Master Prob-
lem (RMP), variable generation finds a set of variables out-
side the RMP whose addition lets the RMP’s solution quality
improve. Variable generation provides a sound and complete
method to select such variables and a stop criterion that en-
sures the optimal solution for the RMP is also optimal for the
original LP. Heuristic search algorithms, such as iLAO∗, can
be seen as a variable generation algorithm over LP 1, where
each of its partial SSPs represents an RMP with the subset
of variables {Vs : s ∈ Ŝ}. For iLAO∗, the variable selec-
tion mechanism is inherited from A∗ and is represented by
the expansion of the artificial goals reachable by π̂V (alg. 1
lines 12 to 15): for all sf ∈ Sπ̂V ∩ (Ĝ \ G) and a ∈ A(sf ),
we add the variables Vs such that s ∈ succ(sf , a) and s ̸∈ Ŝ.

Constraint generation is a similar technique which enables
the solving of LPs with a large (potentially infinite) number
of constraints. The key idea is that the optimal solution of
an LP with many constraints only makes a small number of
constraints active, thus only a subset of constraints is needed
to characterise this optimal solution. In constraint genera-
tion, the intermediate LPs are known as relaxed LPs since
they relax the original LP by removing one or more con-
straints. Given a relaxed LP, constraint generation finds one
or more constraints in the original LP that are violated by
the optimal solution of the relaxed LP. By iteratively adding
these violated constraints and re-optimising the new relaxed
LP, a sequence of relaxed LPs with an increasing number of
constraints is generated. When no violations are found, the
optimal solution of the relaxed LP is an optimal solution for
the original LP. The algorithm used to check constraint vio-
lations is called a separation oracle and the effectiveness of

2Variable generation is also known as column generation and
constraint generation is also known as the cutting plane method.



constraint generation relies on the availability of an efficient
separation oracle for the original LP.

In the case of iLAO∗, constraint generation adds all the
actions of the expanded artificial goal (alg. 1 line 14) where
each action a ∈ A(sf ) added to the partial SSP implicitly
represents the constraint V (sf ) ≤ Q(sf , a). This separa-
tion oracle is computationally cheap since no checks are per-
formed to detect if this new constraint is needed or not, at the
cost that inactive constraints are unnecessarily added to the
partial SSP. In the next section, we present our new algo-
rithm that uses an efficient separation oracle that only adds
violated constraints.

4 CG-iLAO∗

In iLAO∗, as most search algorithms, each state is either un-
expanded or fully expanded, i.e., either none or all of its
applicable actions are considered and it is not possible to
ignore just a subset of the applicable actions. We start by
defining which actions can be safely ignored in a partial SSP.

Definition 3 (Inactive Action). Consider an SSP S, its par-
tial SSP Ŝ, a value function V , and a state s ∈ Ŝ. An action
a ∈ A(s) \ Â(s) is inactive in state s if V (s) < Q(s, a).

An inactive action a ∈ A(s) \ Â(s) for s ∈ Ŝ represents
the inactive constraint C1 for s and a in LP 1. Since inactive
actions are not in the partial SSP and their associated con-
straints are inactive, adding them to the partial SSP does not
change the solution and only adds overhead in the form of
Q-value computation for sub-optimal actions.

We generalise iLAO∗ by allowing states to be partially
expanded, so these states only have a subset of actions avail-
able in the partial SSP. Under the lens of linear program-
ming, we use constraint generation to identify and add ac-
tions that may be needed to encode the optimal solution and
to ignore inactive actions. We call this algorithm Constraint-
Generation iLAO∗ (CG-iLAO∗).

CG-iLAO∗ is presented in alg. 2. One of the defining
changes from iLAO∗ is in CG-iLAO∗’s expanding phase
(alg. 2 line 6) where PARTLY-EXPAND-FRINGES only ex-
pands a state with the greedy actions on V , rather than all the
applicable actions. This introduces two challenges: (i) ac-
tions that were not added by the partial expansion may need
to be added later when V is more accurate; and (ii) when we
add such actions, V must be updated to reflect a’s availabil-
ity. If (ii) is not addressed, the reduction to V offered by a
is not propagated, potentially leading to a suboptimal solu-
tion since V would overestimate V ∗. The key insight of our
algorithm is that both of these challenges are instances of
constraint violation. Thus, we can solve both issues by find-
ing which constraints are violated with a separation oracle
and enforcing them in the style of constraint generation.

The trivial separation oracle checks all constraints (s, a)

for s ∈ Ŝ and a ∈ A(s) for violations; this is needlessly
expensive since some non-violated constraints remain non-
violated from one iteration to the next. Our separation or-
acle exploits this persistence between iterations by track-
ing changes in V to compute a subset of constraints which
could potentially be violated by the following rules (alg. 2

Algorithm 2: CG-iLAO∗

1 Function CG-iLAO∗ (S, H, ϵ)

2 Ŝ← partial SSP ⟨{s0}, s0, {s0}, ∅, P, C,H⟩
3 V ← value function initialised by H
4 repeat
5 E ← post-order DFS traversal of π̂V from s0

6 Ŝ← PARTLY-EXPAND-FRINGES(S, Ŝ, E , V )

7 F← Sπ̂V ∩ (Ĝ \ G)
8 V, RES, π̂old,Γ← CG-BACKUPS(S, Ŝ, E , V,F,Γ)
9 V, RES,Γ, Ŝ← FIX-CONSTRS(S, Ŝ, V,Γ, RES)

10 until F = ∅ and π̂old = π̂V and RES ≤ ϵ
11 return V

12 Function PARTLY-EXPAND-FRINGES(S, Ŝ, E , V )

13 for sf ∈ E ∩ (Ĝ \ G) do
14 Ĝ← Ĝ \ {sf}
15 Qmin ← mina∈A(sf ) Q(sf , a)

16 A′ ← {a ∈ A(sf )|Q(sf , a) = Qmin}
17 ADD-ACTIONS(S, Ŝ, sf ,A′)

18 return Ŝ

19 Function CG-BACKUPS(S, Ŝ, E , V,F,Γ)
20 π̂old ← π̂V

21 repeat
22 RES ← 0

23 for s ∈ E \ Ĝ do
24 Qmin ← mina∈Â(s) Q(s, a)

25 if Qmin − V (s) > ϵ then
26 Γ← Γ ∪ EXT-SUCCS(s, S, Ŝ)
27 else if V (s)−Qmin > ϵ then
28 Γ← Γ ∪ PREDS(s, S)
29 RES ← max(|V (s)−Qmin|, RES)
30 V (s)← Qmin

31 until RES ≤ ϵ or π̂V ̸= π̂old or F ̸= ∅
32 return V, RES, π̂old,Γ

33 Function FIX-CONSTRS(S, Ŝ, V,Γ, RES)
34 Γ′ ← ∅
35 for (s, a) ∈ Γ s.t. V (s) > Q(s, a) + ϵ do
36 if a ̸∈ Â(s) then
37 Â(s)← Â(s) ∪ {a}
38 Ĝ← Ĝ ∪ (succ(s, a) \ Ŝ)
39 Ŝ← Ŝ ∪ succ(s, a)

40 RES ← max(V (s)−Q(s, a), RES)
41 V (s)← Q(s, a)
42 Γ′ ← Γ′ ∪ PREDS(s, S)

43 return V, RES,Γ′, Ŝ

lines 25 to 28 and line 42): suppose V (s) is assigned
mina∈Â(s) Q(s, a), then there are three cases:

1. V (s) stays the same. No new constraint violations.

2. V (s) increases. The constraints V (s) ≤ Q(s, a′)

may be violated for (s, a′) ∈ EXT-SUCCS(s,S, Ŝ) :=

{(s, a) : a ∈ A(s) \ Â(s)}. Note that if (s, a′) is already
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Figure 1: An SSP where CG-iLAO∗’s value function is not
monotonically non-decreasing.

inside Ŝ, i.e., a′ ∈ Â(s), its constraint can not be violated
since V (s)← mina∈Â(s) Q(s, a) ≤ Q(s, a′).

3. V (s) decreases. The only constraints that may be
violated are V (s′) ≤ Q(s′, a′) for (s′, a′) ∈
PREDS(s,S) := {(s′, a′) : s ∈ succ(s′, a′), a′ ∈ A(s′)}.

We store potential violations in Γ, i.e., if V (s) in-
creases, the elements of EXT-SUCCS(s,S, Ŝ) are added to
Γ (alg. 2 line 26); and if V (s) decreases, the elements of
PREDS(s,S) are added to Γ (alg. 2 line 28). Elements are
removed from Γ after they are checked. As we prove later
in this section, checking constraints in Γ is sufficient to find
any constraint violations.

CG-iLAO∗ fixes a violated constraint (s, a) by setting
V (s)← Q(s, a) (alg. 2 line 41). This change in V may cre-
ate a new violation in another state, so we must track such
potential violations in the same way as before. This ensures
that all constraint violations are tracked and fixed eventually
before termination.

Note that V (s) may decrease after an update (case 3 of
the constraint violations) in CG-iLAO∗ even if the heuristic
used is monotonic. This is a departure from all other algo-
rithms based on Bellman backups where V is guaranteed
to be monotonically non-decreasing during their executions
when initialised with a monotonic heuristic. To illustrate a
scenario where V decreases in CG-iLAO∗, consider the SSP
in fig. 1 where H is monotonic and represented inside nodes.
The first iterations of CG-iLAO∗ applied to this SSP are:
Iter. 1 expands s0.
Iter. 2 partly expands s1 with a1.
Iter. 3 expands s2 with a2 and, after CG-BACKUPS, we

have V (s2) = 3, V (s1) = 4, V (s0) = 5 and
Γ = {(s1, a′1)}. Since Γ ̸= ∅, FIX-CONSTRS veri-
fies that (s1, a′1) is currently better than the existing
action a1 for s1, so a′1 is added to Â(s1) and V (s1) is
changed from 4 to 3. Recall that V (s0) = 5, so when
V (s1) is updated to 3, {s0, a0} is inserted into Γ, and
no further changes are made in this iteration.

Iter. 4 expands s3 and CG-BACKUPS reduces V (s0) from
5 to 4, so V has been decreased by CG-BACKUPS.

CG-iLAO∗ generalises iLAO∗ by using a more precise
separation oracle that only adds violated constraints, which
translates to CG-iLAO∗ ignoring inactive actions. For a state
s, any action that has been ignored and left out of the par-
tial SSP Ŝ is not considered by a Bellman backup of s in Ŝ,
so such actions’ Q-values are not computed. However, CG-
iLAO∗ needs to compute additional Q-values in its separa-
tion oracle to check violations. As our experiments in sec-
tion 5 show, the Q-values saved by ignoring inactive actions

outweigh the additional Q-values in the separation oracle,
which lets CG-iLAO∗ outperform iLAO∗.

To close the section, we prove that CG-iLAO∗: (i) termi-
nates (thm. 1); (ii) tracks all constraint violations (lem. 1);
and (iii) returns an ϵ-consistent value function (thm. 2).
Thus, CG-iLAO∗ is optimal for SSPs.

Theorem 1. CG-iLAO∗ terminates.

Proof. For contradiction, suppose CG-iLAO∗ does not ter-
minate. S is finite and we do not add duplicate states nor
constraints, so eventually Ŝ is fixed and F = ∅. Then there
must be a finite set of states X ⊆ Ŝ that are updated with
Bellman backups infinitely often by CG-BACKUPS and/or
FIX-CONSTRS. But X induces a new partial SSP, and apply-
ing Bellman backups infinitely often to all X solves this new
partial SSP with VI, so V must converge to a fixed point and
the residual will be less than ϵ in finite time. Thus, V will not
be updated, and all remaining termination conditions will be
satisfied, giving us the desired contradiction.

Lemma 1. If there is s ∈ Ŝ \ Ĝ and a ∈ A(s) such that
V (s) > Q(s, a) + ϵ, then (s, a) ∈ Γ.

Proof. We prove by induction over n, the number of updates
to V . In the base case, n = 0, Ŝ is the initial partial SSP
with Ŝ \ Ĝ = ∅, so the claim is vacuously true. Now, we
show the claim holds after n + 1 updates to V , assuming
that the claim holds for n updates. Any violations must have
been introduced in the latest update to V by CG-BACKUPS
or FIX-CONSTRS, but we add any potential violations to Γ
in alg. 2 lines 25 to 28 and line 42 respectively.

Theorem 2. CG-iLAO∗ outputs an ϵ-consistent V .

Proof. For contradiction, suppose CG-iLAO∗ has termi-
nated and outputs V with s ∈ Sπ̂V such that RES(s) > ϵ.
By CG-iLAO∗’s termination condition (alg. 2 line 10) we
know that π̂V = π̂old and F = ∅, so CG-BACKUPS ap-
plies Bellman backups to all states in the envelope until
RES ≤ ϵ (alg. 2 line 31). Therefore, the inconsistency of
s must be introduced by FIX-CONSTRS, either directly by
updating V , or indirectly by forcing a policy change. But
the residual is tracked (alg. 2 line 40) and policy changes
are flagged when π̂V ̸= π̂old, which are both checked in
the termination condition. So, FIX-CONSTRS can not intro-
duce any inconsistency either. But these two methods are
the only ones affecting V , which yields the desired con-
tradiction. This proves ϵ-consistency (defn. 1), but previous
heuristic search methods rely on the invariant V ≤ V ∗ to
safely prune states that can not be part of an optimal policy’s
envelope, which CG-iLAO∗ does not have. We must ensure
that states s outside the policy envelope with V (s) > V ∗(s)
can not lead to a cheaper policy if we apply more Bell-
man backups to them. Consider such s outside the greedy
policy envelope with V (s) > V ∗(s), and for contradiction
let V (s) > Q(s, a) + ϵ for some a ∈ A(s). Since states
in Ĝ are initialised with an admissible H , we know that
s ∈ Ŝ \ Ĝ, so (s, a) ∈ Γ by lem. 1. Since FIX-CONSTRS
overwrites Γ, (s, a) must have been added in the previous
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Figure 2: Triangle Tire World problems 1 (left) and 2 (right).

call, but then RES ← max(V (s)−Q(s, a), RES) > ϵ (alg. 2
line 40), so the termination criteria (alg. 2 line 10) are not
satisfied, giving us a contradiction. Therefore, all inadmissi-
ble states s satisfy V (s) ≤ Q(s, a) + ϵ. Thus, if CG-iLAO∗

terminates with RES ≤ ϵ, additional backups to states with
V (s) > V ∗(s) would not change V , so we can conclude
that CG-iLAO∗ outputs ϵ-consistent V .

5 Experiments
In this section we empirically compare CG-iLAO∗ to
two state-of-the-art optimal heuristic search planners:
iLAO∗ (Hansen and Zilberstein 2001) and LRTDP (Bonet
and Geffner 2003). We also compared CG-iLAO∗ against
FTVI (Dai, Weld et al. 2009), the only algorithm we are
aware of that uses action elimination to prune actions, but
it is uncompetitive and FTVI’s results are reported in the
technical report (Schmalz and Trevizan 2023). We con-
sider the following admissible heuristics: h-max (hmax);
lm-cut (hlmc) (Helmert and Domshlak 2009); and h-roc
(hroc) (Trevizan, Thiébaux, and Haslum 2017). As in (Tre-
vizan, Thiébaux, and Haslum 2017), we use hroc with hmax

as a dead-end detection mechanism for problems with dead
ends. We use ϵ = 0.0001 and convert SSPs into dead-end
free SSPs (Trevizan, Teichteil-Königsbuch, and Thiébaux
2017) with a penalty of D = 500 for all domains except
Parc Printer variants where D = 107 due to the large cost
of single actions.

On all problems, we collected 50 runs with different ran-
dom seeds for each combination of planner and heuristic.
We refer to a problem paired with a fixed seed as an instance.
All runs have a cutoff of 30 minutes of CPU time and 8GB
of memory. The experiments were conducted in a cluster of
Intel Xeon 3.2 GHz CPUs and each run used a single CPU
core. The LP solver used for computing hroc was CPLEX
version 20.1. We consider the following domains:

Triangle Tire World with Head-start (TW) In the origi-
nal Triangle Tire World domain (Little, Thiebaux et al. 2007;
Buffet 2008), the agent is provided a map of locations in
a triangular layout with corners A,B,C, as in fig. 2. The
agent’s task is to travel from corner A to C, but it gets a flat
tyre with probability 0.5 every time it moves. Once the car
gets a flat tyre, it must change the tyre if a spare is available,
otherwise no action is available and the goal is no longer
reachable. The agent can only store one spare at a time, and
it can only obtain spare tyres in select locations (circles in
fig. 2). A shortcoming of this domain is that its difficulty
scales exponentially, so it may be easy to solve problem n

and impractical for n + 1. For this reason we extend the
domain by allowing the agent a head-start, that is, its start-
ing location may be anywhere along the edge AB, for in-
stance, on problem 2 these are locations 1-1, 2-1, . . . , 5-1
(fig. 2 (right)). Let TW(n, d) denote an instance of Trian-
gle Tire World with Head-start where n is the problem size
and d denotes the distance between the agent’s starting lo-
cation and corner B. When d = 2n, we obtain the origi-
nal problem of size n and reducing d makes the problem
easier until we reach d = 1, the easiest variant. Experi-
ments using LRTDP and hroc suggest the following relation
in terms of CPU time: TW(n+ 1, 2n− 3) ≤ TW(n, 2n) ≤
TW(n+ 1, 2n− 2). Therefore, for each size n, we consider
5 problems: TW(n, 2n− 4), . . . ,TW(n, 2n).

Probabilistic Blocks World (BW) (Buffet 2008) As in
the deterministic Blocks World from IPC, the agent is tasked
with arranging blocks on a table into a particular configura-
tion with actions to pick up blocks, put them down, or stack
them. The probabilistic version adds a 0.25 probability to
each action that the handled block falls onto the table. Fur-
thermore, actions are added that allow the agent to pick up,
put down, and stack a tower of three blocks; these have 0.9
probability of the whole tower falling onto the table.

Exploding Blocks World (ExBW) (Buffet 2008) An-
other variation for the deterministic Blocks World but this
time each block is rigged with an explosive that can detonate
once and destroy the table or block immediately underneath
it. When a block is placed on the table or another block, it
detonates with probability 0.4 and 0.1 respectively. Once the
table or a block has been destroyed, the agent can not inter-
act with them anymore; therefore, if they are not in their goal
position, the goal will be unreachable.

Probabilistic PARC Printer (PARC) (Trevizan,
Thiébaux, and Haslum 2017) This domain is a proba-
bilistic extension of the PARC Printer domain from IPC. It
models a modular printer consisting of various components
and each page scheduled for printing needs to pass through
multiple components in a particular order. The goal is to
optimise how each page is directed through the different
components to satisfy the printing requirements. With
probability 0.1, a component jams ruining the relevant page
and forcing it to be reprinted. The domain comes in two
flavours: with repair (PARC-R), where jammed components
can be repaired and then used again; and without repair
(PARC-N), where jammed components remain unusable.

Our code and benchmarks are available at Schmalz and
Trevizan (2023). We now present a summary of our findings.

What is the best planner and heuristic combination? A
common metric to evaluate planners is coverage, i.e., the to-
tal number of instances solved in a given amount of time,
thus larger coverage is better. Fig. 3 (left) shows the cov-
erage of each combination of planner and heuristic as a
function of time. The top three combinations and their to-
tal coverages are CG-iLAO∗

roc (1300), LRTDProc (1202), and
iLAO∗

roc (1200). Note that CG-iLAO∗
roc and LRTDProc al-

ternate in the top spot up to 220 seconds and CG-iLAO∗
roc
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Figure 4: Cumulative plot of state density, i.e., |Â(s)|/|A(s)| over 50 instances for the largest solved problem per domain.

has the best coverage after that until the experiment cut-
off. Moreover, from 300 seconds onwards, CG-iLAO∗

roc’s
lead varies from 50 to 243 instances. We present a break-
down of coverage per domain in tab. 1 (top). For each do-
main considered, CG-iLAO∗

roc reaches the highest coverage
over other planners and heuristics. For all three heuristics
considered, CG-iLAO∗ also obtain the highest coverage in
all domains against the other planners for the same heuris-
tic. In tab. 1 (bottom), we present the minimum and maxi-
mum speedup per domain of CG-iLAO∗ over the other plan-
ners for hroc. The speedups w.r.t. iLAO∗

roc vary from 0.9×
(i.e., 11% slower) in the largest PARC-R problem and 3×
in problem #9 of ExBW. Against LRTDProc, the speedups
vary from 0.9× in problem #8 of ExBW to 8.4× in PARC-
N problem s4-c3. For the performance of each planner and
heuristic per problem, see the technical report in Schmalz
and Trevizan (2023).

How many actions can CG-iLAO∗ ignore? To answer
this question, we look at the density of states s, defined as
|Â(s)|/|A(s)|, in the final partial SSP of CG-iLAO∗

roc. Fig. 4
shows, for each domain, the cumulative plot of density, i.e.,
how many states contain up to and including a given pro-
portion of their applicable actions. In all instances, at least
one third of the states contains at most 50% of the applica-
ble actions. The density is high for TW because many states
only have one applicable action. The density is also high for
ExBW because heuristics are comparatively weak for this
domain. For the other domains the results are much stronger:
between 56% and 75% of states contain at most 50% of the
actions. Overall, CG-iLAO∗

roc added between 38% and 66%
of all possible actions in its own partial SSP, and added be-
tween 43% and 65% of iLAO∗’s actions.

Coverage per Domain
BW ExBW PARC-N PARC-R TW Total

Num. of instances 300 250 300 250 200 1300

hroc CG-iLAO∗ 300 250 300 250 200 1300
iLAO∗ 300 200 300 250 150 1200
LRTDP 257 250 300 200 195 1202

hlmc CG-iLAO∗ 150 250 300 200 150 1030
iLAO∗ 150 200 300 200 140 990
LRTDP 0 200 300 50 149 699

hmax CG-iLAO∗ 150 200 150 0 161 661
iLAO∗ 150 150 150 0 150 600
LRTDP 150 200 150 0 150 650

CG-iLAO∗
roc Speed-Up

BW ExBW PARC-R PARC-N TW

iLAO∗
roc 1.1–1.4 1.0–3.0 0.9–1.3 1.3–2.2 1.4–1.6

LRTDProc 1.3–2.0 0.9–2.9 2.0–8.4 0.7–0.9 1.2–1.6

Table 1: Coverage per domain (top). Best coverage for
each domain (column) in bold. CG-iLAO∗

roc’s speed-up over
iLAO∗

roc and LRTDProc (bottom). The speed-ups only con-
sider problems solved by both algorithms.

Are Q-values being saved? CG-iLAO∗ can save Q-value
computations by ignoring inactive actions, but at the cost
of computing additional Q-values in its separation oracle.
The cumulative plot over Q-values in fig. 3 (right) shows
that the savings in Q-values outweigh the overhead, i.e.,
given a budget in Q-values computations, CG-iLAO∗ is ca-
pable of solving more instances than the other planners for
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the same heuristic. At their maximum coverage, iLAO∗
roc

and LRTDProc use 4× and 10× more Q-values than CG-
iLAO∗

roc, respectively. Moreover, CG-iLAO∗
roc reaches its

maximum coverage of 1300 using 1.64×108 Q-values while
iLAO∗

roc and LRTDProc only solve 1149 and 1052 instances,
respectively, for the same number of Q-values. A similar
trend is observed when using hlmc; however, when using
hmax, the least informative heuristic considered, LRTDPmax
is slightly more Q-value efficient than CG-iLAO∗

max.

What is the impact of the heuristic on CG-iLAO∗? Note
that, in fig. 3, as the heuristic becomes more informative, the
performance gains of CG-iLAO∗ over iLAO∗ and LRTDP
increases. To explore this trend, we use the heuristic hpert

w (s)
defined for w ∈ [0, 1] as V ∗(s) · r where r is a uniform ran-
domly selected number from (w, 1], which lets us quantify
how informative a heuristic is (on average) with w. The ran-
domness in the weight w ensures that the ordering of states
induced by hpert

w is different from the one induced by V ∗.
Due to the high cost of computing V ∗ we only consider the
smallest problems of BW, ExBW, PARC-N, and TW. Over
these problems and 50 instances each, fig. 5 shows the mean
search time and 95% C.I. as w varies over 0.1, 0.2, . . . , 0.9.
Search time excludes time spent computing the heuristic.
The ratio between CG-iLAO∗’s and iLAO∗’s runtime sup-
ports that CG-iLAO∗ scales better with better heuristics:
the ratio starts at 86% and decreases to 49% and 46% for
w = 0.5 and w = 0.9 respectively. The reason for this be-
haviour is that good heuristics (i.e., tighter lower bounds)
prevent CG-iLAO∗ from adding inactive actions to its par-
tial SSP, resulting in more savings in Q-value computation.
Note that, for all values of w, there is no statistically signif-
icant difference between CG-iLAO∗ and LRTDP, but both
offer substantial improvement over iLAO∗. This suggests
LRTDP’s sampling approach can more efficiently leverage
the information provided the heuristics than iLAO∗ and
CG-iLAO∗ bridges the gap between them, allowing a non-
sampling-based planner to use the heuristics as effectively
as LRTDP.

6 Conclusion, Related and Future Work
Building on existing connections between operations re-
search and planning, we presented a new interpretation of

heuristic search on SSPs as solving LPs using variable and
constraint generation. We exploit this equivalence to intro-
duce a new and efficient separation oracle for SSPs, which
enables a search algorithm to selectively add actions when
they are deemed necessary to find the optimal solution. This
addresses the shortcoming of state-of-the-art algorithms that
add all applicable actions during state expansion, with no
mechanism for ignoring actions that will not contribute to
the solution. Using this principle, we generalised iLAO∗ into
a new optimal heuristic search algorithm CG-iLAO∗. Empir-
ical evaluation showed that CG-iLAO∗’s ability to consider a
subset of actions results in significant savings in the number
of Q-values computed, which in turn reduces the runtime of
the algorithm compared to the state-of-the-art.

Regarding related work, LP 1 has been approximated for
factored MDPs to get a more compact LP, called the ap-
proximate LP (ALP). Schuurmans and Patrascu (2001) ap-
ply constraint generation to the ALP; their separation oracle
has a similar condition for adding constraints as CG-iLAO∗;
however, it checks for the condition naively, which is only
practical on the compact ALP offered by factored MDPs,
and is infeasible for SSPs. Constraint generation lends itself
well to complex planning problems where a relaxation can
be efficiently solved and constraint violations by the relaxed
solution can be efficiently detected, e.g., in multiagent plan-
ning (Calliess and Roberts 2021) and metric hybrid factored
planning in nonlinear domains (Say and Sanner 2019). For
POMDPs, an LP with constraint generation can be used to
prune unneeded vectors from the set of vectors used to rep-
resent the value function (Walraven and Spaan 2017). In all
these works, the separation oracle either naively checks all
possible constraints or relies on sampling to find violations.

As future work, we aim to expand the application of
CG-iLAO∗ to more complex models that can benefit from
our iterative method of generating applicable actions. Mod-
els with imprecise parameters, such as MDPIPs and MDP-
STs (White III and Eldeib 1994; Trevizan, Cozman, and Bar-
ros 2007), are suitable candidates for our approach since
they have a minimax semantics for the Bellman equations.
In this minimax semantics, the value function minimises the
expected cost-to-go assuming that an adversary aims to max-
imise the cost-to-go by selecting the values of the imprecise
parameters. As a result, computing Q(s, a) in these models
requires solving a maximisation problem; therefore, ignor-
ing inactive actions could lead to significant improvements
in performance.

Other suitable models include SSPs with PLTL con-
straints (Baumgartner, Thiébaux, and Trevizan 2018; Mal-
let, Thiébaux, and Trevizan 2021) in which both the state
space and action space are augmented to keep track of con-
straint violations. In these models, the concept of inactive
actions can be extended to also prevent adding actions that
lead to constraint violations to their partial problems. The
methods presented in this paper may also be applicable to
model checking more broadly. In particular, there has been
work investigating how to use heuristics to guide the search
for probabilistic reachability (Brázdil et al. 2014), in which
action elimination is applicable.
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Křetı́nský, J.; Kwiatkowska, M.; Parker, D.; and Ujma, M.
2014. Verification of Markov Decision Processes Using
Learning Algorithms. In Automated Technology for Veri-
fication and Analysis.
Buffet, D. 2008. International Planning Competition Uncer-
tainty Part: Benchmarks and Results.
Calliess, J.-P.; and Roberts, S. 2021. Multi-Agent Planning
with Mixed-Integer Programming and Adaptive Interaction
Constraint Generation (Extended Abstract). Proc. of 14th
Symposium on Combinatorial Search (SoCS).
Dai, P.; Weld, D.; et al. 2009. Focused topological value
iteration. In Proc. of 19th Int. Conf. on Automated Planning
and Scheduling (ICAPS), volume 19, 82–89.
Hansen, E.; and Zilberstein, S. 2001. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
Proc. of 19th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS).
Little, I.; Thiebaux, S.; et al. 2007. Probabilistic planning
vs. replanning. In ICAPS Workshop on IPC: Past, Present
and Future.
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