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Abstract

Probabilistic planning problems describe systems where an agent must tra-
verse a set of states by selecting actions with stochastic outcomes. Stochastic
shortest path problems additionally have goal states that should be reached
with expected minimal cost. Some of the most successful approaches for
solving these problems convert the probabilistic problem into a deterministic
relaxation, and solve the determinisation with existing efficient deterministic
solvers. Due to this approximation, these algorithms can not give guarantees
of optimality, or even that following the solution will necessarily lead to a
goal.

Operations research has developed algorithms for dealing with large, complex
problems with mathematical guarantees. In particular, the column genera-
tion technique enables us to reduce problems into simpler subproblems that
can be solved efficiently. For instance, vehicle routing problems can be solved
by iteratively solving shortest path problems as subproblems within the col-
umn generation framework.

This thesis aims to simplify probabilistic planning problems into determin-
istic planning problems akin to the existing approaches from the planning
community, but in the disciplined framework of column generation; thereby
leveraging the performance of the former, and the mathematical guarantees
of the latter.

Our contribution is the PBColgen algorithm, which relies on column gen-
eration to construct deterministic planning problems. These deterministic
subproblems are solved to either improve the current stochastic solution in
the next iteration, or to prove that the current stochastic solution is optimal.
PBColgen guarantees that it will converge to the optimal solution in finite
time, and exhibits reasonable anytime behaviour.
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Chapter 1

Introduction

Consider problems in which an agent must find its way through a maze, or
stack blocks on top of each other, or construct a schedule for a Mars rover
such that the rover remains safe but explores as much as possible; these are
all instances of planning problems. This thesis focuses on a particular flavour
of planning problems which allows actions to have probabilistic effects. We
explore how operations research techniques can be combined with approaches
from the planning community, and present an algorithm that can combine
desirable traits of both.

1.1 Planning

Planning problems consist of a discrete, finite set of states, which an agent
must navigate by applying actions. Typically, we are interested in the agent
optimising its path through the state space by some criteria – for instance,
we might be interested in the shortest path through a maze. This enables us
to model many practical problems, ranging from GPS navigation to deriving
a schedule for autonomous robots.

From the start, the planning community has been interested in deterministic
planning problems which have the property that applying an action will
always yield a unique, predictable outcome. However, many problems have
an element of chance, and thus do not satisfy this property. Therefore,
it is natural to generalise deterministic planning problems into stochastic
planning problems – the focus of this thesis.

The addition of probabilistic effects at first seems innocuous, but in fact
it introduces a few complications. First of all, an optimal solution needs to
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consider all possible effects of each action, which quickly covers a much larger
state space than the solution of a deterministic problem. More than that,
we can no longer rely on properties that have made deterministic planners
so effective, such as assuming a state will never be revisited.

1.2 Stochastic Planning with Deterministic

Planners

One approach that has shown to be effective for dealing with the complex-
ity of stochastic planning problems is by relaxing them into deterministic
planning problems – which we can deal with more easily. There is a large
choice of efficient deterministic solvers to choose from to solve these relax-
ations, and this family of solvers delivers impressive performance. However,
deterministic relaxations inherently lose information, so that the planner can
no longer account for probabilistic effects. The result is that such solvers do
not take probabilities in consideration, and tend to prefer solutions that are
cheap regardless of their likelihood of failing.

1.3 Linear Programming in Stochastic Plan-

ning

Linear programming is a powerful and flexible tool for optimising variables
under linear constraints. This thesis is particularly concerned with a lin-
ear programming technique called column generation. Column generation
allows us to solve large and complex problems by breaking them down into
subproblems, and then recombining these into a solution for the original
problem.

Linear programming has already been used by the planning community to
develop solvers for stochastic planning problems. However, these formula-
tions work by considering the relationships between individual states and
their applicable actions. There is no work that we are aware of at the time of
writing, that uses plans for deterministic problems to construct an optimal
solution for stochastic problems.
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1.4 Goals and Contributions

The goal of this project was to review the relevant techniques in planning
and operations research, and combine this knowledge into an elegant linear
program to encode stochastic planning problems in a way that is amenable to
column generation – so that the subproblems reduce to deterministic plan-
ning problems. Once this was in place, we aimed to turn the theoretical
formulation into a practical algorithm. Our goals can be summarised in the
following research question:

Can column generation be used to build an effective replanner with
optimality guarantees?

Our contribution is the PBColgen algorithm, which is built on an intuitive
and concise linear program that drives a column generation algorithm. This
algorithm reduces stochastic shortest path problems to relatively simple sub-
problems, and guarantees optimality.

1.5 Thesis Outline/Structure

� Chapter 2. The purpose of this chapter is to introduce the terminology
and models of the planning community, which will be used throughout
this thesis.

� Chapter 3. In this chapter we first introduce and discuss some classic
algorithms for stochastic planning problems. Then, we introduce addi-
tional terminology that helps us discuss the remaining algorithms and
our contribution. The remaining algorithms are especially pertinent to
this thesis, as they have fundamental similarities to our approach.

� Chapter 4. We give a high level overview of linear programming, and
the techniques most relevant to our algorithm. Then, we present the
existing linear programs for solving stochastic planning problems, and
a linear program for evaluating the quality of a given policy.

� Chapter 5. This chapter develops the PBColgen algorithm – our con-
tribution. We start by developing a system of linear equations for eval-
uating a policy in a way that is amenable to column generation. Using
this as motivation we derive the linear program that is the backbone
of PBColgen, and discuss how column generation lets us create deter-
ministic subproblems. Then, we introduce some ways to solve these
particular subproblems.
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� Chapter 6. In this chapter we evaluate the performance of our novel
algorithm against existing approaches in formal experiments. Then, we
explain the observed behaviours, and discuss them.

� Chapter 7. Finally, we summarise the contents of this thesis, and ad-
dress some interesting avenues of investigation that went beyond the
scope of this thesis.
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Chapter 2

Background for Planning

In this chapter, we present the background in planing for this thesis. We
begin with deterministic planning (section 2.1), also known as classical plan-
ning. Then, we present stochastic planning problems (section 2.2), the prob-
abilistic counterpart of deterministic planning and the main focus of this the-
sis. This chapter ends by reviewing determinisation (section 2.3), a common
technique to relax stochastic planning problems into deterministic planning
problems.

2.1 Deterministic Planning

First, we introduce the classic planning model. The associated problem de-
scribes a finite set of discrete states, wherein an agent must navigate from
a starting state to a goal by applying actions that move the agent from its
current state to the next.

Definition 1 (Deterministic Planning Problem) We define deter-
ministic planning problems as the following tuple D = 〈S, s0, G,A, T, C〉
[Hector Geffner and Bonet 2013, p. 15] where

� S is a non-empty, finite, discrete set of states

� s0 is the initial state (note s0 ∈ S)

� G is a non-empty set of goal states (note G ( S and s0 6∈ G)

� A is the set of all actions, but we overload the symbol and define
a function A(·) : S → P(A) such that A(s) denotes the set of
applicable actions in state s
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� T : S × A → S is a deterministic transition function, that is,
T (s, a) = s′ where s′ is the state resulting from applying action a
to state s – this is only defined if a ∈ A(s).

� C : S × A → R>0 where C(s, a) indicates the cost of applying
action a while in state s.

We assume that goal states have no applicable actions, i.e. A(g) = ∅ for
any goal g ∈ G.

We often represent deterministic planning problems as weighted directed
graphs where S corresponds to the vertices, and transitions in T correspond
to edges, weighted according to C. Such graphs are also associated with a
starting or entry state at s0 and goal or target states at G [Hector Geffner
and Bonet 2013, p. 16].

The solution to such problems is a sequence of actions that leads the agent
from the starting state to a goal.

Definition 2 (Plan) The solution for deterministic planning problems
is a path (in the graph theoretic sense) from s0 to some state in g ∈ G,
which we call a plan. A plan can be described by a sequence of actions
〈a0, . . . , an−1〉 called the action trace, and a corresponding sequence of
states 〈s0, . . . , sn〉 called the state trace [Hector Geffner and Bonet 2013,
pp. 15–16], such that

� s0 is the initial state s0

� sn ∈ G

� ai ∈ A(si)

� si = T (si−1, ai−1) ∀i ∈ {1, . . . , n}.

Notice that, by definition of a path, states may not be revisited – in terms
of the state trace that means i 6= j =⇒ si 6= sj ∀i, j ∈ {0, . . . , n}

Since deterministic actions uniquely determine states, a plan can be exactly
represented by the sequence of actions. Note that a sequence of states
is not strictly sufficient, since there may be multiple actions between two
states.

A concise way of expressing a plan with its states is

s0 a0

−−−→ . . . an−1

−−−→ sn.
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The cost of a plan φ = s0 a0

−−−→ . . . an−1

−−−→ sn is given by

C(φ) =
∑

i∈{0,...,n−1}

C(si, ai).

A plan is optimal if its cost is minimal, i.e. plan φ is optimal if C(φ) ≤ C(φ′)
for all other plans φ′.

At times, we must iterate over all state si, action ai, effect si+1 triples in a
plan φ where

φ = s0 a0

−−−→ . . . si ai−−−→ si+1 . . . an−1

−−−→ sn.

For summation, we use the shorthand∑
si

ai−−−→si+1∈φ

which is equivalent to ∑
si,ai,si+1∀i∈{0,...,n−1}

given that the plan consists of state trace 〈s0, . . . , sn〉 and action trace
〈a0, . . . , an−1〉.

2.2 Stochastic Shortest Path Problems

We generalise the notion of deterministic planning by dropping the require-
ment that the effects of actions are unique. This allows us to model inter-
esting problems with elements of chance. Now, rather than mapping the
transition function of an effect to a single state, an action maps to a proba-
bility distribution over possible states.

Definition 3 (SSP) A Stochastic Shortest Path Problem (SSP) [Bert-
sekas and J. Tsitsiklis 1991] is the tuple S = 〈S, s0, G,A, P, C〉 where

� S is a non-empty, finite, and discrete set of states

� s0 is the initial state

� G ( S is a non-empty set of goals (note s0 6∈ G)

� A is the set of all applicable actions – as before we write A(s) to
denote the applicable actions in state s.

� P (s′|s, a) denotes the probability of reaching state s′ after applying
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action a in state s for any s, s′ ∈ S and a ∈ A(s)

� C : S × A → R>0 is defined as C(s, a) giving the cost of applying
action a in state s.

We assume that goal states have no applicable actions, i.e. A(g) = ∅ for
any goal g ∈ G.

Similar to deterministic planning problems, we often think of SSPs as directed
weighted graphs. To represent the probabilistic effects of an action it is
possible to use an AND/OR graph, but in this thesis we introduce hyper-
edges to denote the various possible outcomes of applying an action. For
example, S = 〈S, s0, G,A, P, C〉 with

� S = {s0, g0, g1},

� G = {g0, g1},

� A =
{
s0 7→ {a0}

}
,

� P (g0|s0, a0) = 0.1, P (g1|s0, a0) = 0.2, P (s0|s0, a0) = 0.7,

� C(s0, a0) = 1

will be represented by the graph in figure 2.1. Note that the nodes’ names
correspond to the state names in S. So, it is clear that s0 is the starting
state, and g0 and g1 are the goal states, as in S. Also, note that probabili-
ties of reaching states given an action are printed in black, and the cost of
applying an action is printed in red. We use this convention throughout this
thesis.

s0

g0

g1

a0

1

0.1

0.2

0.7

Figure 2.1: Directed weighted graph with hyper-edges representing an SSP.
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Definition 4 (Support of an action) We refer to the possible effects
of applying an action a in state s as the support of the probability dis-
tribution P (·|s, a). This is denoted by supp(s, a). Formally,

supp(s, a) = {s′ : P (s′|s, a) > 0}.

To solve an SSP it is not sufficient to consider a plan, since applying an
action may have stochastic effects that do not correspond to the next state
in the plan. We must generalise the notion of a plan to take into account the
various outcomes of each action – this is called a policy.

Definition 5 (Policy) In general, a policy can be either a

� deterministic policy which is a function π : S ′ → A such that
S ′ ⊆ S and ∀s ∈ S ′ π(s) ∈ A(s), or a

� stochastic policy which is a function
π : S ′ → prob. distribution over A.

In this project, policies refer to deterministic policies unless explicitly
stated otherwise.

Note that this definition does not require a policy to be defined on all states.
It is useful to distinguish between policies that are defined over the entire
state space, and those that are not.

Definition 6 (Complete & Partial Policies) If a policy π is defined
for all states, i.e. S ′ = S, then π is called a complete policy.

Otherwise, if a policy π is not defined for all states, i.e. S ′ ( S, then π
is called a partial policy.

To gain more insight as to what makes a good policy, we must consider
the possible paths an agent may take by following a given policy from some
starting state s. Such potential paths are called traces.

Definition 7 (Trace) Given a policy π and some state s ∈ S, by look-
ing at a possible execution of π from s, we obtain a potentially in-
finite sequence of states called a trace. To be precise: a finite trace
T = 〈s0, . . . sn〉 must satisfy that

� s0 = s

� all non-initial states must be reachable from their predecessors, i.e.
P (si+1|si, π(si)) > 0 ∀i ∈ {0, . . . , n− 1}
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� if si is defined on π, then si must have a successor si+1 such that
si+1 ∈ supp(si, π(si)); so, π(sn) must be undefined – note that this
may be because sn ∈ G.

An infinite trace T = 〈s0, . . . 〉 must only satisfy

� s0 = s

� P (si+1|si, π(si)) > 0 ∀i ∈ N.

Given an arbitrary finite trace T , we define |T | to be the number of
actions in T , and we define the probability of T succeeding by

P (T ) =

|T |−1∏
i=0

P
(
si+1|si, π(si)

)
.

The probability of an infinite trace is similarly defined, but the finite
product is replaced with an infinite product

P (T ) =
∞∏
i=0

P
(
si+1|si, π(si)

)
.

The cost of a finite trace T is the sum of the costs of its actions,

C(T ) =

|T |−1∑
i=0

C
(
si, π(si)

)
.

The cost of an infinite trace is obtained by replacing the finite sum with
an infinite sum

C(T ) =
∞∑
i=0

C
(
si, π(si)

)
.

The set of all traces obtainable from s and π is called Tπ,s.

We partition Tπ,s into the set of finite and infinite trace:

Tπ,s = T finite
π,s ∪ T infinite

π,s

respectively.

Note: since we have assumed that SSPs have finitely many states, infinite
traces are only possible with a cycle.
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Notice that there is no reason that the entire state space need be reachable by
following a particular policy – even if it is complete. We are interested in the
subspace of states that are actually reachable in executions of a policy.

Definition 8 (Policy envelope) The policy envelope of policy π from
state s is denoted Sπ,s, and represents the set of states reachable by
following π from s. Formally, we define this

Sπ,s =
⋃

T ∈Tπ,s0

states(T ).

We write Sπ to denote Sπ,s0 .

Notice that there may be states in an SSP from which no goal is reachable,
regardless of what actions we apply. Such states are intuitively called dead
ends.

Definition 9 (Dead end) A state s ∈ S is a dead end when no trace
T exists such that T starts at s, is finite, and ends in some goal state
sg ∈ G. Equivalently,

s is dead end ⇐⇒ ∀π ∈ Π ∀T ∈ Tπ,s
T is infinite ∨ T = 〈s0, s1 . . . , sn〉 and sn 6∈ G

If a state s has no applicable actions i.e. A(s) = ∅ then s is called a
trivial dead end.

Alternatively, s may be a dead end with applicable actions, in which case
we call it a non-trivial dead end. The simplest non-trivial dead end is a
state s with a loop – i.e. a single action that always goes back to s.

If there exists a policy π for SSP S such that all dead ends are avoided,
i.e.

T is finite ∧ final state sn ∈ G ∀T ∈ Tπ,s
then S has only avoidable dead ends (or none at all).

If there does not exist such a policy for S, then S has unavoidable dead
ends.

Dead ends are important features of SSPs. However, they introduce some
technical challenges, so we introduce the give-up transformation.
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Definition 10 (Give-up transformation) Given an SSP
S = 〈S, s0, G,A, P, C〉, we introduce “give-up” actions on each state s,
which lets s transition to a goal. First, select an arbitrary goal state g.
Then, we get an extended set of actions A′, probabilities P ′, and costs
C ′ where

A′(s) = A(s) ∪ {sgive-up} ∀s ∈ S

P ′(s′|s, sgive-up) =

{
1 if s′ = g

0 if s′ 6= g

C ′(s, a) =

{
C(s, a) if a ∈ A(s)

D if a is a give-up action
∀s ∈ S, a ∈ A′(s),

where D ∈ R>0 is some finite penalty. This gives us the transformed
SSP Sgive-up = 〈S, s0, G,A

′, P ′, C ′〉.

This transformation is equivalent to the Finite-Penalty method [Kolobov,
Mausam, and Weld 2012], which guarantees that the updated SSP contains
no dead ends. Intuitively, this transformation allows any state to reach a
goal, but the dead end penalty disincentivises the use of give-up actions, so
only dead ends actually use them.

Now, we use this transformation to justify the strong assumption that the
SSPs we consider from now contain no dead ends without loss of general-
ity.

Assumption 1 (Reachability) We assume that any SSP in this work
(unless explicitly stated otherwise) has no dead ends, i.e. that a goal
state is reachable from all states s ∈ S. If needed, we apply the give-up
transformation to guarantee this property.

Note that we will refer to states that can only reach goals via give-up actions
as dead ends to emphasise their semantic, even if they are technically not
dead ends.

Now, we have the tools and framework to make more fine-grained distinc-
tion between policies. As mentioned before, the envelope of a policy need
not –and usually does not– contain the entire state space. So, rather than
distinguishing policies by being complete or partial, we can also distinguish
policies by whether they can give an action for any state that the policy may
lead us to (given that the state has an applicable action).
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Definition 11 (Closed and open policies) Policy π is closed if all
reachable states with applicable actions have an action defined. That is,
if for all states s ∈ Sπ one of the following holds:

� π is defined for s

� s ∈ G.

A policy that is not closed, i.e. its envelope contains a state that does
not satisfy any of the criteria above, is called open.

A complete policy is closed since it’s defined for all s ∈ S, but a closed policy
may be partial. Generally we are interested in closed policies rather than
complete ones, since unreachable states are of no interest.

Given that policies may be open, we want to know how reliably a policy is
able to lead to a goal.

Definition 12 (Outcomes of a policy) The probability of an execu-
tion of policy π from state s reaching a goal state can be given by

P (reach goal|π, s) =
∑

T =〈s0,...,sg〉∈T finite
π,s :sn∈G

P (T ).

Note that there may be infinitely many such traces that reach the goal, and
a feasible way to calculate this probability is given by LP 8.

Based on the probability of reaching the goal, we introduce another way to
distinguish policies.

Definition 13 (Proper and Improper Policies) A policy π is proper
if following it from the initial state s0 reaches a goal with probability 1.
That is,

P (reach goal|π, s0) = 1.

On the other hand, if P (reach goal|π, s0) < 1 then π is improper.

Notice that proper policies must be closed, but the opposite need not be
true.

Now, we develop a method to distinguish policies by their expected cost. We
do this by introducing the value function.

Definition 14 (Value function) Abstractly, a value function V : S →
R≥0 is an estimate of the cost to get from state s to some goal on the
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SSP S. We assume that V (s) = 0 ∀s ∈ G since the cost to stay at a
goal is zero.

Often a value function is associated with a policy π, and indicates the
cost to reach a goal from s by following the policy. This is given by

Vπ(s) =

{
0 if s ∈ G∑
T ∈Tπ,s P (T ) · C(T ) else.

Finally, we can specify what makes a policy optimal.

Definition 15 (Optimal policy) Given an SSP S, we say that a policy
π∗ is optimal if it is closed and

Vπ∗(s0) ≤ Vπ(s0) ∀ policies π on S.

Note that Vπ(s0) diverges if π is improper. Therefore, given that a proper
policy exists, the optimal policy will be proper.

It turns out that SSPs will always have an optimal deterministic policy [Put-
erman 1994, p. 27], which is why we focus on obtaining deterministic policies
in this thesis. Note that an SSP may not have a unique optimal deterministic
policy.

For the final part of this section we do not use assumption 1, and introduce
some additional definitions for dealing with dead ends.

The definition of optimality presented in definition 15 works as long as proper
policies exist on the SSP, and the assumption of reachability (assumption 1)
holds. If we want to discuss optimal policies on SSPs with unavoidable dead
ends, then there are multiple ways we can define it. We introduce only the
following two notions of cost on improper policies, as they will be most useful
in the construction of our algorithm, and in the empirical evaluation. For
both, the give-up transformation will be useful.

The first notion of cost takes into account the dead-end penalty when a policy
fails.

Definition 16 (FP cost) Given an SSP S, we apply the give-up trans-
formation to obtain Sgive-up. The expected cost with finite penalty (FP
cost) of policy π for S is given by Sgive-up’s value function Vπ∗(s0).

The second notion is called the Min-Cost given Max-Prob (MCMP) criterion
[Trevizan, F. Teichteil-Königsbuch, and Thiébaux 2017]. This cost includes
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the cost of all possible executions of some policy, but without including the
dead end cost (be it a finite penalty or infinite).

Definition 17 (MCMP cost) Given an SSP S, we apply the give-up
transformation to obtain Sgive-up. The MCMP cost of policy π for S is
given by ∑

T ∈Tπ,s0

∑
s

a−−−→s′∈T s.t.
a is not give-up action

C(s, a)

where Tπ,s0 is the set of traces from following π from s0 on Sgive-up.

Note that both of these costs collapse down to the regular expected cost of
a policy if the policy is proper.

A policy is optimal according to either of these definitions of cost if the policy
has minimal cost compared to other possible policies.

2.3 Determinisation

Some planners, including the one we develop in this thesis, rely on solving
deterministic subproblems that help us construct a policy across the SSP.
To construct these deterministic subproblems we relax properties of a given
SSP to obtain a deterministic problem [Yoon, Fern, and Givan 2007]. Note
that this type of transformation inherently loses information (unless the SSP
only had deterministic actions to begin with).

The first natural transformation is the all-outcomes determinisation, where
we take each effect of a probabilistic action, and transform it into a deter-
ministic action in the relaxation. So, we pretend that we can obtain any
possible outcome of an action deliberately.

Definition 18 (All-outcomes determinisation) The all-outcomes de-
terminisation of S = 〈S, s0, G,A, P, C〉 yields the deterministic planning
problem Sdet = 〈S, s0, G,A

′, T, C ′〉, where

� the states are completely unchanged, this includes the initial and
goal states

� for each action a ∈ A(s) we generate a set of determinised actions
det(a) = {a . s′ : P (s′|s, a) > 0}, then A′(s) =

⋃
a∈A(s) det(a)

� T (a . s′, s) = s′ ∀a . s′ ∈ A′(s)
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� C ′(s, a . s′) = C(s, a) ∀a . s′ ∈ A′(s).

Note that we do not include the probability in the determinised action’s
cost.

Under assumption 1 that there are no dead ends, the all-outcomes deter-
minisation will always be solveable. If we relax this assumption, and allow
unavoidable dead ends this guarantee is weakened: the all-outcomes deter-
minisation is always solveable as long as there is a goal reachable from the
initial state.

Alternatively, we can relax an SSP by only considering the most likely effect
– rather than all of them. This is called the most-likely-outcomes determini-
sation.

Definition 19 (Most-likely-outcomes deteriminisation) The most-
likely-outcomes determinisation of S = 〈S, s0, G,A, P, C〉 gives Sdet =
〈S, s0, G,A

′, T, C ′〉, where

� the states are completely unchanged, this includes the initial and
goal states

� for each action a ∈ A(s) we generate the singleton

det(a) =

{
argmax
s′∈supp(s,a)

P (s′|s, a)

}

breaking ties arbitrarily. Then, A′(s) =
⋃
a∈A(s) det(a).

� T (a . s′, s) = s′ ∀a . s′ ∈ A′(s)

� C ′(s, a . s′) = C(s, a) ∀a . s′ ∈ A′(s)

Note that the arbitrary breaking of ties means that the most-likely-
outcomes determinisation of a problem may not be unique.

The most-likely-outcomes determinisation retains some information about
the probabilities of the original SSP, but there is no guarantee that the re-
laxation is solveable – even if a goal is reachable from s0 in S. For instance,
consider the simple SSP with two states and one action, where the action
has a 0.1 probability of reaching the goal, and 0.9 probability of looping back
to the initial state. Under the most-likely-outcomes determinisation, this
becomes a disconnected graph.
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Chapter 3

Related Work

In this chapter we explore various algorithms developed in the planning com-
munity for constructing solutions for SSPs. To start with, we introduce the
classic algorithm for solving SSPs – Value Iteration (section 3.1); we move
on to RTDP, a more modern variant (section 3.2). Then, we take an inter-
lude from planners to introduce some additional terminology (section 3.3),
which makes it easier to talk about planners that use solutions for determin-
isations to construct policies. This leads into the introduction of two such
planners: FF-Replan (section 3.4) and Robust-FF (section 3.5), which are
the algorithms that function most closely to our novel approach. Finally,
we summarise the properties and categories of introduced planners in the
discussion (section 3.6).

3.1 Value Iteration

Value Iteration (VI) [Bellman 1957] is the classic algorithm for computing
optimal policies for SSPs. It uses a dynamic programming approach to com-
pute a value function which accurately estimates the cheapest costs to get
from any state to its nearest goal, which can then be used to compute an
optimal policy.

Recall that value functions V : S → R≥0 should give an estimate of how
expensive it will be to reach the nearest goal from s. Then, the optimal value
function V ∗ denotes precisely the cheapest expected cost to get to a goal
from any state s.
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Definition 20 (Optimal value function) The optimal value function
which indicates the cheapest expected costs to get from any state to a
goal is specified by the Bellman equation:

V ∗(s) =

{
0 if s ∈ G
mina∈A(s) C(s, a) +

∑
s′∈S P (s′|s, a) · V ∗(s′) else.

Note that while there may not be a unique optimal policy, there is a unique
optimal value function.

Given a value function V , we can construct a policy by selecting actions that
lead to the cheapest expected cost in a greedy fashion.

Definition 21 (Greedy policy) Given a value function V , the greedy
policy πV (s) is given by

πV (s) = argmin
a∈A(s)

C(s, a) +
∑
s′∈S

P (s′|s, a) · V (s′) ∀s ∈ S \G.

Ties may be broken arbitrarily.

It turns out that any greedy policy πV ∗ on the optimal value function V ∗ is
optimal.

The upshot is that finding the optimal value function enables us to find all
optimal policies. And this is what value iteration does. It computes V ∗,
and then returns πV ∗ which we know to be optimal. To compute V ∗, value
iteration requires some initial value function V0 – the exact estimates for
each state do not matter, as long as they are in R≥0. Then, VI applies the
following bootstrapped variant of the Bellman equation iteratively: for all
s ∈ S and incrementing i ∈ {0, . . . , n} for some n ∈ N

Vi(s) =

{
0 if s ∈ G
mina∈A(s) C(s, a) +

∑
s′∈S P (s′|s, a) · Vi−1(s′) else.

Applying this equation once is called a Bellman backup. Now, as i → ∞
we get that Vi → V ∗ – our computed value function approaches the optimal
value function; but it need not be the case that we converge in finitely many
steps. Consider the SSP in figure 3.1, and suppose the initial value function
estimates V0(s0) = 0.

We see that our algorithm will estimate Vi(s0) = 1 +
∑i

k=1 0.9k for i > 0,
which will never give us an exact value for finite i. However, there is a
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Figure 3.1: Example of an SSP in which VI can not converge to the exact
optimal value function in finitely many steps.

point at which our estimate is “good enough” in the sense that the greedy
policy derived from our approximation of the optimal value function yields
an optimal policy. To gauge this, we determine how much our estimate
varies between two Bellman backups, given by the Bellman residual defined
by

resVi = max
s∈S

∣∣∣Vi+1(s)− Vi(s)
∣∣∣.

We say that VI has converged to the optimal solution w.r.t. epsilon consis-
tency when

resVi < ε

for some –usually small– value ε ∈ R>0. This gives us a definition of opti-
mality for value-based solutions.

Definition 22 (Optimal w.r.t. epsilon consistency) A greedy pol-
icy πV is optimal w.r.t. epsilon consistency if the value function V ’s
Bellman residual is less than epsilon, i.e.

max
s∈S

∣∣∣V ′(s)− V (s)
∣∣∣ < ε

where V ′ is the Bellman backup applied to V , and ε is some value ∈ R>0.

VI guarantees that the Bellman residual of its values converges to a value less
than ε in finitely many steps, and thus the algorithm guarantees an optimal
policy w.r.t. epsilon consistency.

The easiest way to think about each iteration of VI is that Vi(s) is computed
for all s ∈ S at once or in parallel. If the algorithm is implemented in
this way, it is usually referred to as synchronous VI. Instead of updating
all states at once, we can consider only one state each iteration, which is
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called Asynchronous Value Iteration [Hector Geffner and Bonet 2013, pp. 84–
85].

The benefit of selecting a subset of states in each iteration is that we can
leverage some properties of the underlying graph so that we don’t have to
waste time recomputing converged or useless states. A good motivating
example is a tree with one goal: if we start VI and update states according
to a breadth first search from the goal, we can find the optimal value policy
in one pass with |S| many Bellman updates.

In general, asynchronous VI guarantees an optimal value function as long
as all states are allowed to be visited infinitely many times – in the sense
that running the algorithm indefinitely should not disallow any states; but
if we are this general we do not gain the benefits of asynchronous over syn-
chronous VI. It is useful if we can start with an initial value function V0 that
underestimates all costs, i.e. V0(s) ≤ V ∗(s) ∀s ∈ S – akin to an admissible
heuristic. This ensures that updating any state s will only increase the cost,
i.e. Vi(s) ≤ Vi+1(s) ∀i ∈ N. A consequence of this property is that we
can safely not update states that are not in our current policy, and their
underestimated cost is already higher than our value function’s estimates, so
there is no way that updating them will decrease our value estimates.

3.2 Real Time Dynamic Programming

Real Time Dynamic Programming (RTDP) [Barto, Bradtke, and Singh 1995]
can be seen as a version of asynchronous VI with an admissible value function,
where we add random sampling to focus in on the most likely outcomes.

The principle is that RTDP starts with admissible value function V , and im-
plicitly generates the greedy policy πV . RTDP then simulates an execution of
πV , and updates its value function with the costs incurred during simulation.
Each of these executions is called a trial, see algorithm 1. Remember that
the initial V is admissible, so updates on V can only increase cost. These
trials are repeated until the Bellman residual over states in the envelope of
πV are less than epsilon [Bonet and H. Geffner 2003].

This method will converge to an optimal value function w.r.t
epsilon-consistency, as long as all states in the policy envelope of our candi-
date policy are explored – as before with asynchronous VI and an admissible
value function.

Running trials repeatedly implicitly searches the entire policy envelope of
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current πV , but gets interrupted when πV is improved. Once πV is optimal,
this search will not be interrupted. And so, RTDP guarantees that it will
eventually search the entire policy envelope of some optimal policy, and thus
converges to an optimal value function.

The problem is that sampling can not tell us when we have explored the
entire envelope of our current πV , or how long it will take. So, RTDP is only
asymptotically optimal, in the sense that the value function will eventually
have a Bellman residual less than ε, but stopping it after any finite amount
of time can not guarantee this.

A more recent algorithm, Labelled Real Time Dynamic Programming (LRTDP)
[Bonet and H. Geffner 2003] extends RTDP by labelling states s as solved
when all states in the policy tree rooted at that s have a residual less than
ε.

The theoretical benefit of this approach is that LRTDP converges in a finite
number of steps w.r.t. epsilon-consistency. Furthermore, it turns out that the
overhead of the labelling mechanism is well worth it, because the computation
time for solutions of similar quality is generally reduced.

Algorithm 1: RTDP trial

Input: SSP S = 〈S, s0, G,A, P, C〉, curr. value function V , state sstart

1 current state s← sstart

2 while s 6∈ G do

3 abest ← argmin
a∈A(s)

C(s, a) +
∑
s′∈S

P (s′|s, a) · V (s′) // select best action

4 V (s)← C(s, abest) +
∑
s′∈S

P (s′|s, abest) · V (s′) // update value function

5 next state s′ ← simulated state from applying abest to s // i.e. s′

is selected with prob. P (s′|s, abest)
6 s← s′ // update current state

3.3 Interlude: Extended Definitions

To make it easier to talk about algorithms that use deterministic solutions
to construct policies, and at various stages may have partial policies, we
introduce the following terminology.

When we are considering partial policies, we can distinguish states that are
defined in our policy, and those that are not.
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Definition 23 (Open & closed states) We can partition policy π’s
policy envelope Sπ into

Sπ = Sπclosed ∪ Sπopen

where Sπclosed denotes the set of states that are defined on π, and Sπopen

denotes those that are not. So,

Sπclosed = {s ∈ Sπ : π(s) is defined}
Sπopen = {s ∈ Sπ : π(s) is undefined}.

We have assumed that goal states have no applicable actions in SSPs; that
is, A(sg) = ∅ ∀sg ∈ G. Consequently, goal states are in Sπopen.

Note that the edge case of trivial dead ends –i.e. non-goal states s with
A(s) = ∅– is avoided by assumption 1.

Now, to discuss how plans on deterministic relaxations can be used to con-
struct policies on the original SSPs, we introduce the concept of casting a
plan into a policy.

Definition 24 (Casted plan) Suppose we have SSP S and its deter-
minisation Sdet. Given a plan φ for Sdet we can interpret it as a policy
on S. We call such a policy πφ the casted plan of φ. Formally, given plan
φ with state trace 〈s0, . . . , sn〉 and action trace 〈a0, . . . , an−1〉, the casted
plan is given by

πφ(si) = ai ∀i ∈ {0, . . . , i− 1}.

Note that such a policy is only closed if the plan φ accounts for all effects of
the actions it applies, i.e.⋃

i∈{0,...,n−1}

supp(si, ai) \G = states(φ) \G

where 〈s0, . . . , sn〉 and 〈a0, . . . , an−1〉 are φ’s state and action traces. This is
typically not the case, so most casted policies are partial. The two main cases
when a casted plan is closed, is when the plan uses deterministic actions; and
when the actions can only fail by taking the state to another one in the plan.
The first of these is clear; for the second, consider figure 3.2.
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Figure 3.2: Example of an SSP where a casted plan from the all-outcomes-
determinisation yields a closed policy.

On the all-outcomes determinisation there is exactly one plan from s0: φ =
s0

a0−−−→ s1

a1−−−→ g. The casted plan πφ then has the following map-
ping:

s0 7→ a0

s1 7→ a1.

It is very unlikely that φ would succeed on the SSP, in the sense that applying
a0 to reach s1 and then applying a1 to reach g will work with probability 0.01.
But, the casted plan πφ is defined on all states, and is thus complete – and
it is even proper.

3.4 FF-Replan

FF-Replan [Yoon, Fern, and Givan 2007] is an online planner, which intro-
duced the idea of solving deterministic sub-problems to construct solutions
for stochastic planning problems. The principle of FF-Replan is to get a plan
from the determinisation of a given SSP, and cast that plan into a policy.
This policy is not guaranteed to be closed – if FF-Replan is given an unde-
fined state s, it simply generates a plan from s, and appends this casted plan
to its policy. See algorithm 2.

Since deterministic solvers are very efficient even over large state spaces this
makes for an effective online solver, and approaches a closed policy as more
states are discovered during execution.

Note that the original deterministic planner used was FF (hence FF-Replan)
but any deterministic planner can be used – and it need not be optimal.
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Although FF-Replan is intended as an online solver, we can use it as an offline
solver by simulating executions of the current policy, and updating it with
FF-Replan upon failure. This basic iteration has no termination condition,
so we would perform this with a time-out. Since the time-out may not give
sufficient time, and a closed policy is only guaranteed in the limit, it is best
to allow the online solving component as well.

Algorithm 2: FF-Replan

Input: SSP S = 〈S, s0, G,A, P, C〉
// Initial set up

1 Sdet ← determinisation of S
2 φ← solve Sdet with deterministic planner
3 π ← πφ

// Function that returns an action for state s

4 function decide action(s):
5 if π(s) is undefined then
6 φ← solve Sdet with deterministic planner
7 π(s′)← πφ(s′) ∀s′ : π(s′) undefined ∧ πφ(s′) defined

8 return π(s)

3.5 Robust-FF

Robust-FF [Florent Teichteil-Königsbuch and Infantes 2008] builds on FF-
Replan to construct more robust policies, i.e. the policies are less likely to
require online replanning. Robust-FF also introduces some techniques to
improve the efficiency of the algorithm.

First, Robust-FF prefers the most-likely-outcomes determinisation, in the
sense that the deterministic solver is first run on this determinisation. This
has the advantage that plans typically have a higher chance of succeed-
ing on the SSP. Note however, that this is heuristic – there are plenty
of examples where this is not the case. As discussed in section 3.3, the
most-likely-outcomes determinisation does not guarantee a solution. So,
if the deterministic solver fails, we must run it again on the all-outcomes-
determinisation.

Second, Robust-FF makes the observation that given an undefined state s,
we don’t necessarily need to find a plan to a goal to deal with it effectively,
but rather it suffices to find a plan to a closed state – since from there we
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(a) If applying action a0 “fails”
and goes to state s1, we can
“undo” our mistake by applying
action a1, and returning to s0

from where we failed.
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(b) If applying action a0 “fails”
and goes to state s1, we can “fix”
our mistake by applying action
a1, and going to the intended ef-
fect of a0: state g.

Figure 3.3: Simple SSPs demonstrating the undo and fix actions.

know how to get to a goal. This optimisation allows Robust-FF to save time
in computation.

Finally, Robust-FF enhances the simulation approach we introduced in 3.4
to use FF-Replan as a pseudo-offline solver. Rather than only simulating
executions and replanning undefined states, Robust-FF simulates N full exe-
cutions of the current policy, and provides an estimated probability of success
by number of executions that did not reach undefined state

N
. If this estimate is sufficiently

small –as determined by the user– it terminates and returns its current pol-
icy; otherwise it replans. Note that our implementation keeps track of the
undefined states in our simulations –up to some cap–, and solves for these
states on failure.

We said that Robust-FF may choose to replan to closed states rather than
only goal states. This omitted the detail that deterministic solvers tend to
underperform when provided a large number of goals. Therefore, a stronger
implementation will only select a subset of closed states as artificial goals.
The selection method is heuristic – we describe one approach that was used
in our implementation.

Across domains there are some common probabilistic “detours” from plans on
stochastic problems. Suppose we are in state si and apply action ai ∈ A(si),
which takes us to undesired state sk. Then, an undo action aundo ∈ A(sk)
takes us back to si, and a fix action afix ∈ A(sk) takes us to the intended
effect of ai. See figure 3.3 for a graphical representation.
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To motivate why these actions appear, consider a problem where you must
give directions to a driver who gets their lefts and rights confused 10% of
the time. If the driver makes an incorrect turn we can undo their error by
performing a u-turn and returning to the intersection where the mistake was
made. Alternatively, we can direct the driver to reach the original destination
via an alternative route, and thereby fix their mistake.

If we accept that these cases are common, then, if Robust-FF reaches an
undefined state, it is worthwhile to add the previous state we were in and
the intended effect of our action, so that undo and fix actions respectively
can be found by the deterministic solver.

Another heuristic method for deciding which closed states to add as artificial
goals, is to generate a trace by following the state we failed from, and taking
the most likely effects. So, suppose we were in state si before applying
π(si) took us to an open state. We generate the state trace 〈si, si+1, . . . , sn〉
where

si+1 = argmax
s∈supp(si,π(si))

P (s|si, ai),

and sn is an open state – either a goal or undefined. Due to Robust-FF’s
sampling nature we expect the most likely effects of each state to be defined
often. For this reason we expect that the states in this trace are good candi-
dates for artificial goals. For the same reason the trace can be quite long –
if it exceeds the number of artificial goals we desire, it is reasonable to select
a subset of states from the start of the trace – as they are the most likely to
be closed.

Note that the simplest approach for adding artificial goals is simply by ran-
domly selecting some closed states.

The basic algorithm for Robust-FF is straightforward, but there are a lot of
parameters that can be modified. For instance, the number of artificial goals
we allow, the maximum depth we allow for our simulations, the number of
simulations we perform to compute the probability of failure, etc. These are
up to the user to decide, and there is no single best answer.

Note that Robust-FF –like FF-Replan– was originally designed with use of
the FF planner, but any deterministic planner works. In our implementation
we used FF.
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Optimal Replanner
VI Yes No
RTDP Yes* No
LRTDP Yes No
FF-Replan No Yes
Robust-FF No Yes

Table 3.1: Summary of discussed planners and their categorisation.
* RTDP is optimal w.r.t. epsilon-consistency in the limit.

3.6 Discussion

We have introduced two families of algorithms for constructing policies on
SSPs. The first family –encompassing VI and its variants; RTDP, and
LRTDP– compute optimal value functions that enable them to construct an
optimal policy (w.r.t. epsilon-consistency). The second family –FF-Replan
and Robust-FF– relies on deterministic solvers to solve subproblems, and
slowly build up a policy. Note that this is of course not an exhaustive list of
algorithms nor approaches, but it suffices for the purposes of this thesis. We
categorise the second family as replanners [Little and Thiébaux 2007]. We
summarise the discussed planners in table 3.1.

In thesis, we are primarily concerned with the two replanners. To motivate
the differences between FF-Replan, Robust-FF, and an optimal planner, we
present the SSP in figure 3.4. We assume an optimal deterministic planner for
the following discussion. FF-Replan and Robust-FF will apply their preferred
determinisations to the problem, and in both cases they will find the shortest
plan s0

a
−−−→ s1

b−−−→ g with a cost of 11. If this partial policy fails and we
end up in state s2, then FF-Replan and Robust-FF behave differently. FF-
Replan will run the deterministic planner to get from s2 to g in the cheapest
way possible, which is s2

d−−−→ g. On the other hand, Robust-FF will insert
the states it already has defined in its policy as additional goal states, so it
will find the shortest path from s2 to s0, s1, or g. This will return the plan
s2

c
−−−→ s1

b−−−→ g, since the cheapest way to get to any of the new goal
states is with a cost of 999, ignoring the fact that this is not a goal state of
the actual problem.

An optimal planner will notice that action a has an expected outcome of
1 + 0.75 ·10 + 0.25 ·1000 = 258.5, whereas action a′ has an expected outcome
of 100. So, an optimal planner will choose a′.
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Figure 3.4: SSP that exemplifies the different behaviours of FF-Replan,
Robust-FF, and an optimal planner.
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Chapter 4

Background for Linear
Programming

The formal details and development of linear programming is beyond the
scope of this thesis, but in this chapter we try to give some intuition and a
high level overview of the topic. First, we give a geometric motivation and
some notations for linear programming (section 4.1). Then, we introduce the
simplex algorithm, classic algorithm for solving linear programs (section 4.2)
and the concept of duality (section 4.3) which is indispensable throughout
linear programming techniques. This set up allows us to introduce the fun-
damental technique behind our novel algorithm: column generation (section
4.4). Finally, we discuss how SSPs can be encoded as linear programs (sec-
tion 4.5) and present a formulation that allows us to evaluate policies in a
robust way (section 4.6).

4.1 Introduction

Linear programming is an approach for solving minimisation or maximisation
problems with linear equalities and/or inequalities over continuous variables.
Such a problem may look like

maximise x (LP1)
subject to x− 2y ≤ 0 (C1)

−2x+ y ≤ 0 (C2)
x+ y ≤ 0 (C3)

where x, y ∈ R.
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Figure 4.1: Geometric representations of the inequalities presented in LP 1.

Since we have two variables, we can draw these inequalities in 2 dimensional
space to get figure 4.1. The shaded triangle represents the feasible region,
that is, the values that the variables can take such that the inequalities
are satisfied. The linear term that we are trying to minimise or maximise,
generally referred to as the objective, can be represented by a vector. In
our case, this vector points directly right along the x-axis, and so finding the
optimal solution consists of finding the right-most point on the feasible region,
i.e. the triangle. The vector may point in any direction, and the optimal
solution finds the most extreme point with respect to that vector.

Note that the feasible region does not need to be finite. This can make
problems uninteresting by allowing the objective to be infinitely large or
small in maximisation and minimisation problems respectively; however, this
does not need to be the case. Consider LP 1 if we remove constraint (C2)
– the feasible region is unbounded, but the maximum objective remains the
same. The direction in which an LP is unbounded is described by an extreme
ray [Bertsimas and John Tsitsiklis 1998, p. 176].

As we move to linear programs with more variables and constraints, we end
up with a feasible region in higher dimensions. The intersection of each
constraint’s subspace yields a convex polytope.

To express general linear programs we use matrix and vector notation

maximise/minimise cT · x (LP2)

subject to Ax S b

where x is the vector of variables, A is a matrix of the coefficients in con-
straints, b is the vector of constants on the right-hand side of constraints,
and c is the cost vector – i.e. the variable coefficients in the objective.
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4.2 Simplex Algorithm

Given that linear programs describe a convex polytope, the simplex algorithm
makes the realisation that an optimal solution must lie on a vertex. This
becomes intuitive when we consider a polytope in 2 dimensions (as in LP
1 and correspondingly figure 4.1). Note that there may be infinitely many
optimal solutions lying on an edge (or a facet in aribtrary dimensions), but
then there is still a vertex that shares this edge, and thus gives an optimal
solution.

This observation means that we can move along the vertices of the region,
and eventually find the optimum. The simplex algorithm does precisely this
– it considers one vertex of the feasible region at a time, and intelligently
decides to which vertex to move to. The number of constraints in the linear
program limit the number of variables that may be non-zero so that the
solution lies on a vertex. So, if we want to move from one vertex to another,
we need to set a variable that is currently zero to non-zero, and respectively
set a variable that is currently non-zero to zero. The decision procedure for
deciding which variables to apply this to takes into account how much the
new variable contributes to the objective, and how much the old variable
contributed to the objective before it was set to zero. One way to do this is
with dual variables as we explain in the next section.

4.3 Duality

Any linear program has an associated dual LP, which yields the same objec-
tive – if it exists. We refer to the original LP as the primal LP. Dual LPs are
interesting to us because the variables of dual LPs have semantic meaning in
the primal LP with interesting consequences.

To motivate this idea, consider the simple LP 3. By inspection, we see that
the optimal solution is x1 = 5 and x2 = 0.

maximise 2x1 + x2 (LP3)
subject to x1 ≤ 5 (C1)

x2 ≤ 5 (C2)
x1 + x2 ≤ 5 (C3)
x1, x2 ≥ 0

If we were not able to solve the problem by inspection, we could combine
constraints to obtain an upper bound for the optimal solution. For instance,
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we might combine (C1) twice and (C2) once to get the expression 2x1 +x2 ≤
15. We have carefully selected constraints such that the left-hand side is
equivalent to the objective, and thereby we can say that the objective is
upper bounded by 15. If we combine constraints more intelligently, e.g. (C1)
and (C3) we get the expression 2x1 + x2 ≤ 10. Now we know that we can do
no better than 10. In this case we know that second lower bound is tight,
but in general this is not clear. We can automate this procedure, combine all
constraints, and look for the lowest upper bound – which turns into another
LP.

We omit the details of the procedure here [Bertsimas and John Tsitsiklis
1998, pp. 142–146], but applying this transformation gives us the dual LP
presented in LP 4.

minimise 5y1 + 5y2 + 5y3 (LP4)
subject to y1 + y3 ≥ 2 (C1)

y2 + y3 ≥ 1 (C2)
y1, y2, y3 ≥ 0

We see that LP 4 can not attain a better objective that 10. The strong duality
theorem [Bertsimas and John Tsitsiklis 1998, p. 148] tells us that this is true
in general – if an optimal solution exists for the dual, then the primal will
have an optimal solution with the same value, and vice versa.

There is a strong connection between both formulations of the problem. The
variable in the dual problem that is associated with a particular constraint
in the primal problem is called the dual variable or shadow cost. The latter
name comes from the property that a dual variable is only non-zero if the
associated constraint is active. Therefore, if the dual variable is non-zero, we
know that we could improve the primal by relaxing that constraint. In our
example the simplex algorithm would give a dual solution of y1, y2 = 0 and
y3 = 2, which tells us that relaxing (C3) in the primal would enable us to
improve the objective, which is indeed true.

4.4 Column Generation

Column generation is a framework which enables to solve an LP with an
infeasibly large number of variables by working with linear programs with a
reduced subset of variables, and iteratively adding variables in such a way the
optimal solution for the reduced linear program is also the optimal solution
for original LP.
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The initial LP is called the Master Problem. These usually optimise over
a set of variables and constraints that explode in terms of cardinality for
larger problems. The classic example for this is the “cutting stock” problem
[Lübbecke and Desrosiers 2005, p. 24], where the agent has a supply of logs,
and is asked to cut out particular lengths, e.g. given a log of length 10m from
which we should cut three sections of 1m and two sections of 2m, we can cut
1m out of three logs, and 2m from another two logs; or more sensibly, cut
out all sections from one 10m log. The agent should minimise the number
of logs that are used. The problem is formulated in terms of “patterns.”
Assuming that we are only interested in 1m and 2m cuts as before, this
means the agent may cut out of a single log the following patterns: ten 1m
cuts, eight 1m cuts and one 2m cut, six 1m cuts and two 2m cuts, etc. For
small problems this may still be feasible, but as they increase we can not
even realistically enumerate all possibilities.

For the remainder of this thesis we assume that any master problems are
minimisation problems. This lets us introduce the following terminology in
a way that is more relevant to our use cases.

Assumption 2 (Master problems) We assume that master problems
are minimisation problems, i.e. LPs of the form

minimise cT · x
subject to Ax S b

The principle of column generation is that we do not optimise over the space
of all these variables, but with a subset of sufficiently meaningful variables.
This LP with only a subset of values is called the Reduced Master Problem
(RMP) [Lübbecke and Desrosiers 2005].

The column generation algorithm initialises its RMP with some variables –
typically a simple set that makes the RMP feasible. Then, we select a new
variable or column that should be included in the next iteration of column
generation. One way of looking at this is that all columns are already in
the RMP – but only a small number of them are set to non-zero. Then, the
method of deciding which column to add next becomes similar to the intro-
duction of variables in the simplex algorithm. We compute the reduced cost
of a variable to determine how the objective will be affected by introducing
it.

Definition 25 (Reduced cost) Given dual variables ∆∗ associated with
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optimal solution to RMP, the reduced cost of variable x is given by

rc(x,∆∗) = ci −
m∑
j=1

ai,j∆
∗
j .

The elegance of the column generation method comes from the guarantee
that a column with a negative reduced cost will improve the solution; and
conversely, if there is no column with a negative reduced cost, we know that
the solution optimal, i.e. the solution to the reduced master problem is the
same as the solution to the master problem.

Note that RMPs may not always be feasible, even if the master problem is.
Consider again the cutting stock example: if the have 10m logs and are asked
to cut out five 2m sections, but the patterns in our RMP only consider cuts
of 1m, then it is infeasible. Column generation can deal with this scenario
with the Farkas cost, which lets us determine which column will help to make
the solution feasible. Since the primal RMP is infeasible, the dual is either
infeasible or unbounded. Then, it does not make sense to use optimal dual
variables ∆∗, but instead we consider the extreme rays on the dual, called
the dual rays ∆ray. Intuitively, these indicate in which direction the dual LP
is unbounded. If we can add constraints to make the dual bounded, then we
also force the primal to be feasible by the strong duality theorem. Farkas
cost uses this idea, and is defined as follows.

Definition 26 (Farkas cost) Given dual variables ∆ray associated with
optimal solution to RMP, the Farkas cost of variable x is given by

fc(x,∆ray) =
m∑
j=1

ai,j∆
ray
j .

4.5 SSPs as Linear Programs

Primal LP

Linear programming can be applied to solving SSPs. The primal LP formula-
tion for solving SSPs computes an optimal value function (see definition 20)
[Puterman 1994, p. 223]. We do this by introducing variables vs for each state
s ∈ S, which represent V ∗(s) in the optimal solution. These variables are
constrained by a variant of the Bellman equation – which defines an optimal
value function. Instead of enforcing equality, we set the Bellman equation
as an upper bound, and get the LP to maximise vs’s – which in the optimal
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solution gives equality. This LP is presented in LP 5.

maximise
∑
s∈S

vs (LP5)

subject to vs = 0 ∀s ∈ G (C1)

vs ≤ C(s, a) +
∑
s′∈S

(
P (s′|s, a) · vs′

)
∀s ∈ S, a ∈ A(s) (C2)

Dual LP

As with any LP, we can take the dual of the primal LP for SSPs. Elegantly,
this results in an LP that can be interpreted as a network flow [d’Epenoux
1963]. We present the dual LP for SSPs in LP 6, where in(s) and out(s)
semantically represent the amount of flow going into and out of state s,
and the corresponding constraints (C2) and (C4) should be seen as helper
constraints which help us express the LP in a more concise and intuitive
manner [Trevizan, Thiébaux, Santana, et al. 2016].

minimise
∑

s∈S,a∈A(s)

xs,a · C(s, a) (LP6)

subject to xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C1)

in(s) =
∑

s′∈S,a∈A(s′)

xs′,a · P (s|s′, a) ∀s ∈ S (C2)

out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C3)
out(s0)− in(s0) = 1 (C4)

out(s) =
∑
a∈A(s)

xs,a ∀s ∈ S \G (C5)∑
sg∈G

in(sg) = 1 (C6)

As mentioned before, LP 6 can be interpreted as a network flow problem. In
line with this semantic, constraints have special names:

� (C1) gives non-negativity constraints, which ensures that there is no
negative flow

� (C2) and (C5) are helper constraints, as we have already explained

� (C3)-(C4) are called preservation of flow constraints, because they en-
force that the amount of flow coming into a particular node or state
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should be equal to the amount of flow exiting that node or state – note
that constraint (C4) also “pumps in” a flow of 1 into the initial state
s0

� (C6) is the sink constraint, which ensures that we get the same amount
of flow in the goal as was pumped in initially.

Given the optimised solution x∗ to LP 6, we define the stochastic policy
π∗(s, a) = xs,a

out(s)
. This policy is optimal. Furthermore, it turns out that π∗ can

be interpreted as a deterministic policy, in the sense that π∗(s, a) ∈ {0, 1}.
This is due to the fact that practically all LP solvers are like the simplex
algorithm in that they explore solutions that lie on vertices of the feasible
region. Constraints (C3)-(C5) ensure that assignments of flow out(s) to one
variable lie on a vertex, and a solver will generate a deterministic policy.

So far we have been making use of assumption 1 to construct our LPs. The
formulation for LP 6 is flexible enough that we can relax this assumption,
and deal with dead ends by introducing variables that allow the network
flow to leak with some penalty – or equivalently, they can be interpreted as
give-up actions as in the give-up transformation (definition 10) [Trevizan, F.
Teichteil-Königsbuch, and Thiébaux 2017]. See LP 7.

minimise
∑

s∈s,a∈A(s)

xs,a · C(s, a) +
∑
s∈S

xDs · d (LP7)

subject to xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C1)

in(s) =
∑

s′∈S,a∈A(s′)

xs′,a · P (s|s′, a) ∀s ∈ S (C2)

out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C3)
out(s0)− in(s0) = 1 (C4)

out(s) =
∑
a∈A(s)

xs,a + xDs ∀s ∈ S \G (C5)∑
sg∈G

in(sg) +
∑
s∈S

xDs = 1 (C6)

4.6 Evaluation LP

Now, rather than investigating how we can construct optimal policies, we
present a linear program that takes a policy and evaluates it. For this section
we do not use assumption 1, i.e. we allow dead ends. Given a potentially
partial or improper policy π, we are often interested in the probability that
following π will lead us to a goal – rather than a dead end or an undefined
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state; and we are interested in assigning some notion of expected cost to the
policy.

To construct this evaluation LP we apply the following modifications to LP
7:

� we do not consider all actions a ∈ A, but rather those that are given
by our policy

� we do not consider all states s ∈ S, but only the policy envelope Sπ

� we partition Sπ into Sπopen ∪ Sπclosed

� we allow leakage on undefined states – i.e. non-goal open states

� we remove the costs of actions from the objective – we are not trying
to optimise the policy.

These modifications yield LP 8.

minimise
∑

s∈Sπclosed

xDs (LP8)

subject to xs,π(s) ≥ 0 ∀s ∈ Sπclosed (C1)
xDs ≥ 0 ∀s ∈ Sπclosed (C2)

in(s) =
∑

s′∈Sπclosed

xs′,π(s′) · P (s|s′, π(s′)) ∀s ∈ Sπ (C3)

out(s)− in(s) = 0 ∀s ∈ Sπclosed \ {s0} (C4)
out(s0)− in(s0) = 1 (C5)
out(s) = xs,π(s) + xDs ∀s ∈ Sπclosed (C6)∑
sg∈G

in(sg) +
∑

sf∈Sπopen\G

in(sf ) +
∑

s∈Sπclosed

xDs = 1 (C7)

Notice that out is not defined for open states. This is because –like for goal
states– the flow does not get pumped further. These allowances for leakage
can be seen as give-up actions, or alternatively as another fake action that
leads to a “replan sink.” Then, the inflow to this sink, namely the second
summation in (C7), represents the likelihood of replanning, given we follow
π starting at s0.

Note also that we do not include the leakage or give-up actions for undefined
states in the objective. This is for the same reason that we do not include the
costs of actions in the objective: we are simply following the flow determined
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by the given policy, and the leakage is determined by the preservation of flow
constraints.

Now, given that we start at s0 and follow policy π, we can read off the

1. probability of reaching a goal with
∑

sg∈G in(sg),

2. probability of reaching a dead end with
∑

s∈Sπclosed
xDs ,

3. probability of replanning with
∑

sf∈Sπopen\G
in(sf ),

4. probability of replanning at a particular undefined state sf ∈ Sπopen \G
as in(sf ).

Furthermore, we can compute the expected cost of a policy where dead-end
and replan states incur the finite dead-end penalty (as in definition 16), and
the MCMP cost (as given in definition 17). The former is computed by

D ·
∑

s∈Sπclosed

xDs + U ·
∑

s∈Sπopen\G

sf ,

where D ∈ R>0 is the dead end penalty, and U ∈ R>0 is penalty for reaching
an undefined state. Note that we typically set U = D. The MCMP cost is
computed by ∑

s∈Sπclosed

xs,π(s) · C(s, π(s)).
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Chapter 5

Plan Based Column
Generation

In this chapter we introduce our novel algorithm PBColgen, which constructs
policies by combining plans in a column generation framework. First, we
introduce some additional definitions (section 5.1) before moving on to the
construction of a system of linear equations that evaluates a given policy as
a combination of plans and cycles (section 5.2). This serves as a motivation
and starting point for the core of this thesis: we derive the master problem
that computes the optimal policy on an SSP as a combination of plans and
cycles, and adapt it to a column generation framework (section 5.3). We
then discuss some options for solving the deterministic pricing problem that
is crucial to the efficiency of PBColgen (section 5.4). Finally, we summarise
the properties of PBColgen (section 5.5).

5.1 Definitions

For the following work we find it useful to introduce some more defini-
tions.

Definition 27 (Set of all plans Φ) Given an SSP S, we denote by Φ
the set of all plans on the determinisation of S.

We need to discuss cycles, so we formally introduce them now.

Definition 28 (Cycles) A cycle is defined as a path (in the graph the-
oretic sense) with an additional arc that connects the first and last nodes
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of the path [Ahuja, Magnanti, and Orlin 1993, p. 26]. In the context of
SSPs and their determinisations we say that a cycle consists of a state
trace and action trace where there are no duplicates in either – except
that the first and last state in the state trace must be the same.

Since cycles are described by state trace 〈s0, . . . , sn〉 and an action trace
〈a0, . . . , an−1〉 identically to plans, we use the same notation. Note that
we don’t distinguish cycles by the first state of their trace, so for example
s1

a1−−−→ s2

a2−−−→ s1 is the same as s2

a1−−−→ s1

a1−−−→ s2.

Now, we also define the set of all cycles.

Definition 29 (Set of all cycles W ) Given an SSP S, we denote by
W the set of all cycles on the determinisation of S.

Then, do discuss transformations between systems of linear equations and
linear programs we use the following notion of equivalence.

Definition 30 (Equivalence for SLEs and LPs) We say that two lin-
ear programs L and L′ are equivalent if the optimal solution x∗ for L can
be transformed into an optimal solution of L′, and vice versa. Similarly,
we say that two systems of linear equations are equivalent if the solution
of one can be transformed into a solution of the other.

5.2 Evaluating policies as a sum of plans and

cycles

To motivate the approach for finding optimal policies, we first look at how
to evaluate policies as a sum of plans and cycles.

The set up of the problem is as follows:

� we are given policy π and SSP S, and we want to evaluate the policy
with plans and cycles

� we assume that S has no dead ends

� we assume that π is proper (because this is a motivation for finding the
optimal policy, and the optimal policy on an SSP without dead ends
must be proper).

Our starting point is the policy evaluation LP presented in LP 8, which
can be interpreted as a network flow across an SSP. Since π is proper and
therefore closed, we do not need to distinguish between open and closed
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states. Furthermore, since π is proper, π will not reach any dead ends, which
allows us to remove the xD leakage variables. These simplifications give us
the system of linear equations presented in SLE 1. This SLE can also be
interpreted as a network flow, so the variables x represent the flow through
S.

(SLE1)
xs,π(s) ≥ 0 ∀s ∈ Sπ (C1)

in(s) =
∑
s′∈S

xs′,π(s′) · P (s|s′, π(s′)) ∀s ∈ Sπ (C2)

out(s)− in(s) = 0 ∀s ∈ Sπ \ (G ∪ {s0}) (C3)
out(s0)− in(s0) = 1 (C4)
out(s) = xs,π(s) ∀s ∈ Sπ \G (C5)∑
sg∈G

in(sg) = 1 (C6)

We now apply the all-outcomes determinisation to S, to get Sdet. We want
to transform the flow x on S into an equivalent flow y on Sdet. The issue is
that the flow described by x becomes invalid on actions with probabilistic
effects, i.e. given s ∈ Sπ and π(s) ∈ A(s) such that π(s) has multiple effects,
we can no longer talk about xs,π(s) since the action π(s) does not exist in
Sdet– it has been broken up into π(s) . s′ ∀s′ ∈ supp(s, π(s)).

We deal with this by constructing a new flow across Sdet with additional
constraints on probabilistic actions, such that the flow on the determinised
actions corresponds to the probabilities in S; these are called regrouping
constraints [Trevizan, Thiébaux, and Haslum 2017]. For example, given
the SSP in figure 5.1, we want to enforce that the flow across a0 . s0 and
a0 . s1 retains the probabilistic relation of S. We enforce this by adding the
constraint

ys0,a0.s1

ρ
=
ys0,a0.s1

1− ρ
.

We now generalise regrouping to work for an arbitrary number of effects.
It does not make sense to introduce regrouping constraints for actions with
a single effect, since these are already deterministic. So, we introduce the
notation A>1 where A>1(s) = {a ∈ A : |supp(s, a)| > 1} to distinguish
actions that require regrouping and those that do not.

There are multiple ways to express that probabilistic ratio between arbitrarily
many effects, we present three of them. For the following, suppose we are
considering state s with action a, which has |supp(s, a)| = n with n > 1.
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s0

s1

s2

g
a0

ρ

1− ρ

a1

a2

Figure 5.1: SSP with probabilistic effects that we must “regrouped” in a
determinisation to avoid a loss of information.

� (one against all) With this approach, we add a constraint for each effect
s′, where the constraint expresses s′ as a fraction of the total flow on s
and a, i.e.

ys,a.s′

P (s′|s, a)
=

∑
s′′∈supp(s,a)

ys,a.s′′ ∀s′ ∈ supp(s, a).

� (hub and spoke) We select one effect as a “hub,” and use it to express all
other effects – the “spokes.” We require a function hub : S × A(s) →
supp(s, a) that deterministically selects a unique representative from
the effects of a. Conversely, we also define a function that gives us all
non-hub effects: spoke(s, a) = supp(s, a) \ {hub(s, a)}. Then, we add
the following constraints

ys,a.hub(s,a)

P (hub(s, a)|s, a)
=

ys,a.s′

P (s′|s, a)
∀s′ ∈ spoke(s, a).

� (chain) Suppose there is an index function ι : {1, . . . , n} → supp(s, a)
which is bijective. In practice, this will simply be the order in which
we encounter each effect. We define pairwise constraints in a chain-like
fashion as follows:

ys,a.ι(i)
P (ι(i)|s, a)

=
ys,a.ι(i+1)

P (ι(i+ 1)|s, a)
∀i ∈ {1, . . . , n− 1}

The one-against-all formulation introduces n constraints, whereas the hub-
and-spoke and chain formulations introduce n − 1. So, the only practical
difference between these constraints is in how convenient it is to construct
them.

42



For now, we use the hub-and-spoke method, as it is will turn out to be
convenient for column generation. This gives us SLE 2.

(SLE2)
ys,a.s′ ≥ 0 ∀s ∈ Sπ, a ∈ A(s), s′ ∈ supp(s, a) (C1)

in(s) =
∑
s′∈S

∑
s′′∈supp(s′,π(s′))

ys′,pi(s′).s′′ ∀s ∈ Sπ (C2)

out(s)− in(s) = 0 ∀s ∈ Sπ \ (G ∪ {s0}) (C3)
out(s0)− in(s0) = 1 (C4)

out(s) =
∑

s′∈supp(s,π(s))

ys,π(s).s′ ∀s ∈ Sπ \G (C5)

ys,a.hub(s,a)

P (hub(s,a)|s,a)
=

ys,a.s′

P (s′|s,a)
∀s ∈ Sπ, a ∈ A>1(s), s′ ∈ spoke(s, a) (C6)∑

sg∈G

in(sg) = 1 (C7)

Lemma 1 SLE 1 is equivalent to SLE 2

Proof 1 A solution for x can be transformed into a solution for y by

ys,π(s).s′ = xs,π(s) · P (s′|s, π(s)) ∀s ∈ S, s′ ∈ supp(s, a).

This transformed solution satisfies the regrouping constraints by construction,
and satisfies the goal constraint trivially. The preservation-of-flow constraints
are satisfied because SLE 1 has

xs,π(s) =
∑
s′∈S

xs′,π(s′) · P (s|s′, π(s′))

which by our transformation gives∑
s′∈supp(s,π(s))

ys,π(s).s′ = xs,π(s) =
∑
s′∈S

xs′,π(s′) · P (s|s′, π(s′)) =
∑
s′∈S

ys′,π(s′).s

as desired.

A solution for y can be transformed into a solution for x by

xs,π(s) =
∑

s′∈supp(s,π(s))

ys,π(s).s′ .

That the transformed solution satisfies all constraints of SLE 1 is given by
similar arguments as before.
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Now that we are dealing with arc flow, i.e. flow over individual actions in a
deterministic shortest path problem Sdet, we can decompose it into flow over
plans and cycles [Ahuja, Magnanti, and Orlin 1993, p. 80]. So, given the set
of all plans Φ and the set of all cycles W on Sdet, we can express any flow
ys,a.s′ as

ys,a.s′ =
∑

f∈Φ∪W

λf · δs,a.s′(f)

where λf is the variable that represents the amount of flow we route through
plan/cycle f , and the indicator function δs,a(f) is a constant denoting how

many times s
a.s′−−−→ s′ occurs in f . Since we are considering plans and cycles

–which do not allow the repetition of actions– this is

δs,a(f) =

{
1 if s

a.s′−−−→ s′ occurs in f

0 else.

This equivalence allows us to get a new SLE by substituting any occurrence
of the equivalence in SLE 2. We notice however, that the flow constraints in
SLE 2 are redundant in our new SLE, since plans and cycles must inherently
obey flow constraints. But now, we must fix the amount of flow coming into
the network, which we can do by adding a convexity constraint to the plans.
Note that the convexity constraint does not include cycles. This is because
we do not explicitly want flow to pass through cycles, they are only present
to make the regrouping constraints feasible, since plans cannot have cycles
but policies can. After this process, we get SLE 3.

(SLE3)
λf ≥ 0 ∀f ∈ Φ ∪W (C1)∑
φ∈Φ

λφ = 1 (C2)∑
f∈Φ∪W

λf · δs,a.hub(s,a)(f)

P (hub(s,a)|s,a)
=

∑
f∈Φ∪W

λf · δs,a.s′(f)

P (s′|s,a)

∀s ∈ S, a ∈ A>1(s), s′ ∈ spoke(s, a) (C3)

We claim that this transformation retains equivalence.

Lemma 2 SLE 2 is equivalent to SLE 3

Proof 2 We rely on theorem 3.5 from [Ahuja, Magnanti, and Orlin 1993,
p. 80], which gives us the property that arc flow can in general be decomposed
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into flow over paths and cycles. We particularise the theorem to arc flow
on SSPs. The initial state s0 is a deficit node, and the remaining closed
states are bound by flow preservation constraints. We assume π to be proper,
which means only goal states may be excess nodes. Subsequently, the paths
generated by the algorithm are in fact plans. Therefore, the arc flow solution
of SLE 2 can be expressed in terms of plans and cycles, and is thus a solution
for SLE 3.

The same theorem immediately gives us that plans and cycles can be expressed
in terms of arc flow, and so a solution for SLE 3 gives us an optimal solution
for SLE 2.

So, a solution for SLE 3 can be transformed into a solution for SLE 2, which
in turn can be transformed into a solution for SLE 1. By itself, this new
formulation is impractical, since it becomes infeasible to compute Φ and
W for larger problems. However, this formulation is amenable to column
generation, as we shall discuss in finding the optimal policy.

5.3 Optimal policy as sum of plans and cy-

cles

By setting up a system of linear equations that evaluates a policy, we have
laid the groundwork for a linear program capable of finding the optimal
policy. We only need to slightly modify SLE 3 to obtain the master problem.
Then, we discuss how column generation can be used to solve it.

5.3.1 Master Problem

The set up for our problem is as follows:

� given an SSP S, we want to find the best policy in terms of plans and
cycles

� we assume that S has no dead ends, and so the optimal policy must be
proper.

Knowing that the optimal policy must be proper, we can use very similar
arguments to the ones we used to transform the network flow based evaluation
SLE 1 into the plan and cycle based evaluation SLE 3, to now transform the
dual LP 6 which finds optimal policies with network flow into an LP that
finds optimal policies in terms of plans and cycles.
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As the arguments are virtually identical, we omit them. However, we do
need to consider the difference that the dual LP has an objective. It gets
transformed as such ∑

s∈S,a∈A(s)

xs,a · C(s, a)

↓∑
s∈S,a∈A(s),
s′∈supp(s,a)

ys,a.s′ · C(s, a . s′)

↓∑
f∈Φ∪W

∑
s∈S,a∈A(s),
s′∈supp(s,a)

λf · δs,a(f) · C(s, a)

↓∑
f∈Φ∪W

λf · C(f)

where C(f) is the cost of plan or cycle f , as given by the sum of the action
costs, i.e.

C(f) =
∑

si
ai.si+1−−−→si+1∈f

C(si, ai . si+1) =
∑

s∈S,a∈A(s)
s′∈supp(s,a)

δs,a(f) · C(s, a).

Note that the cost of a cycle considers the cost of each action only once.

The ensuing linear program is given in LP 9.

minimise
∑

f∈Φ∪W

λf · C(f) (LP9)

subject to λf ≥ 0 ∀f ∈ Φ ∪W (C1)∑
φ∈Φ λφ = 1 (C2)∑

f∈Φ∪W

λf · δs,a.hub(s,a)(f)

P (hub(s,a)|s,a)
=

∑
f∈Φ∪W

λf · δs,a.s′(f)

P (s′|s,a)

∀s ∈ S, a ∈ A>1(s), s′ ∈ spoke(s, a) (C3)

This formulation can be interpreted as a network flow optimisation problem,
where we route flow through plans and cycles – the amount of flow routed
through plan or cycle f is indicated by the variable λf . Constraints have the
following names and semantics:
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� (C1) gives non-negativity constraints, since a plan or action can not
have negative flow routed through it

� (C2) is the convexity constraint, which ensures that our plans are a
convex sum – this encodes that there should be a flow of 1 pumped
from start to end

� (C3) are called the regrouping constraints which ensure that flow is
routed through plans and cycles in accordance to the probabilities on
the SSP; as discussed earlier.

This allows us to refer to particular constraints, e.g. the regrouping constraint
on s, a, s′ is called regroup(s, a, s′).

5.3.2 Column Generation

LP 9 optimises over the entire set of plans Φ and cycles W , which becomes
impossible to even explicitly enumerate as the problem increases in size.
This is precisely the kind of problem for which column generation is useful,
so we apply it. To obtain the reduced master problem we do not change any
constraints, but allow the set of plans and cycles to be incomplete, i.e. we
set up the reduced sets Φ̂ ⊆ Φ and Ŵ ⊆ W . Then, we get LP 10.

minimise
∑

f∈Φ̂∪Ŵ

λf · C(f) (LP10)

subject to λf ≥ 0 ∀f ∈ Φ̂ ∪ Ŵ (C1)∑
φ∈Φ̂ λφ = 1 (C2)∑

f∈Φ̂∪Ŵ

λf · δs,a.hub(s,a)(f)

P (hub(s,a)|s,a)
=

∑
f∈Φ̂∪Ŵ

λf · δs,a.s′(f)

P (s′|s,a)

∀s ∈ S, a ∈ A>1(s), s′ ∈ spoke(s, a) (C3)

In order to determine which plans or cycles to add as columns we need to
solve the pricing problem at each iteration of column generation. Suppose
that the reduced master problem has been solved, and we have the vector
of dual variables ∆∗ from the optimal solution. Note that we denote dual
variables associated with a constraint c by ∆∗c . For example, the regrouping
constraint for si, ai ∈ A(si), sj ∈ supp(si, ai) is given by ∆∗regroup(si,ai,sj)

. We
want to find a plan or cycle with negative reduced cost, which is in our
problem given by

rc(f,∆∗) = C(f)− rc-hubs(f,∆∗) + rc-spokes(f,∆∗)− rc-convexity(f,∆∗)
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where

rc-hubs(f,∆∗) =
∑

s
a.s′−−−→s′∈f :s′=hub(s,a)

 ∑
s′′∈spoke(s,a)

λf · δs,a(f)

P (s′|s, a)
·∆∗regroup(s′,a,s′′)


rc-spokes(f,∆∗) =

∑
s

a.s′−−−→s′∈f :s′∈spoke(s,a)

λf · δs,a(f)

P (s′|s, a)
·∆∗regroup(hub(s,a),a,s′)

rc-convexity(f,∆∗) =

{
∆∗convexity if f ∈ Φ

0 if f ∈ W .

Observe the structure of rc(f,∆∗) – we can factor out summations over states
and actions in the plan or cycle f to obtain

rc(f,∆∗) =
∑

s
a.s′−−−→s′∈f

(
C(s, a . s′) + rc-spoke(s, a . s′,∆∗)− rc-hub(s, a . s′,∆∗)

)
+ rc-convexity(f,∆∗)

where

rc-hub(s, a . s′,∆∗) =


∑

s′′∈spoke(s,a)

λf · δs,a(f)

P (s′|s, a)
·∆∗regroup(s′,a,s′′) if s′ = hub(s, a)

0 else

rc-spoke(s, a . s′,∆∗) =

{
λf ·δs,a(f)

P (s′|s,a)
·∆∗regroup(hub(s,a),a,s′) if s ∈ spoke(s, a)

0 else

rc-convexity(f,∆∗) =

{
∆∗convexity if f ∈ Φ

0 if f ∈ W .

With this new cost, we can create a new deterministic planning problem that
reflects the pricing cost. To do this, first consider the all-outcomes determin-
isation of S to get Sdet = 〈S, s0, G,A, T, C〉. Then, we construct a new
negative-weighted deterministic planning problem P = 〈S, s0, G,A, T, C

′〉
which is identical to Sdet except in the cost. The cost of P is given by

C ′(s, a . s′) = C(s, a . s′) + rc-spoke(s, a . s′,∆∗)− rc-hub(s, a . s′,∆∗).

This cost is not complete yet, because we must also apply a shift of rc-convexity(f,∆∗)
to plans and cycles – noting that this expression is 0 for cycles.
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Now, if we find a plan or cycle f such that its cost on P scaled by the
convexity constraint is negative, i.e. if

C ′(f) + rc-convexity(f,∆∗) < 0,

then we know that f has a negative reduced cost, and thus will improve the
objective of our reduced master problem if we add it. We say that a solution
for the pricing problem P is such a plan or cycle.

So far we have not addressed the issue that using a reduced set of plans and
cycles means there is no guarantee that the RMP is feasible. Consider the
first iteration of our algorithm – we propose that Φ̂ ∪ Ŵ = {φ} where φ is
some plan. If the casted plan πφ is not closed, our RMP is infeasible. There
are multiple ways we can deal with this case, but for now we use Farkas cost
which –in a similar way to the reduced cost– lets us find plans and cycles
that help to make the problem feasible. The reduced and Farkas costs are
structurally nearly identical, so we omit the derivation. The Farkas cost fc
is given by

fc(f,∆∗) =
∑

s
a.s′−−−→s′∈f

(
fc-hub(s, a . s′,∆∗)− fc-spoke(s, a . s′,∆∗)

)
− fc-convexity(f,∆∗)

where

fc-hub(s, a . s′,∆ray) =


∑

s′′∈spoke(s,a)

λf · δs,a(f)

P (s′|s, a)
·∆ray

regroup(s′,a,s′′) if s′ = hub(s, a)

0 else

fc-spoke(s, a . s′,∆ray) =

{
λf ·δs,a(f)

P (s′|s,a)
·∆ray

regroup(hub(s,a),a,s′) if s ∈ spoke(s, a)

0 else

fc-convexity(f,∆ray) =

{
∆ray

convexity if f ∈ Φ

0 if f ∈ W ,

where ∆ray
c refers to the dual ray associated with constraint c.

We construct the Farkas problem F = 〈S, s0, G,A, T, C
′′〉. As with P, all

elements of the tuple except the cost are identical to Sdet. The cost C ′′ is
now given by

C ′′(s, a . s′) = fc-hub(s, a . s′,∆ray)− fc-spoke(s, a . s′,∆ray).
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Now, we know that a plan or cycle f that satisfies

C ′′(f)− fc-convexity(f,∆ray) < 0

corresponds to a column that should be added to Φ̂∪ Ŵ – we call such plans
and cycles solutions to F.

Finally, we have all components for our column generation algorithm. We
populate our initial reduced set Φ̂ ∪ Ŵ with some plan, try to solve the
RMP, solve the pricing or Farkas cost if the RMP was feasible or infeasible,
respectively, and repeat until the pricing problem yields no solution. See
algorithm 3.

5.3.3 Give-up action

An alternative way to deal with infeasible reduced master problems is by
introducing a single give-up action, which allows our planner to “give up”
rather than have an infeasible problem. This is implemented by adding
an artificial plan φgive-up to Φ̂, where φgive-up goes from starting state s0

straight to some goal, and the cost of this plan is the dead-end penalty,
i.e. C(φgive-up) = D. This is essentially a big-M approach for feasibility
[Lübbecke and Desrosiers 2005, pp. 4–5].

This modification means that our RMP is never infeasible, since λφgive-up
= 1

is always a solution. So, we can remove the steps for Farkas pricing from our
algorithm.

If column generation terminates and our optimal solution has λφgive-up
= 0

then the solution is clearly optimal for our original formulation in LP 9,
and thus yields an optimal policy for S. This is guaranteed as long as
we select our dead-end penalty to be sufficiently large, such that our algo-
rithm prefers to construct a closed proper policy rather than giving update
[Kolobov, Mausam, and Weld 2012].

5.3.4 Allowing leakage for unavoidable dead ends

Now, we generalise a single give-up action into give-up actions for all effects.
This modification has benefits to our algorithm as an online solver, and
enables it to solve problems in the absence of the reachability assumption
(assumption 1).

The generalisation of the single give-up action can also be interpreted as
“leakage” in the network flow. So, we allow leakage on all actions, but such
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Algorithm 3: Basic PBColgen

Input: SSP S = 〈S, s0, G,A, P, C〉
Output: Optimal usage for plans and cycles
// Set up initial RMP

1 φ← some plan on all-outcomes determinisation Sdet

2 Φ̂ ∪ Ŵ ← {φ}
3 update RMP with Φ̂ ∪ Ŵ

// Run column generation iteration

4 while true do
5 try to solve RMP
6 if RMP is infeasible then
7 construct Farkas problem F with ∆ray

8 plan/cycle f ← solution of F
9 if f is a plan then

10 Φ̂← Φ̂ ∪ {f}
11 if f is a cycle then

12 Ŵ ← Ŵ ∪ {f}

13 if RMP is feasible then
14 construct pricing problem P with ∆∗

15 if P has no solution then
16 return solution for RMP

17 plan/cycle f ← solution of P
18 if f is a plan then

19 Φ̂← Φ̂ ∪ {f}
20 if f is a cycle then

21 Ŵ ← Ŵ ∪ {f}
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leakage is penalised by a dead-end penalty D in the objective as before. We
implement this by adding variables for each possible effect of each applica-
ble action, introducing them to regrouping constraints in such a way that
give-up actions can be selected if the problem would otherwise be infeasible,
and finally adding these new variable’s cost to the objective as a disincen-
tive.

The hub-and-spoke formulation of regrouping constraints becomes unwieldy
for this. If Φ̂ ∪ Ŵ ( Φ ∪W then in∑

f∈Φ̂∪Ŵ

λf · δs,a.hub(s,a)(f)

P (hub(s, a)|s, a)
=

∑
f∈Φ̂∪Ŵ

λf · δs,a.s′(f)

P (s′|s, a)

for some s ∈ S, a ∈ A(s), s′ ∈ spoke(s, a), it is not clear which side of
the expression is larger. This makes it impossible to express the difference
with one non-negative variable, so instead we must introduce a non-negative
leakage variable to both sides. (Note that the variables must be non-negative,
otherwise their contribution to the objective wouldn’t make sense.) In short,
the hub-and-spoke formulation would force us to add two constraints for each
leakage variable, which is undesirable in terms of performance.

It is more convenient to use the one-against-all formulation. Consider the
following constraint schema∑
f∈Φ̂∪Ŵ

λf · δs,a.s′(f) + give-ups,a.s′

P (s′|s, a)
=

∑
s′′∈supp(s,a)

give-ups,a.s′′ +
∑

f∈Φ̂∪Ŵ

λf · δs,a.s′(f)


for all s ∈ S, a ∈ A(s), s′ ∈ supp(s, a). As the give-ups occur on both sides,
these constraints are always satisfiable.

By allowing the planner to give up on any state we gain stronger anytime
performance compared to the other formulations, since it is able to present
partial solutions immediately. Even in the first iteration with a single plan φ
in Φ̂∪ Ŵ , this formulation is able to return the casted plan πφ – whereas the
Farkas cost version would potentially need to solve multiple Farkas problems
to make the policy closed and the RMP feasible; and the version with a single
give-up action would return the useless policies that use the give-up action
until the real policy can be closed.

For the final advantage of this formulation, we drop assumption 1 – i.e. we
allow dead ends both avoidable and unavoidable. The other two formulations
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are able to deal with avoidable dead ends in the sense that they will be
able to terminate and find an optimal solution that avoids them. If we
consider problems with unavoidable dead ends, this is no longer true. This
formulation however, is able to provide a policy given unavoidable dead ends
– in particular, setting up finite cost penalties for give-ups and dead ends
suggests that this formulation will optimise improper policies with respect
to the expected cost with finite penalty metric given in definition 16.

5.3.5 Extracting a policy

Now we show how a solution for the final iteration can be transformed into
an optimal policy, and in some cases a non-final iteration can be transformed
into some policy; however, the amount of flow being routed through plans
and cycles does not give this immediately.

To extract a policy, we set π(s) = a if λf > 0 for some f where s
a.s′−−−→ s′

occurs in f , for some s′ ∈ supp(s, a). Note that the policy being represented
by the RMP solution may be stochastic. This is not a problem, as an optimal
stochastic policy πstoch can be transformed into an optimal deterministic
policy πdet (on SSPs) by arbitrarily picking one of the stochastic policies
non-zero probability actions, i.e. πdet(s) = some a where πstoch(s, a) > 0.
To justify this, recall that the original dual LP (LP 6) finds a deterministic
policy because we will receive a vertex as a solution (section 5). Stochastic
policies lie on an edge (or facet in higher dimensions) rather than a vertex,
which means that they are convex combinations of deterministic policies. By
selecting only one action with non-zero flow we select one of the vertices
associated with the edge on which the optimal stochastic policy lies, and we
are thereby guaranteed an optimal solution.

To make this method more efficient we only consider the policy envelope by
performing a depth-first search where successor states of s are the possible
effects of newly defined π(s). See algorithm 4 for details.

5.4 Solving the pricing problem

The column generation algorithm relies on a solver that guarantees complete-
ness on the reduced cost and Farkas problems, and it is clear that the per-
formance of our algorithm depends on this algorithm being efficient. Here,
we will not distinguish between the reduced cost pricing problem and the
Farkas pricing problem since the problem structures are identical. So, given
a pricing problem where negative costs and negative cycles are possible, we

53



Algorithm 4: Policy extraction algorithm

Input: SSP S = 〈S, s0, G,A, P, C〉, PBColgen solution over λ
Output: Corresponding policy π
// Determine which state action pairs have positive flow

1 has-flow(s, a)← false ∀s ∈ S, a ∈ A(s)

2 for plan or cycle s0
a0−−−→ · · · sn = f ∈ Φ̂ ∪ Ŵ do

3 if λf > 0 then
4 has-flow(si, ai)← true ∀i ∈ [0, n− 1]

// Traverse through policy envelope, and define open states (if we

can)

5 frontier← {s0}
6 seen← {s0}
7 while frontier 6= ∅ do
8 pop frontier into state t

// Define policy by first action with positive flow

9 for a ∈ A(t) do
10 if has-flow(t, a) then
11 π(t)← a
12 break out of for loop

// Add effects of π(t) to the frontier

13 for s′ ∈ supp(t, π(t)) \ seen do
14 frontier← frontier ∪ {s′}
15 seen← seen ∪ {s′}

16 return π
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must find a negative plan or cycle, if it exists. Note that we do not care
about the most negative solution, we only need to guarantee that we find a
negative solution if it exists.

5.4.1 Bellman-Ford

The classic algorithm for finding shortest paths on graphs with negative
weighted edges and detecting negative cycles is the Bellman-Ford algorithm
[Cormen et al. 2009, p. 651]. This is a dynamic programming algorithm that
iteratively updates the cheapest path to a goal. Note that this algorithm is in
a sense the deterministic equivalent of the Value Iteration algorithm (section
3.1).

See the basic version of our adaptation of Bellman-Ford to pricing problems
in algorithm 5. Since we are not given a graph in the classic sense, rather
than iterating over edges we traverse all possible outcomes of each action.
This is in essence a traversal over the all-outcomes determinisation, but we
save computation by avoiding the explicit transformation.

To make this algorithm a bit more efficient for our particular problem we
added the following modifications.

We do not iterate over all s ∈ S, but rather we iterate over all s that
have best-cost(s) 6= ∞. This makes sense because any successor of s with
best-cost(s) =∞ will not be updated, and this saves us a lot of computation
in large problems, since we implicitly only consider the reachable space.

Another simple optimisation is to check in each iteration of the outer loop if
any states have had their best-cost updated. If not, we know that we have
converged and there are no negative cycles, and so we can terminate.

Upon termination our algorithm returns a negative cycle if it exists, and oth-
erwise the cheapest plan φ. If the φ does not satisfy C(φ)+rc-convexity(φ,∆∗) <
0 (or the equivalent Farkas cost), then we know that there is no solution.

5.4.2 Modified Bellman-Ford

The Bellman-Ford algorithm searches for the optimal plan, but we only re-
quire some negative plan or cycle. This difference in problem specification
enables us to modify Bellman-Ford in a way that provides substantial speed-
up.

First, we make the observation that ∆∗convexity > 0 for any RMP. Remember
that dual variables represent shadow costs, i.e. how much we can improve
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Algorithm 5: Bellman-Ford on SSP with Cycle Extraction

Input: SSP S = 〈S, s0, G,A, P, C〉
Output: Shortest plan or a negative cycle
// Initialise maps

1 parent(s) = ∅ ∀s ∈ S
2 causal-action(s) = ∅ ∀s ∈ S
3 best-cost(s) =∞ ∀s ∈ S \ {s0}
4 best-cost(s0) = 0

// Find minimal plans

5 do |S| times
6 for s ∈ S do
7 for a ∈ A(s) do
8 for s′ ∈ supp(s, a) do
9 if best-cost(s) + C(s, a) < best-cost(s′) then

10 parent(s′)← s
11 causal-action(s′)← a
12 best-cost(s′)← best-cost(s) + C(s, a)

// Check for negative cycles

13 for s ∈ S do
14 for a ∈ A(s) do
15 for s′ ∈ supp(s, a) do
16 if best-cost(s) + C(s, a) < best-cost(s′) then
17 return reconstructed cycle from s′

18 cheapest-goal← argmin
s∈G

best-cost(s)

19 return reconstructed plan from cheapest-goal
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the solution by relaxing the associated constraint. The constraint associated
with convexity is what forces us to pump any flow through plans, so relaxing
it enables the cheapest possible solution of pumping zero flow through all
plans and cycles. As we require the base SSP S to have positive costs, the
objective associated with pumping flow through any plans or cycles must
be positive, and so the convexity constraint must be active, giving us that
indeed ∆∗convexity must be positive.

This observation makes it safe to set the initial cost of s0 to ∆∗convexity, i.e.
best-cost(s0) = ∆∗convexity. This means that plans that detected by our algo-
rithm already have the plan shift included – and so, if a plan is negative we
know that it is a solution to the pricing problem.

The upshot of this change is that we can terminate as soon as a goal state
g has best-cost(g) < 0. When best-cost(g) < 0 we know that there is either
a negative plan that leads to g, or a negative cycle has formed, and there is
a plan from it to g. We can determine which case we are dealing with by
following the parents of g, and either case we can return a solution to the
pricing problem.

This early termination allows our algorithm to terminate before iterating
for |S| times. In practice, we found this to improve solving time dramati-
cally.

Note however, that Bellman-Ford even with our modification has a major
bottle-neck. In particular, the main bottleneck is deriving the upper bound
for the number of iterations |S|. In PPDDL formulations, the number of
states in the grounded SSP is exponential with respect to original problem,
but a lot of these are unreachable. We are only interested in the number of
states in the reachable space, but computing this becomes infeasibly expen-
sive in terms of time and memory for large problems.

5.4.3 A* and Admissible Heuristics

A* is the go-to planner for solving deterministic problems optimally [Russell
and Norvig 2010, p. 93]. Given an admissible heuristic A* guarantees that
it will find an optimal plan, and with sufficiently informative heuristics A*
has very strong performance.

However, A* is not able to detect cycles, and there is no work that we are
aware of that provides admissible and informative heuristics on problems
with negative costs.

Our solution to the former problem is to run A* as the sole deterministic
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solver in the absence of cycles; if our problem does contain cycles, we run A*
to try to find any cheap plans, and then run Bellman-Ford if A* failed to find
a plan with negative reduced cost. This approach guarantees completeness,
and can be substantially faster. Note that A* assigns a best cost to each
state, as determined by the shortest path to that state so far. This means
that we don’t have to restart Bellman-Ford from scratch, but we can “warm
start” it with the best-costs from A*. Such a warm start has no effect on the
classical Bellman-Ford algorithm since we need to iterate |S| times regardless,
but our modified version may benefit.

For the latter issue – the absence of admissible heuristics for problems with
negative costs, we introduce a simple heuristic. To construct an admissible
heuristic we want to find a lower bound for the cost of the cheapest plan.
The cheapest possible plan on the pricing problem would take all negative
cost actions, and ignore the positive cost actions, i.e.

m =
∑

s∈S,a∈A(s),s′∈supp(s,a)

min{Cpricing(s, a . s′), 0}.

However, we are considering plans, so we know that each state can only be
visited once. So, for each action, we only need to consider one effect rather
than all – in particular the most negative effect:

n =
∑

s∈S,a∈A(s)

min
{

min
s′∈supp(s,a)

{Cpricing(s, a . s′)}, 0
}
.

It is clear that the heuristic

hzero
− (s) =

{
0 if s ∈ G
n else

∀s ∈ S

is admissible.

Note that there is an additional difficulty in applying A* to problems that
allow negative cycles. The A* algorithm typically does not assume a consis-
tent heuristic, and therefore can not be sure that it has the cheapest path to
any particular state. So, if A* detects an expanded state s at a cheaper cost
than when s was expanded, we must re-add s to the frontier and re-expand
it to guarantee optimality. In the presence of negative cycles we can not re-
expand nodes, otherwise negative cycles will trap A* in an infinite loop. This
issue can be fixed by setting a cap on the number of times a state may be
re-expanded, but we add a cycle detection mechanism to A*. Now, when A*
finds an expanded state s with cheaper cost, it traverses s’s parents to check
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if we have detected a cycle. This becomes expensive on larger problems, but
has the benefit of being able to detect and return cycles before termination
of the main algorithm.

5.4.4 Combining A* Heuristics

Weighted A* [Wilt and Ruml 2012] is a technique that iterates through
heuristics from most informative but not admissible, to less informative but
eventually admissible. This is achieved by scaling an admissible heuristic h
by w ∈ (1,∞), and running A* with this scaled non-admissible heuristic.
Then, we reduce w and run A* again – until we reach w = 1, at which
stage we guarantee the optimal solution. Note that solutions for a previous
heuristic are not thrown away, but rather the shortest paths are kept – since
they actual cost does not change, and the frontier is updated with the new
cost. This approach is able to provide a not-necessarily-optimal solution
quickly due to the informative heuristic, and eventually converges to optimal
as we use admissible heuristics.

This behaviour is desirable for our problem, as we want some plan of negative
cost – ideally as quickly as possible, and at the end we want a guarantee that
we have not missed any. So, we apply a similar technique to weighted A*: we
iterate through various heuristics from most informative but non-admissible,
to admissible. This allows us to compute strong heuristics like hadd and
hmax for the determinisation of our SSP, and apply these as non-admissible
heuristics to the pricing problem.

5.4.5 Depth Probe Optimisation

In all interesting problems, the shortest plan through the determisation will
have probabilistic effects that branch off and lead to effects that the plan
did not account for. There are certain patterns of “detours” from the plan
caused by probabilistic effects which occur frequently. We have introduced
and motivated the fix and undo actions in section 3.5, and we introduce two
more cases that are important for our algorithm but not Robust-FF. These
are self-cycles and skips.

Given a plan or a cycle, we call it the pivot. If there is a probabilistic effect
in one of the pivot’s actions that takes us to an effect that was previously
in the pivot, we call it a self-cycle. If we are looking at a pivot plan, and a
probabilistic effect takes us to a later state of the plan, we call it a skip. See
figure 5.2.
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Figure 5.2: Simple SSPs demonstrating self-cycles and skips.

Now, we introduce the concept of outside length, which indicates how many
states that are not part of the pivot must be visited before returning to a
state in the pivot. So, self-cycles and skips have outside length 0 because
the detour immediately takes us back to the pivot without any extra states.
Undo and fix actions have an outside length of 1, as they visit one state that
was not in the pivot.

These components are very likely to be useful in the reduced master problem.
So, each time we add a new plan or cycle to the reduced master problem we
can treat it as a pivot, and perform a graph search to discover components
of outside length n, extrapolate the entire plans and cycles that belong to
these components, and then add these as columns also.

To give some more intuition for the notion of outside length, consider figure
5.3. Suppose the pivot plan is

φ = s0

a0.s1−−−→ s1

a1.g−−−→ g.

If we check for an outside length of 0, we will discover

� the deterministic action a0 . g which corresponds to a skip, and intro-
duces the plan φskip = s0

a0.g−−−→ g

� deterministic action a1.s1 which corresponds to the self-loopWself-loop =

s1

a1.s1−−−→ s1

� deterministic action a1.s0 which corresponds to the self-cycleWself-cycle =

s0

a0.s1−−−→ s1

a1.s0−−−→ s0.
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Figure 5.3: SSP that demonstrates which plans and cycles are added with
various outside lengths.

If we check for outside length of 1, we will additionally discover

� the undo action a2 . s0 which corresponds to the new cycle s0

a0.s2−−−→
s2

a2.s0−−−→ s0.

5.4.6 SSPs without Cycles

We bring to attention an important subset of SSPs which allows our algo-
rithm to make improvements to performance. Since in general our pricing
problem may have negative cycles, this unfortunately eliminates all current
deterministic shortest path planners. If we only consider acyclic SSPs, we no
longer have to worry about negative cycles in the determinisation, and then
running A* with an admissible heuristic will necessarily find the cheapest
plan – so PBColgen finds the optimal policy without requiring the addi-
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tional runs of Bellman-Ford. Furthermore, this allows us to transform the
solution into a regular deterministic planning problem, which in turn means
we can use strong deterministic solvers – which is what makes FF-Replan
and Robust-FF so effective. This is left as future work.

It is important to note that the subset of acyclic SSPs remains interesting
because any problem with a monotonically strictly increasing or decreasing
resource or counter is acyclic. For instance, any routing problem that models
fuel consumption without refuelling actions, such as commercial flight routing
[Geisser et al. 2020]. Another example is the class of finite-horizon SSPs.
These are modelled with a time-step, which increases after each action is
applied, and so they are acyclic.

5.5 Properties of PBColgen

Here we summarise the properties of PBColgen.

� We consider PBColgen a replanner because it uses deterministic plan-
ners to construct a policy, and is able to return open policies if not
enough time is given to find a closed policy [Little and Thiébaux 2007].

� Assuming that the SSP has no unavoidable dead ends, and the deter-
ministic solver returns a negative plan or cycle if it exists, then PB-
Colgen will find the optimal solution, and upon termination of column
generation we know that the solution is optimal.

� If the SSP has unavoidable dead ends and we use the generalised give-up
formulation (section 5.3.4), and the deterministic planner is complete,
then PBColgen will find the policy that is optimal according to the
expected outcomes with finite penalty cost (definition 16).

� Since PBColgen is an iterative algorithm, it is possible to extract a pol-
icy before column generation has terminated. In this sense we can use
PBColgen as an online solver. Note that the generalised give-up formu-
lation is best-suited for this, as it can return partial policies, whereas
the others must make their policy proper before giving a meaningful
solution.

� Note that the linear programming framework is quite flexible, and al-
lows us to adapt our algorithm to slightly different problems. For in-
stance, if we are trying to find a policy which simply maximises the
probability of reaching a goal, regardless of the cost, we can with easily
modify the objective to minimise give-ups.
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Chapter 6

Empirical Evaluation

6.1 Methodology

We investigate the online performance of PBColgen with respect to the other
replanners we have introduced, namely FF-Replan (section 3.4) and Robust-
FF (section 3.5).

To do this, we fixed each planner’s maximum runtime and maximum memory
usage, as well as an interval of t seconds. Each time that t seconds passed
we recorded the best current policy of each planner. We achieved this by the
following procedure:

1. start timer

2. run planner with a t second soft deadline

3. stop timer

4. record the current policy and timestamp

5. if planner has terminated, reached max. time, or reached max. memory
usage: stop – otherwise, loop back to 1.

We used a soft deadline because there are subroutines of planners which can
not be interrupted, in the sense that terminating them will require us to run
it again from the start, e.g. solving a deterministic problem with FF, or
solving an LP with a commercial solver. Such interrupts cause two issues:
first, a solver may be disadvantaged because it has to perform an expensive
computation from scratch; second, a solver may get stuck in a single itera-
tion, because its subroutine is not given enough time to terminate. Giving
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planners leniency with soft deadlines means that observed timestamps need
not match up with our desired “regular” time intervals. To resynchronise
them as much as possible we kept track of the amount of time that a planner
exceeded its soft deadline, and reduced its next time slot accordingly. To pro-
cess the data we made sure that each collected data point’s solution quality
was only attributed to time intervals that occurred after that measurement’s
timestamp. Time intervals τ that had no data because of overtime were
filled in with the value of the data point with the largest timestamp less than
τ .

We investigated three measures of policy quality:

� probability of reaching goal

� FP cost (definition 16)

� MCMP cost (definition 17).

Each of these was computed with the policy evaluation LP 8. The optimal
values on problems without unavoidable dead ends were computed by running
LRTDP. On problems with unavoidable dead ends, we first computed the
maximal value of reaching a goal pmax, and then solved a modified version of
the dual LP (LP 6), where the sink constraint uses this value of pmax rather
than 1, and the flow preservation constraints are relaxed to be in(s) ≥ out(s).
The MCMP cost was then computed by summing the flow on actions scaled
by their costs. The FP was then given by the following equality

FP cost = MCMP cost +D · (1− pmax)

where D is the dead end penalty [Trevizan, F. Teichteil-Königsbuch, and
Thiébaux 2017]. Note that in general this is an inequality, but on our prob-
lems we know by observation that our choice of D = 500 is large enough
so that the expected cost given finite penalty does not truncate traces that
exceed D in cost, and so we have equality.

All experiments were performed on an Intel i5-8600k (3.60GHz). To make
better use of resources we parallelised experiments. So, experiments were
either distributed among 5 worker processes, each with 1 dedicated core and
2.6GB RAM; among 3 worker processes, each with 1 dedicated core and
5GB RAM; or among 2 worker processes, each with 1 dedicated core and
7GB RAM, depending on the size of the problem.

Note that the size of time intervals, maximum planner time, and maximum
cutoff time was selected according to each problem.
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6.2 PBColgen parameters

In our discussion of PBColgen in chapter 5, we introduced numerous alter-
native formulations and optimisations. Due to time restrictions we could not
feasibly explore all combinations, so we explore over the following parame-
ters.

� (formulation) In all runs we used the generalised give-up formulation
presented in section 5.3.4. This is because of this formulation’s benefits
as an online solver, and ability to produce solutions on problems with
unavoidable dead ends.

� (depth probe optimisation) Overall, we tested runs with the depth
probe optimisation (as presented in section 5.4.5) set to

– off

– on with outside length set to 0

– on with outside length set to 1

– on with outside length set to 2.

For the sake of brevity, we refer to the depth probe optimisation setting
as D.P.O. throughout the results.

� (deterministic solver stack) We discussed in section 5.4.3 that PBCol-
gen can use our Bellman-Ford variant as the sole determistic solver, or
we can run A* first –with a variety of combinations of heuristics– or in
problems without cycles it makes sense to run A* by itself. We will rep-
resent the list of solvers by the expression s1 [(h1)], s2 [(h2)]...

where s1 is the first deterministic solver we use, s2 is the second, etc.
and where applicable, i.e. when using A*, hn refers to the heuristic
that was used by the n-th deterministic solver. Note that in this se-
quence of solvers each solver uses the partial solution of its predecessor,
as described in section 5.4.4.

So, all runs may be assumed to be with the generalised give-up formulation,
and the depth probe optimisation and deterministic solver settings will be
provided.

Note that different experiments were performed with different combinations
of parameters, as we used domain knowledge to find settings that yielded
most interesting behaviours. As a reference point we used the basic version
of PBColgen in each experiment – that is, PBColgen with the depth probe
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optimisation disabled, and only our modified Bellman-Ford as the determin-
istic solver.

6.3 Test Problems

We performed experiments on the following domains from the international
probabilistic planning competition (IPPC): tireworld, blocksworld, and ex-
ploding blocksworld [Younes et al. 2005].

6.3.1 Blocksworld

Blocksworld encodes the following problem: given a set of blocks on a table,
the agent is tasked to put the blocks on top of each other in a particular
configuration. Note that the blocks may already be partially stacked on top
of each other at the start. For example, suppose we have blocks A and B, and
to begin with B is on top of the table, and A is on top of B. Our agent may be
tasked to construct the following configuration: B is on top of A. The agent
must then pick up A, place it on the table, pick up B, and place it on top
of A. The probabilistic variant we are considering introduces a probability
0.25 of the block “slipping” out of the agent’s grasp and falling on the table.
In addition, our variant allows the agent to pick up a tower of two blocks at
once, and place this tower on the table or on top of another block. However,
picking up a tower fails with 0.9 probability in which case nothing happens,
and when placing a tower on top of another block there is a 0.9 probability
of it “slipping” and falling to the table as a tower, i.e. the two blocks stay
in the same configuration to each other, but are now on the table.

The difficulty of the problem depends on the number of blocks, and how
many actions we need to perform to get from the initial to the goal configu-
ration.

Note that blocksworld has no dead ends.

6.3.2 Tireworld

Tireworld’s scenario is this: the agent must drive a car from a starting city
to a destination city. There are numerous cities on the way, and the agent’s
available actions are to drive to one of the neighbouring cities. The catch is
that each time the agent drives, there is a 0.5 probability of getting a flat
tyre. In some –not all– cities the agent may load a spare tyre. If the agent
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gets a flat tyre and has a spare loaded, it may replace its flat, otherwise it is
stuck.

The difficulty of a tireworld problem increases exponentially as we increase
the size of the problem.

Note that tireworld has dead ends, as the agent may get a flat tyre without
having a spare. These dead ends are avoidable (by loading a spare).

Note also that tireworld has no cycles. This is because roads only go one
way towards the goal such that the agent can not backtrack, and a tyre can
only be loaded in a city once.

This domain was designed to be a hard problem for determinisation based
planners, in particular replanners. The shortest path from the starting city
to the goal city contains no cities in which the agent can pick up a spare
tyre, and the cities with tyres available are laid out in such a way that the
agent needs to take a detour. This arrangement is intended to trick planners
that use determinisation into the cheapest policy which is least likely to
succeed.

6.3.3 Exploding blocksworld

Exploding blocksworld is a modification of blocksworld, where the possibility
of “slipping” is removed, and instead blocks can irreversibly explode. That
is, each block has a “detonator” attached, which has a particular probability
of exploding each time that block is placed down. Such an explosion destroys
the block or table beneath it, and once a detonator has exploded it can no
longer explode.

As with blocksworld, the difficulty of the problem depends on the number of
blocks, and how many actions are needed to move from the starting arrange-
ment to the goal arrangement.

The original formulation of our exploding blockworld domain had the prob-
ability of detonation set to 2

5
and 1

10
depending on whether the agent places

the block on a table or another block. Due to issues with numerical insta-
bility, this made the problem infeasible for our LPs. So, we had to modify
the exploding blocks-world domain to use fractional values that are easier
to represent with floating point arithmetic. For this purpose we changed all
probabilities to 0.5.

Note that exploding blocksworld can have unavoidable dead ends – we always
risk exploding a block that is necessary in the goal configuration. So, some
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instances only have improper policies. This makes it more difficult to com-
pare the quality of solutions, which is why we present MCMP cost, expected
cost given finite penalty, and the probability of reaching a goal.

6.4 Results

Here we present the results of our experiments organised according to the
problem domain. In addition, we provide the domain specific planner set-
tings, and some initial observations.

6.4.1 Presentation

Note that the data presented in tables is complete for that particular exper-
iment, whereas for clarity, plots typically only show results from a subset of
planners.

In each table, we present information about the planner’s ability to con-
struct an initial policy, to converge to the optimal, and to terminate on the
given problem. Concretely, we tested each planner over 10 runs, and present
the following information about the planner’s construction of an initital pol-
icy:

� (count) the number of runs for which the planner was able to construct
an initial policy without exceeding its time and memory restrictions

� (avg. time) the mean average time to construct an initial policy over
the runs that were able to do so, with the 95% confidence interval

� (max. time) the maximum time to construct an initial policy over the
runs that were able to do so.

Information about convergence and termination is presented in the same
fashion, where a run terminates if the associated algorithm reaches its ter-
mination criterion, and a run converges if it outputs a policy with optimal
probability and MCMP cost until termination or the end of the experiment.
Note that PBColgen terminates when it has proved that its solution is opti-
mal, whereas Robust-FF terminates when 5000 simulations of the candidate
policy do not reach any undefined states. FF-Replan has no termination
criterion.

All plots were generated using the mean values of 10 runs. We use crosses to
denote the maximum termination time of each planner over all runs.
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6.4.2 Blocksworld

We performed experiments on two blocksworld problems, bw 5 and bw 6 with
5 and 6 blocks respectively. The associated information of each tested prob-
lem is presented in table 6.1.

max. time time intervals max. RAM
optimal

MCMP cost
optimal prob.

of reaching goal
optimal
FP cost

bw 5 30 secs 0.1 secs 2.6 GB 15.9444 1.0 15.9444
bw 6 15 mins 1 sec 2.6 GB 14.5833 1.0 14.5833

Table 6.1: Settings for blocksworld experiments.

For the results of bw 5 see figure 6.1 and table 6.2; and for bw 6 see figure
6.2 and table 6.3.

Blocksworld has the property that plans based on relaxations tend to perform
quite well, since the consequence of a block slipping or failing to move a
tower is minor. Indeed, FF-Replan and Robust-FF are able to provide near
optimal solutions almost instantaneously. PBColgen tends to be slower to
generate its first policy – while FF-Replan and Robust-FF already have a
policy and are working on closing it. However, we see that PBColgen does
not take substantially longer to catch up to the other replanners in terms
of quality. More importantly, PBColgen is the only planner able to find the
optimal solution. This shows the shortcomings of previous replanners even
in problems without dead ends.

6.4.3 Tireworld

We performed experiments on three tireworld problems, namely, tire 2,
tire 3, and tire 5 where the number of cities is 25, 48, and 120 respectively.
The settings for each experiment are provided in table 6.4.

max. time time intervals max. RAM
optimal

MCMP cost
optimal prob.

of reaching goal
optimal
FP cost

tire 2 60 secs 0.25 secs 2.6 GB 11.8594 1.0 11.8594
tire 3 30 mins 10 secs 5 GB 19.2178 1.0 19.2178
tire 5 10 mins 0.5 secs 7 GB 35.0137 1.0 35.0137

Table 6.4: Settings for tireworld experiments.

As this problem is acyclic, we can guarantee an optimal solution by running

69



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time in seconds

10

20

30

40

50

M
CM

P 
co

st

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time in seconds

0

50

100

150

200

250

300

350

400

Ex
pe

ct
ed

 v
al

ue
 w

/ d
ea

d-
en

d 
an

d 
re

pl
an

 p
en

al
ty

 =
 5

00

Optimal
FF-Replan
PBColgen - D.P.O. = 0, Det. Solvers = A* (h_add), BF
PBColgen - D.P.O. = 1, Det. Solvers = BF
PBColgen - basic
Robust-FF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time in seconds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 re
ac

hi
ng

 g
oa

l

0.0 0.2 0.4 0.6 0.8 1.0
Time in seconds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 re
ac

hi
ng

 g
oa

l (
zo

om
ed

 in
)

Figure 6.1: Solution quality as a function of time on problem bw 5 (aver-
aged over 10 runs). Measurements were recorded each 1

10
seconds, so each

half second interval on the plot contains 5 measurements. Crosses indicate
the max. termination time across runs – in the case of PBColgen this is a
guarantee of optimality. This plot considers only the first 3.5 seconds of the
30 second experiment, as all depicted planners plateau after that time. Note
that Robust-FF obscures FF-Replan.
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Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 0.18 ± 0.02 0.2 10/10 0.21 ± 0.04 0.3 10/10 2.13 ± 0.31 2.9

0 A* (hadd), BF 10/10 0.17 ± 0.03 0.2 10/10 0.20 ± 0.05 0.3 10/10 1.15 ± 0.18 1.6
0 BF 10/10 0.20 ± 0.00 0.2 10/10 0.97 ± 0.39 1.9 10/10 2.22 ± 0.98 4.6
1 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 0.19 ± 0.02 0.2 10/10 0.19 ± 0.02 0.2 10/10 2.20 ± 0.28 3.0
1 A* (hadd), BF 10/10 0.19 ± 0.02 0.2 10/10 0.19 ± 0.02 0.2 10/10 1.30 ± 0.14 1.6
1 BF 10/10 0.18 ± 0.02 0.2 10/10 0.30 ± 0.00 0.3 10/10 1.13 ± 0.10 1.4
2 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 0.20 ± 0.00 0.2 10/10 0.20 ± 0.00 0.2 10/10 1.93 ± 0.19 2.3
2 A* (hadd), BF 10/10 0.17 ± 0.03 0.2 10/10 0.17 ± 0.03 0.2 10/10 1.20 ± 0.11 1.4
2 BF 10/10 0.19 ± 0.02 0.2 10/10 0.30 ± 0.00 0.3 10/10 1.09 ± 0.06 1.3

off A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 0.13 ± 0.03 0.2 10/10 0.29 ± 0.02 0.3 10/10 2.78 ± 0.47 3.9

off A* (hadd), BF 10/10 0.13 ± 0.03 0.2 10/10 0.26 ± 0.03 0.3 10/10 1.69 ± 0.26 2.4
off BF 10/10 0.20 ± 0.00 0.2 10/10 1.88 ± 0.57 3.8 10/10 3.25 ± 1.22 7.9

FF-Replan 10/10 0.10 ± 0.00 0.1 0/10 - - 0/10 - -
Robust-FF 10/10 0.10 ± 0.00 0.1 0/10 - - 10/10 0.10 ± 0.00 0.1

Table 6.2: Summary of experimental results for bw 5. All presented averages
are taken over the runs that were successful –as indicated by count– and
are shown with the 95% confidence interval. For more information about
parameter settings for PBColgen see section 6.2, and for more information
about the way data is presented see section 6.4.1.

Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 1.20 ± 0.25 2.0 10/10 69.30 ± 40.94 183.0 9/10 206.67 ± 110.58 633.0

0 A* (hadd), BF 10/10 1.20 ± 0.25 2.0 10/10 4.50 ± 1.08 8.0 10/10 65.40 ± 12.76 97.0
0 BF 10/10 1.90 ± 0.19 2.0 10/10 17.00 ± 9.51 52.0 10/10 99.10 ± 28.35 204.0
1 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 1.70 ± 0.28 2.0 9/10 5.44 ± 4.56 22.0 8/10 91.38 ± 13.73 125.0
1 A* (hadd), BF 10/10 1.60 ± 0.30 2.0 10/10 4.40 ± 3.05 18.0 10/10 64.50 ± 17.52 130.0
1 BF 10/10 2.00 ± 0.00 2.0 10/10 4.80 ± 2.14 13.0 10/10 46.10 ± 6.03 64.0
2 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 2.00 ± 0.00 2.0 10/10 16.60 ± 9.47 44.0 10/10 78.40 ± 11.36 105.0
2 A* (hadd), BF 10/10 1.20 ± 0.25 2.0 10/10 2.50 ± 0.57 4.0 10/10 40.40 ± 6.29 58.0
2 BF 10/10 1.90 ± 0.19 2.0 10/10 6.20 ± 3.69 21.0 10/10 53.00 ± 10.55 86.0

off A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 1.30 ± 0.28 2.0 7/10 157.43 ± 119.14 525.0 6/10 202.17 ± 53.31 334.0

off A* (hadd), BF 10/10 1.20 ± 0.25 2.0 10/10 7.60 ± 3.35 19.0 10/10 71.90 ± 10.16 101.0
off BF 10/10 2.00 ± 0.00 2.0 10/10 117.20 ± 67.78 369.0 5/10 335.40 ± 89.02 532.0

FF-Replan 10/10 1.00 ± 0.00 1.0 0/10 - - 0/10 - -
Robust-FF 10/10 1.00 ± 0.00 1.0 0/10 - - 10/10 1.00 ± 0.00 1.0

Table 6.3: Summary of experimental results for bw 6. All presented averages
are taken over the runs that were successful –as indicated by count– and
are shown with the 95% confidence interval. For more information about
parameter settings for PBColgen see section 6.2, and for more information
about the way data is presented see section 6.4.1.
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Figure 6.2: Solution quality as a function of time on problem bw 6 (averaged
over 10 runs). Measurements were recorded each second, so each half minute
interval on the plot contains 30 measurements. Crosses indicate the max.
termination time across runs – in the case of PBColgen this is a guarantee
of optimality. This plot considers only the first 2.5 minutes 15 minute ex-
periment, as all depicted planners plateau after that time except PBColgen-
basic, which does not reliably converge within the experiment limits (see
table 6.3). Note that Robust-FF obscures FF-Replan.
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Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), BF 10/10 0.25 ± 0.00 0.25 10/10 10.35 ± 2.44 15.50 10/10 13.07 ± 1.40 16.25
0 A* (hadd), A* (hzero

− ) 10/10 0.25 ± 0.00 0.25 10/10 12.12 ± 3.58 23.50 10/10 16.35 ± 1.79 23.50
0 A* (hzero

− ) 10/10 0.25 ± 0.00 0.25 10/10 27.48 ± 4.28 39.25 10/10 28.85 ± 4.68 45.00
0 BF 10/10 0.25 ± 0.00 0.25 10/10 14.97 ± 5.43 37.25 10/10 19.00 ± 9.32 55.00

off BF 10/10 0.25 ± 0.00 0.25 7/10 7.64 ± 0.87 9.75 7/10 8.07 ± 0.84 10.25
FF-Replan 10/10 0.25 ± 0.00 0.25 0/10 - - 0/10 - -
Robust-FF 10/10 0.25 ± 0.00 0.25 0/10 - - 10/10 0.25 ± 0.00 0.25

Table 6.5: Summary of experimental results for tire 2. All presented av-
erages are taken over the runs that were successful –as indicated by count–
and are shown with the 95% confidence interval. For more information about
parameter settings for PBColgen see section 6.2, and for more information
about the way data is presented see section 6.4.1.

Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), BF 10/10 10.00 ± 0.00 10.0 0/10 - - 0/10 - -
0 A* (hadd), A* (hzero

− ) 10/10 10.00 ± 0.00 10.0 0/10 - - 0/10 - -
0 A* (hzero

− ) 3/10 23.33 ± 5.33 30.0 0/10 - - 0/10 - -
0 BF 10/10 10.00 ± 0.00 10.0 0/10 - - 0/10 - -

off BF 10/10 12.00 ± 2.48 20.0 0/10 - - 0/10 - -
FF-Replan 10/10 10.00 ± 0.00 10.0 0/10 - - 0/10 - -
Robust-FF 10/10 10.00 ± 0.00 10.0 0/10 - - 10/10 10.00 ± 0.00 10.0

Table 6.6: Summary of experimental results for tire 3. All presented av-
erages are taken over the runs that were successful –as indicated by count–
and are shown with the 95% confidence interval. For more information about
parameter settings for PBColgen see section 6.2, and for more information
about the way data is presented see section 6.4.1.

A* with an admissible heuristic as the sole deterministic solver, which we
have included among our experiments.

Note that tire 5 was given a shorter period of time with smaller time inter-
vals than tire 3 to investigate how long it takes for each planner to construct
an initial solution.

This problem was designed to be hard for greedy replanning algorithms [Little
and Thiébaux 2007]. This can be seen in the results, as FF-Replan and
Robust-FF reach the goal with very small probability. The experiment also
highlights the advantages of PBColgen, namely that our search over the plan
and cycle space is complete, and we can improve our solution over time,
making sure that dead ends are avoided when possible.
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Figure 6.3: Solution quality as a function of time on problem tire 2 (aver-
aged over 10 runs). Measurements were recorded every 1

4
seconds, so each

5 second interval on the plot contains 20 measurements. Crosses indicate
the max. termination time across runs – in the case of PBColgen this is a
guarantee of optimality. This plot considers only the first 30 seconds of the
60 second experiment, as all depicted planners plateau after that time. Note
that Robust-FF obscures FF-Replan.

Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), BF 10/10 5.55 ± 0.22 6.0 0/10 - - 0/10 - -
0 A* (hadd), A* (hzero

− ) 10/10 0.55 ± 0.09 1.0 0/10 - - 0/10 - -
0 BF 10/10 4.55 ± 0.09 5.0 0/10 - - 0/10 - -

off BF 10/10 5.50 ± 0.00 5.5 0/10 - - 0/10 - -
FF-Replan 10/10 0.50 ± 0.00 0.5 0/10 - - 0/10 - -
Robust-FF 10/10 0.50 ± 0.00 0.5 0/10 - - 10/10 0.50 ± 0.00 0.5

Table 6.7: Summary of experimental results for tire 5. All presented av-
erages are taken over the runs that were successful –as indicated by count–
and are shown with the 95% confidence interval. For more information about
parameter settings for PBColgen see section 6.2, and for more information
about the way data is presented see section 6.4.1.
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Figure 6.4: Solution quality as a function of time on problem tire 3 (aver-
aged over 10 runs). Measurements were recorded every 10 seconds, so every
5 minute interval on the plot contains 30 measurements. Crosses indicate
the max. termination time across runs – in the case of PBColgen this is a
guarantee of optimality. Note that Robust-FF obscures FF-Replan.
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Figure 6.5: Solution quality as a function of time on problem tire 5 (aver-
aged over 10 runs). Measurements were recorded every 1

2
seconds, so every

10 second interval on the plot contains 20 measurements. This plot presents
the y-axis on a logarithmic scale as no planners are able to come close to
the optimal probability of reaching goal. This plot only considers the first
50 seconds of the 10 minute experiment, as it focuses on the time it takes
for a planner to produce its first policy. Crosses indicate the max. termina-
tion time across runs – for Robust-FF this only means that its simulations
indicate a closed policy. Note that Robust-FF obscures FF-Replan.
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Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 0.20 ± 0.00 0.2 10/10 2.62 ± 0.27 3.1 5/10 12.28 ± 3.87 19.6

0 A* (hadd), BF 10/10 0.21 ± 0.02 0.3 10/10 2.72 ± 0.26 3.2 5/10 14.72 ± 4.97 19.7
0 BF 10/10 0.20 ± 0.00 0.2 10/10 1.93 ± 0.48 3.5 10/10 5.71 ± 1.26 8.5
1 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 0.20 ± 0.00 0.2 10/10 1.95 ± 0.18 2.2 10/10 12.99 ± 4.69 29.3
1 A* (hadd), BF 10/10 0.21 ± 0.02 0.3 10/10 2.06 ± 0.16 2.3 5/10 7.14 ± 4.50 17.3
1 BF 10/10 0.20 ± 0.00 0.2 10/10 1.32 ± 0.35 2.0 10/10 4.79 ± 0.83 6.5
2 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 0.20 ± 0.00 0.2 10/10 1.98 ± 0.20 2.2 10/10 13.32 ± 4.75 29.9
2 A* (hadd), BF 10/10 0.20 ± 0.00 0.2 10/10 2.06 ± 0.18 2.3 5/10 7.12 ± 4.55 17.4
2 BF 10/10 0.20 ± 0.00 0.2 10/10 1.26 ± 0.34 1.8 10/10 4.70 ± 0.81 6.4

off A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 0.20 ± 0.00 0.2 10/10 2.58 ± 0.29 3.0 8/10 8.72 ± 1.05 10.0

off A* (hadd), BF 10/10 0.20 ± 0.00 0.2 10/10 2.65 ± 0.27 3.1 4/10 12.32 ± 6.60 19.2
off BF 10/10 0.20 ± 0.00 0.2 10/10 1.56 ± 0.32 2.2 10/10 5.13 ± 0.87 6.9

FF-Replan 10/10 0.13 ± 0.03 0.2 0/10 - - 0/10 - -
Robust-FF 10/10 0.10 ± 0.00 0.1 0/10 - - 10/10 0.20 ± 0.00 0.2

Table 6.9: Summary of experimental results for exbw p02-n3-N5-s2. All
presented averages are taken over the runs that were successful –as indicated
by count– and are shown with the 95% confidence interval. For more infor-
mation about parameter settings for PBColgen see section 6.2, and for more
information about the way data is presented see section 6.4.1.

6.4.4 Exploding Blocksworld

For the exploding blocksworld domain, we performed experiments on prob-
lems exbw p02-n3-N5-s2 with 5 blocks and exbw p03-n3-N6-s3 with 6 blocks.
Settings for each experiment are provided in table 6.8.

max. time time intervals max. RAM
optimal

MCMP cost
optimal prob.

of reaching goal
optimal
FP cost

exbw p02-n3-N5-s2 30 secs 0.1 secs 2.6 GB 5 0.25 380
exbw p03-n3-N6-s3 30 mins 5 secs 5 GB 8 0.5 258

Table 6.8: Settings for exploding blocksworld experiments.

The exploding blocks world domain tests a planner’s ability to “think ahead,”
and avoid actions that are more likely to trap the agent in a dead end. Clas-
sical replanners have no mechanism to consider the unintended side effects
of moving blocks, i.e. exploding another block or table and making them
unusable. Thus, they are unable to reason about the probability of reach-
ing a dead end. We see that FF-Replan and Robust-FF are tricked by the
problem to minimise the MCMP cost, but perform poorly on the other cri-
teria. PBColgen does not allow itself to be mislead in the same manner, and
prioritises avoiding dead ends.
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Figure 6.6: Solution quality as a function of time on problem
exbw p02-n3-N5-s2 (averaged over 10 runs). Measurements were recorded
every 1

10
seconds, so each half-second interval on the plot contains 5 mea-

surements. Crosses indicate the max. termination time across runs – in the
case of PBColgen this is a guarantee of optimality, in the case of Robust-FF
this occurs when 5000 simulations indicate a closed policy. On this prob-
lem we observe that Robust-FF “terminates” before it has a closed policy,
and so the solution improves after “termination” due to Robust-FF’s online
functionality. This plot considers only the first 3 seconds of the 30 second
experiment, as all depicted planners plateau after that time.
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Figure 6.7: Solution quality as a function of time on problem
exbw p03-n3-N6-s3 (averaged over 10 runs). Measurements were recorded
every 5 seconds, so each 5 minute interval on the plot contains 60 measure-
ments. Crosses indicate the max. termination time across runs – for Robust-
FF this only means that its simulations indicate a closed policy. Note that
Robust-FF obscures FF-Replan.
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Planner
Initial Policy Convergence Termination

count
avg. time

(secs)
max. time

(secs)
count

avg. time
(secs)

max. time
(secs)

count
avg. time

(secs)
max. time

(secs)

P
B

C
ol

ge
n

depth
probe opt.

det. solvers

0 A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 10.00 ± 0.00 10.0 2/10 1535.00 ± 62.37 1580.0 0/10 - -

0 A* (hadd), BF 10/10 10.00 ± 0.00 10.0 2/10 1502.50 ± 190.57 1640.0 0/10 - -
0 BF 10/10 9.50 ± 0.93 10.0 10/10 40.50 ± 9.24 65.0 7/10 1079.29 ± 101.35 1250.0
1 A* (hadd), A* (hmax), A* (hzero

− ), BF 10/10 10.00 ± 0.00 10.0 2/10 1450.00 ± 436.57 1765.0 0/10 - -
1 A* (hadd), BF 10/10 10.00 ± 0.00 10.0 1/10 1275.00 ± 0.00 1275.0 0/10 - -
1 BF 10/10 10.00 ± 0.00 10.0 10/10 28.50 ± 5.72 45.0 8/10 1084.38 ± 114.33 1400.0

off A* (hadd), A* (hmax), A* (hzero
− ), BF 10/10 9.50 ± 0.93 10.0 1/10 1590.00 ± 0.00 1590.0 0/10 - -

off A* (hadd), BF 10/10 10.00 ± 0.00 10.0 1/10 1510.00 ± 0.00 1510.0 0/10 - -
off BF 10/10 10.00 ± 0.00 10.0 10/10 47.00 ± 12.72 95.0 5/10 1122.00 ± 235.50 1565.0

FF-Replan 10/10 5.00 ± 0.00 5.0 0/10 - - 0/10 - -
Robust-FF 10/10 5.00 ± 0.00 5.0 0/10 - - 10/10 5.00 ± 0.00 5.0

Table 6.10: Summary of experimental results for exbw p03-n3-N6-s3. All
presented averages are taken over the runs that were successful –as indicated
by count– and are shown with the 95% confidence interval. For more infor-
mation about parameter settings for PBColgen see section 6.2, and for more
information about the way data is presented see section 6.4.1.

6.5 Discussion

In essence there are two questions we are interested in to determine the
effectiveness of PBColgen as a replanner:

1. How long does it take for PBColgen to return its first policy?

2. How quickly does PBColgen’s initial solution improve?

To answer how long it takes for PBColgen to return its first policy, it is
most useful to consider the plots that depict the zoomed in probability of
reaching goal. It is clear that the answer to this question depends on the
size of the problem and our parameters. In particular, we know that versions
of PBColgen with Bellman-Ford as a deterministic solver need to compute
the reachable space before starting, which has heavy performance impact on
large problems. The data for tire 05 in figure 6.5 and table 6.7 shows this
clearly: FF-Replan and Robust-FF give a solution within the first recorded
time interval of 0.5 seconds, and our versions of PBColgen that use Bellman-
Ford take up to more than 5 seconds. However, our variant that did not run
Bellman-Ford and therefore did not have to compute the reachable space,
was able to generate a policy within 0.5 seconds – on par with the other
replanners. In all our tests variants of PBColgen with amenable parameters
were able to match FF-Replan and Robust-FF in the sense that all returned
their first policy within the time it took to take the first measurement.

How quickly does PBColgen’s solution improve? First, we observe that PB-
Colgen’s quality does not improve monotonically. This is because the al-
gorithm’s reduced master problems do not correspond to the quality of the
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current solution, but rather to the progress of proving optimality. This is
not necessarily intuitive, so we elaborate in appendix A.

If we want PBColgen to exhibit monotonic increase in quality we can achieve
this by keeping a “best policy so far” which is only updated once the policy
improves. Clearly with this technique we need to specify by which criterion
we are optimising, and evaluate the policy with respect to this criterion at
each step. Note that this evaluation process adds overhead.

Regardless of PBColgen’s non-monotonicity, we observe throughout all prob-
lems that variants of PBColgen with amenable parameters are able to provide
a better quality policy than those of FF-Replan and Robust-FF very quickly.
For instance of this, consider exbw p02-n3-N5-s2 (figure 6.6 and table 6.9).
PBColgen takes marginally longer to produce its first policy, but already
overtakes FF-Replan and Robust-FF in terms of quality by the next time 0.1
seconds. This is clearly not true for all parameter settings, as can be seen in
e.g. figure 6.1, so this result should treated cautiously.

A common phenomenon in optimisation is that the optimal solution might be
reached early on in the search, but most of the time is spent proving that this
solution is infact the optimal. It is interesting to observe problems like exbw 3

(figure 6.7 and table 6.10) confirm this entirely: the solvers with effective
parameters take almost 50 times longer to terminate and prove optimality
than to converge to the optimal policy; whereas other problems like tire 2

(figure 6.3 and table 6.5) do not corroborate this, as most planners converge
only slightly before terminating. This occurs because the former problem has
unavoidable dead ends. So, before terminating and guaranteeing optimality,
PBColgen attempts to make its policy proper by adding plans and cycles that
deviate from the current policy, only to realise that they generate an inferior
solution. On the second problem, tireworld, PBColgen finds the optimal
proper policy, and can quickly exhaust the set of plans and cycles that leave
the policy proper.

To summarise: FF-Replan and Robust-FF are able to construct policies very
quickly, but do not improve over time, and almost always get trapped in
suboptimal solutions. In problems like blocksworld where there are no dead
ends and the penalty of not taking probabilistic effects into account is minor,
these planners are able to perform well. In constrast, on problems with dead
ends, these planners perform poorly in terms of quality.

PBColgen is slower to construct its initial policies – keeping in mind that
variants that did not use Bellman-Ford (as seen in the tireworld domain) de-
livered promising results on this front. If we consider the strongest candidates

81



from PBColgen, once PBColgen has its initial policy, it quickly overtakes FF-
Replan and Robust-FF in terms of quality.
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Chapter 7

Conclusion

7.1 Summary

The focus of this thesis was to combine the efficiency of replanners and the
guarantees provided by a column generation framework into a replanner that
can construct an optimal solution – according to some criteria which can be
easily adapted; as was summarised in our research goal:

Can column generation be used to build an effective replanner with
optimality guarantees?

Our contribution is PBColgen, which is developed throughout chapter 5.
It embodies a replanner that uses column generation to construct optimal
solutions. That is, PBColgen takes in an SSP and, within the column gen-
eration framework, it constructs pricing problems, solves these subproblems
as negative-weighted deterministic planning problems, and combines these
solutions into a policy. Column generation guarantees that the algorithm
will terminate, and the constructed policy will be optimal.

Unfortunately our subproblems are not classical deterministic planning prob-
lems, as they allow negative cycles. We introduce some algorithms to solve
this unusual problem in section 5.4 – noting that we are not interested in the
most negative path, but rather in some negative path or cycle. Furthermore
we point out that on an interesting subset of SSPs, namely acyclic SSPs,
we can adapt the problem into a standard deterministic planning problem –
which will allow us to use state-of-the-art deterministic solvers. Note that
due to time restrictions this latter approach was left for future work.

To quantify PBColgen’s effectiveness, we compared its performance to other
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successful replanners, namely, FF-Replan and Robust-FF in chapter 6. The
results confirmed PBColgen’s theoretical properties, i.e. convergence to an
optimal solution given enough time, and showed promising behaviour as an
online solver.

So, PBColgen demonstrates that it is certainly possible to build a replanner
with optimality guarantees in the column generation framework, and our
tests indicate that in the context of replanners, it can be effective.

7.2 Future Work

7.2.1 Implementation Improvements

Due to time restrictions and my inexperience with c++ and the programming
framework, some aspects of the implementation were left incomplete.

One particularly disruptive issue is numerical instability. That is, the nu-
merical imprecision of floating point arithmetic can cause issues throughout
multiple stages of the algorithm. In some domains, this becomes an issue
as column generation gets stuck in a loop, because the deterministic solver
finds plans or cycles that do not improve the solution, and thus have non-
negative cost; however, due to numerical instability, it gets assigned a very
slight negative cost, and thus gets added. As this column does not improve
the solution, the pricing problem remains the same, and we find the same col-
umn in the next iteration. We deal with this by introducing a small ε ∈ R>0

value, and stop column generation once we are unable to find a plan or cycle
with cost less than ε. With carefully selected ε this is not a problem, but if
ε is too large we may not find the optimal solution.

Numerical instablility also introduces issues in domains with “difficult” prob-
abilities. We discussed this particular problem in 6.3.3.

In the future, we will look into ways to reduce the error of floating point
arithetic, and introduce methods that allow the algorithm to deal with small
deviations. For instance, in linear programs we can add slack variables that
take up the small error.

Furthermore, there are parts of the code which are likely not implemented
in the most efficient manner, e.g. we had to use std::list structures rather
than std::vector due to a quirk in the framework – it may not make a large
difference, but generally vectors are more efficient as they are contiguous in
memory, and thus have better performance with respect to cache lines.
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7.2.2 Deterministic Solvers

Profiling PBColgen revealed that the majority of CPU time was taken up
by the deterministic solvers – typically in the range of 60% to 90%. We
anticipate that there are more efficient solvers for the pricing problems than
we presented.

In the case of acyclic SSPs this is obvious. With some modifications to the
pricing problem we can use state-of-the-art deterministic solvers and heuris-
tics to solve them, which is almost certain to deliver stronger performance.
As discussed in section 5.4.6, this is an interesting category of problems, and
so we consider it worthwhile to investigate this approach.

For cyclic SSPs, it is likely that there are more efficient algorithms than
those we discussed. A preliminary investigation did not yield many rele-
vant results for the unusual problem of finding some negative plan or cycle
on negative-weighted deterministic planning problems, so a more in-depth
literature review of existing algorithms is required.

7.2.3 Extensions to Column Generation

There is a technique in column generation that allows us to get a lower bound
for the optimal policy cost in PBColgen. Clearly, given a policy π from a
reduced master problem of PBColgen, the cost of π gives us an upper bound
for the cost of an optimal policy π∗ – since π can minimally cost as much as π∗

if it is itself optimal. For column generation algorithms with a minimisation
master problem (and respectively reduced master problems) we can obtain
a lower bound for the optimal objective of the master problem [Lübbecke
and Desrosiers 2005, pp. 8–9]. In future work, we are interested in applying
this result to PBColgen. This would allow for some extra possibilities, e.g.
it would let PBColgen terminate when its solution is sufficiently close to the
lower bound, as defined by the user.

7.2.4 Further Experimentation

Unfortunately, we did not have the time to answer all our questions with our
experiments.

We would like to determine which of PBColgen’s optimisation parameters
are effective in which circumstances. This information would allow us to
enhance those that are effective, remove those that are not, and provide a
cleaner algorithm for the user in the sense that a user should not have to
tweak parameters manually.

85



We limited our experiments to compare replanners. As PBColgen is also
an optimal planner, it would be interesting to compare it to state-of-the-art
optimal planners like LRTDP and ILAO∗.

7.3 Final Remarks

We believe the PBColgen algorithm is an interesting contribution to the plan-
ning community. Amongst replanners it is novel that an algorithm can give
guarantees in terms of optimality, and the flexibility of linear programming
allows the algorithm to be adapted to various optimality criteria.
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Appendix A

Non-monotonicity of
PBColgen

At first it may be surprising that PBColgen’s policies are not monotonic in
terms of quality, as we expect the objective of PBColgen’s reduced master
problems to improve monotonically – but, the reduced master problem’s ob-
jective does not align with the policy’s quality until the algorithm terminates.
In short, this is because PBColgen (with the generalised give-ups) must pump
flow through give-up actions for all effects that are not accounted by some
plan or cycle – even if in the SSP these effects are already accounted for by
the policy.

To illustrate this, consider the SSPs presented in figure A.1. In the first
example (figure A.1a), we assume that PBColgen’s RMP contains plan φ =

s0

a0.s1−−−→ s1

a1.g−−−→ g (as denoted by the solid line) in Φ̂. It turns out that the
casted plan πφ is already optimal, since it can only fail by looping back to
itself, but PBColgen does not recognise this, and assigns the current solution
a value of 0.1·1+0.9·D where D is the dead-end penalty. PBColgen computes
the objective of the solution with s0

a′0.g−−−→ g to be 20, which reduces the
objective in the reduced master problem (assuming D > 19.9

0.9
≈ 22.1) – even

though we know it replaces the optimal policy with a suboptimal one. This
scenario can not occur with the depth probe optimisation, so we present the
second example (figure A.1b) which can still occur.

In example presented in figure A.1b PBColgen combines

φtop = s0

a0.s1−−−→ s1

a1.g−−−→ g
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(a) The plan indicated by the
solid line can fail by looping back
to itself.
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(b) The plan indicated by solid
lines may fail by ending up on the
plan indicated by dash-dotted
lines.

Figure A.1: Simple SSPs to demonstrate why PBColgen’s solution quality is
non-monotonic.

as indicated by the dash-dotted lines, and

φbot = s0

a0.s2−−−→ s2

a2.g−−−→ g

as indicated by the solid lines. The only way that φbot can fail is by ending up
in a state in φtop, which means that the policy which combines these plans is
closed, and in this case optimal. Nevertheless, PBColgen has no mechanism
to realise this, and may in the next iteration add plan s0

s′0.g−−−→ g, as this
reduces the objective of the reduced master problem.

With a slight modification to the example in figure A.1a, we can obtain the
SSP in figure A.2. Here, by similar argument as before, the current objective
is 0.1 · 1 + 0.9 ·D, and so PBColgen may introduce the plan s0

a′0.g−−−→ g with
an objective of 0.2 · 2 + 0.8 · D (assuming that dead-end penalty D > 3),
which decreases the generated policy’s probability of reaching a goal from 1
to 0.2.

Note that the objective of the reduced master problems’ linear programs
exhibits (non-strict) monotonic decrease, and it is this which guarantees that
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Figure A.2: This SSP demonstrates that PBColgen may select a combination
of plans and cycles that decrease the probability of reaching a goal.

PBColgen eventually converges to an optimal solution.
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