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Abstract

In the field of planning, Stochastic Shortest Path problems (SSP) are a standard model
for problems where the aim is optimise the expected cost of reaching some goal, using
actions that have stochastic effects. Finding an optimal policy which reaches the goal,
however, is not enough. It is desirable for agents to comply with safety considerations.
These are modelled as probabilistic linear temporal logic (PLTL) constraints. Solving
SSPs constrained by PLTL constraints is an active area of research in planning and
formal methods.

Representing the state of the SSP and the state of each PLTL constraint (i.e., how
close to being satisfied the constraint is) results in a prohibitively large combined state
space. Recent research has applied heuristic search to this problem, a technique which
can find a policy without enumerating the complete state space, but the heuristics used
focus on a particular representation of the state of the PLTL constraints.

This thesis presents a novel heuristic for SSPs constrained by multiple PLTL con-
straints using a different PLTL state representation, formula progression. This the-
sis presents the first heuristic that uses formula progression as the representation for
PLTL constraints. This heuristic combines two relaxations: projection that relaxes
the dynamics of the SSP; and decomposition that relaxes the dynamics of the PLTL
constraint.

Specifically, this novel heuristic constructs several complementary relaxations (called
projections) of the underlying SSP, along with PLTL constraints adjusted appropriately
for these projections. Each projection is converted into a novel planning problem called
a Concurrent Constrained SSP, which relaxes the problem of satisfying a large PLTL
constraint by instead having multiple agents simultaneously satisfy smaller PLTL con-
straints. This conversion decomposes logic statements into smaller ones based on a
standard transformation of linear temporal logic.

This heuristic is integrated with the state-of-the-art heuristic planner and outper-
forms both existing heuristics as well as other algorithms for SSPs constrained by
multiple PLTL constraints. The proposed heuristic scales better in most problems,
showing the promise of progression based approaches.
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Notation

The symbols and operators used throughout this thesis are listed below for quick ref-
erence. There is an extraordinary amount of notation in this thesis, but it exists to
simplify and abstract what is a very complicated series of constructions. We have done
our best to make the notation clear and intuitive, e.g., note the similarities between
symbols with similar meanings. However this may have made following the notation
as much harder for some readers as it makes it easier for others. It is recommended
(especially when reading chapters 5 and 6) that this list is kept on hand.

CC-SSP Representation

Ai The actions taken at the ith step by agents that take at least i steps
in a CC-SSP.

S̃+ The set of incomplete paths through a CC-SSP.

Ĝ Augmented goal states of a CC-SSP, where the LTL is accepted.

F̂ Absorbing augmented states in a CC-SSP.

Ŝ A set of augmented states forming the search space of a CC-SSP.

S̃+F̂ The set of complete paths through a CC-SSP.

Ŝinit The set of states which could be an initial state when computing hdec
S

or its variants for PLTL-dual.

S̃ The X-literal states in a CC-SSP.

S̃+Ĝ The set of complete paths through a CC-SSP terminated by a goal.

ΠC The set of all bounded policies for C

R A run of a CC-SSP.

C A Concurrent Constrained SSP.

Pi A set of paths representing the first i steps of each agent in a CC-SSP.

Pi+1,p The paths in Pi+1 prefixed by the path p.

〈s,Ψ〉 An augmented state.

〈s, φ〉 An X-literal state, being the pair of an SSP state and an X-literal.
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xx NOTATION

SC The SSP underlying a CC-SSP.

Ps,Ψ In PLTL-dual, the expected number of agents in the known state space
reaching a state that maps to 〈s,Ψ〉 in a CC-SSP.

Linear Program Functions

accIn(s,Ψ) The accepting flow that would enter the augmented state 〈s,Ψ〉.

accOut(s, φ) The accepting flow leaving the X-literal state 〈s,Ψ〉.

accReceive(s, φ) The accepting flow being redirected to the X-literal state 〈s,Ψ〉.

accRedist(s,Ψ) The accepting flow being redirected from the augmented state 〈s,Ψ〉.

in(s,Ψ) The expected number of agents passing through 〈s,Ψ〉.

out(s, φ) The expected number of agents leaving 〈s, φ〉.

receive(s, φ) The expected number of agents reaching 〈s, φ〉 from other states.

Heuristic Functions

hBA The non-deterministic Büchi automaton heuristic.

hdec
S The decomposition heuristic for the SSP S.

hsdt
S,ψ The split decomposition trace heuristic.

hpom The projection occupation measure heuristic.

hs-dec
S,ψ The split decomposition heuristic for the SSP S and PLTL constraint

ψ.

ht-dec
S The traced decomposition heuristic.

LTL Symbols

CNF(ψ, s) A CNF set equivalent to ψ simplified according to s.

Ψ A CNF set.

Φ A clause in a CNF set.

⊥ The false primitive.

ψ An LTL formula.

ψ1Rψ2 ψ1 becoming true releases the requirement that ψ2 holds.

ψ1Uψ2 ψ1 holds until ψ2 holds.

ψ1 → ψ2 If ψ1 holds then ψ2 must hold.
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ψ1 ∨ ψ2 The disjunction of ψ1 and ψ2.

ψ1 ∧ ψ2 The conjunction of ψ1 and ψ2.

idle(Ψ, s) Whether Ψ is satisfied by staying in s forever.

Fψ There exists a suffix of the path for which ψ holds.

Gψ Every suffix of the path must satisfy ψ.

Xψ The formula ψ holds in the next state.

φ An MO-PLTL constraint.

¬ψ The negation of ψ.

> The true primitive.

un-X(Ψ) A set of sets of formulae with all instances of X removed.

φ An X-literal.

p |=IE ψ The path p IE-satisfies ψ

p |= ψ The path p satisfies ψ.

Operators

alive(Pi,Ai) The paths in Pi which are extended in Pi+1 in a run of a CC-SSP.

decompose(s,Ψ) The X-literal states generated by decomposing Ψ.

Egoals(〈s, ·〉 , π) The expected number of agents that reach a goal in a CC-SSP from
the X-literal or augmented state 〈s, ·〉 under policy π

` (·) The length of a path or run.

minvars(ψ) The minimal projection variables for ψ to be non-trivial.

assignFree(ψ,Vp) Project ψ onto Vp under the proposition independence assumption.

reduce(S) Removes any elements in a set of sets S for which a smaller subset is
present.

SAS Representation

Cψ,i One combination of variables of those output by minvars(ψ).

Dv The domain of v.

Vψ,i A batch of the SAS+ variables in Vψ.

Vψ The variables which appear in the formula for ψ.
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proj(s,Vp) The projection of s onto Vp.

αg An artificial action leading to the artificial goal of a projection.

s′ ⊆ s s′ is a partial state of s.

v A SAS+ variable.

V The variables in a SAS+ problem.

SVp The SAS+ problem S projected onto Vp.

s[v] The value of v in the s. Either d ∈ Dv or undefined (u).

Vs The vars for which s is defined.

SSP Notation

A A set of actions.

s× A product state 〈s,m〉

S× The set of all product states.

S+ The set of finite paths through S.

G The goal states of an SSP.

π A policy.

π∗ An optimal policy.

C(α) The cost of transitioning to s′ from s by α.

Gruns(s, π) The set of all runs starting at s possible under π which end at a goal.

S An SSP.

V π(s) The expected cost of reaching a goal from s under π.

S The state space for an SSP.

T (s′ | s, α) The probability of transitioning to s′ from s by α.

M The set of values an arbitrary mode can take.

m The value of a mode.

r A run for an SSP.

Linear Program Variables and Constants

ỸC The set of accepting flow variables of the form ys,φ,α,s′ .
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ŶC The set of accepting flow variables of the form ys,Ψ,φ.

XC The set of occupation measures for C.

is,Ψ What flow entering at state 〈s,Ψ〉 is accepting flow.

xs,φ,α An occupation measure for a CC-SSP.

ys,Ψ,φ An accepting flow variable labelling the flow redirected from 〈s,Ψ〉 to
〈s, φ〉.
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Chapter 1

Introduction

Automatically determining safe plans to solve problems in stochastic environments is a
problem that is a point of interest in recent research, and has proven to be quite hard
to scale to anything but small problems. An example of such a problem is managing
traffic lights in a city to minimise traffic congestion, in such a way that (assuming the
traffic obeys the signals), there is never a possibility of a collision. Other constraints
could be placed on the plan, for example that during rush hour, an inbound car on a
major road should not be stopped more than once with a high probability, minimising
inconvenience to traffic in a hurry, or that no car should have to wait longer than a
certain amount of time at any intersection.

Defining constraints on problems like this also provides some proportion of cus-
tomisability. For example, given a problem of choosing academic courses for a student,
different student’s preferences and requirements can be encoded as constraints, mean-
ing that one problem definition can serve many different students.

1.1 Overview of the Research Problem

This thesis sits at the crossroads between two well-researched fields, that of probabilistic
planning, to generate policies under uncertainty, and probabilistic linear temporal logic,
to express constraints that such plans must satisfy. To express the problem clearly,
some terminology and concepts related to these two fields is introduced, followed by a
description of the problem to be addressed.

1.1.1 Probabilistic Planning

Planning is the problem in the field of Artificial Intelligence (AI) of choosing actions so
as to achieve the goal, ideally optimising some metric such as the cost of those actions.
In planning, the world is modelled as a set of states, including an initial state and goal
states, and a set of actions that transition between these states. A solution to such a
problem is a policy, stating which actions should be taken in what situations so that
an agent gets from the initial state to some goal state.

The world is not deterministic, and there are often many factors outside a model
which cannot be predicted. To account for this, it is natural to include some stochastic
behaviour in a planning model. Probabilistic planning allows actions to have stochastic
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2 Introduction

effects, where each time an action is taken, the resulting state is chosen randomly from
a pre-defined probability distribution of outcomes. When planning in a stochastic
environment, an optimal solution minimises the expectation of a metric over all the
possible paths taken when following a policy. The model for such a problem is referred
to as a Stochastic Shortest Path problem (SSP) [Bertsekas and Tsitsiklis, 1991], so
called because it is a generalisation of the problem of finding the shortest path through
a graph.

There has recently been an increase in interest among the planning community in
planning under constraints defined in terms of the temporal properties of the policy.
For example, such a constraint might state that a Mars Rover must always maintain
its battery levels above a certain critical threshold, or that in the case of a dust storm,
it must reach shelter within a certain time limit.

1.1.2 Linear Temporal Logic

There are many languages for expressing constraints, but the language used in this
thesis is probabilistic linear temporal logic (PLTL). PLTL expresses the probabilistic
temporal properties of the paths taken while following a policy. PLTL is an extension of
linear temporal logic (LTL) [Pnueli, 1977], which is in turn an extension of propositional
logic. A PLTL constraint is a probability bound on the satisfaction of an LTL formula
under a policy.

Using PLTL, various concepts from verification can be enforced in a policy, for
example:

• safety constraints: e.g., with probability 0.99, a robot must never do anything
that might cause it to drop an explosive item;

• liveness constraints: e.g., with probability 1, the traffic lights for every direction
at an intersection should always eventually go green, i.e., even when they have
been green before;

• responsiveness constraints: e.g., with probability 0.95, every time a server shuts
down in a network, it must eventually be re-activated;

but the set of constraints for PLTL are not limited to these properties. PLTL is quite
expressive because the associated LTL formulae can be nested, providing formulae like
“an aeroplane must be maintained regularly up until it never flies again”.

Checking whether a given path satisfies an LTL formula involves constructing a
representation of the LTL formula which tracks the state of the formula as the path is
traversed. For example, consider a formula that states that customers a, b and c must
eventually be served. The representation for this formula would have to keep track of
which of the three had been served so far, so that when a and c have already been
served, observing a state in which b is served would satisfy the formula.
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1.1.3 Applying LTL in Probabilistic Planning

The application of one or more PLTL constraints to an SSP is referred to as a multiple-
objective probabilistic linear temporal logic Stochastic Shortest Path problem (MO-
PLTL SSP problem). A solution to a MO-PLTL SSP problem must both reach the
goal of the SSP and satisfy the associated PLTL constraints. Finding a solution to an
MO-PLTL SSP problem is typically done by creating a state based representation of
each LTL formulae and considering a state as a combination of an LTL state and an
SSP state, e.g., [Kwiatkowska and Parker, 2013; Baumgartner et al., 2018].

The number of states in a typical planning problem is exponential in the factored
description of the SSP, and the number of states in a representation of an LTL formula
is worst-case double exponential in the length of the formula, meaning that explicitly
considering every combination of these states is computationally intractable.

1.1.4 Heuristics

Finding a policy for a problem with so many states can often be done by considering
only a fraction of the combined state space. This subset must be sufficient to include
all the states reachable in the policy, and to be effective, an algorithm needs to find
this subset while minimising unnecessary states considered. This is done by creating a
heuristic function. A heuristic function guides the search algorithm towards the goal
by estimating how difficult it is to reach the goal from any given state.

A heuristic function can be constructed for a specific class of problems called a do-
main, e.g., the domain of parcel delivery problems, or constructed independently of the
domain, referred to as a domain-independent heuristic. Domain-independent heuristics
exploit the structure of the problem representation. In this thesis, the probabilistic
SAS+ formalism is used as a problem representation, where a SAS+ problem defines
an SSPs, and PLTL constraints are represented by progression.

Heuristic search has been applied to MO-PLTL SSP problems with success by
Baumgartner et al. [2018], through their state-of-the-art algorithm PLTL-dual. They
provide heuristics which make estimates based on both the SSP state and the LTL
state, however, they provide only one heuristic for LTL, which relies on a transforma-
tion of LTL to non-determinisitic Büchi automata (NBA). The NBA constructed by
this transformation has size exponential in the size of the LTL formula in the worst
case. Given this issue, they observe that for problems with large LTL constraints,
constructing this NBA and using it for the heuristic takes long enough that it can
counteract the gains achieved from using heuristic search.

The tests performed by Baumgartner et al. [2018] showed that using a different
LTL representation called progression had results that were almost competitive with
their NBA heuristic despite not using any heuristic. They conjecture that this was
because progression does not have to construct the very large NBAs. This aligns with
preliminary results found earlier by Kerjean et al. [2006] that showed that on random
formulae, progression is much more efficient than Büchi automata translations.
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This raises the question:

How can LTL progression be used as the basis for a domain-independent
heuristic for solving MO-PLTL SSP problems? Can using such a heuristic
improve the performance of MO-PLTL SSP problem solvers?

This thesis sets out to construct such a heuristic and evaluate its effectiveness.

1.2 Contributions

This thesis constructs a heuristic based on progression by combining two relaxations
of MO-PLTL SSP problems in order to create greatly simplified planning problems.
The optimal solution of these relaxed planning problems can be used as a heuristic
estimate. A relaxation is a simplification of a problem which makes the problem easier
to solve, typically by ignoring aspects of the original problem. The two relaxations
employed are referred to as projection and decomposition, which relax the dynamics of
the SSP and the PLTL constraints respectively.

1.2.1 Projection

Projection is an existing concept that has been used for many heuristics for classical
planning and probabilistic planning [Helmert et al., 2007; Haslum et al., 2007; Trevizan
et al., 2017a]. The idea behind projection is that SSPs are represented as a set of
variables, and a state is an assignment to these variables. By simply removing most of
the variables and appropriately adapting the structure of actions, the SSP is reduced
to the problem of changing the values of only the remaining variables to their goal
values. For example, consider a transport problem, in which trucks and aeroplanes
move around to carry packages to their destinations. A projection onto the position
of a single package reduces the problem to the movements that that single package
needs to take to reach its goal. The positions of the other packages are ignored, and
the positions of the trucks and aeroplanes are ignored, the relaxation simply assumes
they are where they need to be, when they need to be there. Typically a set of
complementary projections are chosen in such a way that the estimate from each can
be combined.

If projections were to be used on a problem with PLTL constraints, an issue arises.
Variables removed by projection become free in the PLTL constraint, which makes
progression significantly more difficult. This thesis contributes in several ways to the
problem of projecting with PLTL constraints:

• Projection is extended efficiently to PLTL constraints, defining an algorithm
which, given an LTL formula and variables to project onto, constructs a for-
mula defined only over those variables which is satisfied by at least the same
paths.

• The conditions under which projection will result in a PLTL formula becoming
trivial are presented.
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• A simple algorithm is presented which chooses a set of complementary projections
for a PLTL constraint, such that every projection is non-trivial.

1.2.2 Decomposition

Decomposition of LTL formula is a novel concept introduced to relax the dynamics of
an LTL formula in the context of progression. An LTL formula can be represented
as a set of subformulae connected by ‘and’ and ‘or’ connectives, and the concept of
decomposition is that the difficulty of satisfying the original formula can be estimated
in terms of the difficulty of satisfying each subformulae.

Intuitively, decomposition works by placing agents in states associated with subfor-
mulae depending on how the subformulae are connected. Given that two subformulae
should both be satisfied, an agent is designated one at random, which is obviously
easier to satisfy than both. If one or both of two subformulae should be satisfied, then
the agent is cloned and one clone is designated each subformula. If one or more of
the agents satisfy their designated formula, it can be considered that the formula is
satisfied overall. Often, the subformulae are as complex as the original formula, so de-
composition is performed repeatedly at each step of the relaxed problem to counteract
this.

The contributions of this thesis in regards to decomposition are separated into two
stages, first an implementation for a heuristic based on decomposition is presented,
followed by an analysis of this heuristic, and a subsequent adaptation to address some
of the issues and make it possible to integrate into the state-of-the-art planner PLTL-
dual. The first stage of contributions consists of:

• The novel concept of formula decomposition.

• A planning model called a Concurrent Constrained SSP (CC-SSP) which, when
constructed from an SSP and a PLTL constraint, simulates repeated decomposi-
tion.

• A heuristic for MO-PLTL SSP problems, referred to as the decomposition heuris-
tic, which is computed by a linear program formulation of a CC-SSP.

The decomposition heuristic suffers from some major limitations, and cannot be
integrated directly into PLTL-dual, so the second stage involves an adaptation of it.
The contributions in the second stage are

• An adaptation of the decomposition heuristic with improved informativeness,
done by tracing the movement of agents which eventually reach goals in such a
way that they satisfy the PLTL constraint.

• A further adaptation of the decomposition heuristic to include the features of a
heuristic for PLTL-dual, specifically a probabilistic initial state and tying con-
straints.
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• A heuristic for PLTL-dual, called the split decomposition trace (SDT) heuris-
tic, which combines projection and decomposition to relax both aspects of the
problem.

The efficacy of the SDT heuristic is empirically tested on three planning domains,
one of which is a novel adaptation of an existing domain, and the other two introduced
by Baumgartner et al. [2018]. The results for the heuristic are generally favourable, but
show clear areas for improvement. In the Wall-e domain introduced by Baumgartner
et al. [2018], the SDT heuristic excels, solving problems an order of magnitude faster,
whereas in their factory domain, it performs on par with other approaches for large
problem instances. A new domain adapted from [Trevizan et al., 2016] is introduced,
for which the results demonstrate that the SDT heuristic scales to problems with harder
objectives better than any other approach.

1.3 Thesis Outline

This remainder of this thesis is structured in a standard fashion:

• Chapter 2 provides formal definitions and explanations of the background con-
cepts necessary to understand this thesis, primarily those for probabilistic plan-
ning and PLTL.

• Chapter 3 details some other research into the use of LTL in planning or synthesis.
Notably, two existing solvers for MO-PLTL SSP problems are detailed.

• Projection of PLTL constraints is presented in chapter 4.

• The first stage of contributions for LTL decomposition are presented in chapter 5,
detailing the novel planning model, the Concurrent Constrained SSP, and the
associated heuristic.

• The second stage of contributions for LTL decomposition are presented in chap-
ter 6, primarily the integration of LTL decomposition into PLTL-dual.

• The empirical evaluation of the SDT heuristic is presented in chapter 7.

• Chapter 8 contains a summary of the thesis and discussion of directions for future
research.



Chapter 2

Background

Planning in stochastic environments has been studied in depth over the last several
decades, with many branches for varieties of model and objective. This thesis addresses
a sub-branch of planning in stochastic environments where the objective is to reach
the goal under constraints on the probability that paths will satisfy certain temporal
properties.

This chapter details the background knowledge from this field used in this thesis.
This branch of planning is, if you will, a combination of probabilistic planning and
probabilistic linear temporal logic (PLTL), which is an extension of linear temporal
logic (LTL). LTL was proposed initially by Pnueli [1977] for formally defining the
correctness of a computer program for the purpose of verification. The work in this
thesis primarily derives from planning, so that is the primary focus in this chapter.

Section 2.1 defines the notation that will be used for paths, which is necessary for
the definition of both LTL and probabilistic planning.

To facilitate the introduction of PLTL later on, section 2.2 defines LTL as it is
used in the context of this thesis, focussing on symbolic progression of formulae and
LTL normal forms. One of the most common methods for analysing PLTL is by
converting it into Rabin or Büchi automata, but automata are not used for any part
of the contribution of this thesis. As such, the details of Rabin and Büchi automata
are not included in this chapter, nor is the associated conversion. The notation for
progression used in this thesis is also presented in this section.

Section 2.3 defines the models and concepts used throughout this thesis related to
planning. The model used is the Stochastic Shortest Path (SSP) problem, specifically
using the SAS+ representation. Various concepts related to SSPs are introduced, as
well as the related concept of heuristic search and constrained planning.

This thesis sits in the intersection of these two fields, discussing a type of problem
where the policies for SSPs are restricted by PLTL constraints. Section 2.4 defines
PLTL and this PLTL constrained SSP, referred to as a MO-PLTL SSP problem.

2.1 Paths

This section details the notation and concepts surrounding finite and infinite paths,
which is necessary for defining both LTL and is useful in probabilistic planning. A

7
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path p = s1, s2, . . . is a sequence of elements in some set of states Γ. Given a set Γ,
the set of all finite paths in Γ is denoted Γ+, and the set of all infinite paths in Γ is
Γω. The length of a path p is denoted ` (p), and for p ∈ Γω, ` (p) =∞. The first state
in a path is p[1], then p[2] and so on, so the ith state is p[i]. The last state in a path is
last(p) ≡ p[` (p)], and is therefore undefined if ` (p) =∞.

A prefix of a path p ∈ Γ+ ∪ Γω is a path p′ ∈ Γ+ such that ` (p) ≥ ` (p′) and
p[i] = p′[i] for 1 ≤ i ≤ ` (p′). The prefix of p up to and including state i is denoted
p[≤ i]. A suffix of a path p ∈ Γ+ ∪ Γω is a path p′ ∈ Γ+ ∪ Γω such there exists j ∈ N
such that p′[i] = p[j + i] for 1 ≤ i ≤ ` (p′). The suffix of p starting from the ith state
is denoted p[≥ i].

2.2 Linear Temporal Logic

LTL is a form of logic for describing the properties of infinite sequences. Propositional
LTL is used in this thesis, which is propositional logic extended with modalities that
allow it to express relationships between the labels in the sequence.

LTL can express many concepts common in model checking and program verifica-
tion such as

• fairness: given multiple options, each must be chosen an infinite number of times;

• liveness: the system never deadlocks, i.e., a specific property must always even-
tually be satisfied;

• safety: some property must always be satisfied, e.g., opposite traffic lights must
never both be green;

• responsiveness: each time a request is recieved, there must be a response eventu-
ally;

and many other temporal properties.
The definition of LTL presented here largely follows the definition of LTL and

its identities in [Baier and Katoen, 2008] and [Duret-Lutz, 2016], but diverges when
describing normal forms and progression.

2.2.1 Syntax and Semantics

LTL is defined over a set AP of atomic propositions, which are statements about
the world, for example, reactor is stable may be a proposition representing whether
a nuclear reactor is stable, and would likely be abbreviated as r or similar. Any
propositional variable is either true (>) or false (⊥). A state s ∈ 2AP is the collection
of propositional variables which are true in that state. LTL describes the properties
of infinite paths s0, s1, · · · ∈

(
2AP

)ω
. The properties of a path are described using

the next (X) operator, which expresses a property in the next state, and the until (U)
operator, which expresses that some property must hold until another does. As an
extension of propositional logic, LTL also includes and (∧), not (¬) and true (>).
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The syntax of an LTL formula ψ is defined by the grammar:

ψ =⇒ > | a | (ψ) | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where a can be any proposition in AP . The unary operators X and ¬ have precedence
over the binary operators, and the temporal operator U has the next precedence, so
Xψ1Uψ2 ∧ ψ3 is equivalent to ((Xψ1)Uψ2) ∧ ψ3, however unnecessary parentheses are
often included to aid clarity.

Syntactic sugar is added in the form of the following extra propositional and tem-
poral operators:

• The false primitive ⊥ ≡ ¬>.

• The or operator ψ1 ∨ ψ2 ≡ ¬(¬ψ1 ∧ ¬ψ2).

• The implication operator ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2.

• The future operator Fψ ≡ >Uψ.

• The globally operator Gψ ≡ ¬F¬ψ.

• The release operator ψ1Rψ2 ≡ ¬(¬ψ1U¬ψ2).

The semantics of an LTL formula are defined in terms of paths p ∈
(
2AP

)ω
, and a

path p is said to satisfy a formula ψ if p is has the properties defined by the semantics of
ψ. p |= ψ denotes the statement “p satsifies ψ”, and p 6|= ψ denotes “p does not satisfy
ψ”. The |= relation is defined recursively for LTL formulae below, and following that
an intuition for the operators (including the syntactic sugar symbols) will be provided.

p |=>
p |=a ⇐⇒ a ∈ p[1]
p |=¬ψ ⇐⇒ p 6|= ψ

p |=ψ1 ∧ ψ2 ⇐⇒ p |= ψ1 and p |= ψ2

p |=Xψ ⇐⇒ p[≥ 2] |= ψ

p |=ψ1Uψ2 ⇐⇒ ∃j ≥ 0 s.t. p[≥ j] |= ψ2 and ∀i < j, p[≥ i] |= ψ1

The intuition for the non-temporal operators are very straightforward. Any path p

satisfies >, so conversely no path satisfies ⊥. The formula a requires that a is true
‘now’, which means in the first state in the path, and places no restriction on other
states in the path. Note that the concept of ‘now’ depends on the context in the
formula; for example, Xa states that in the next state, a is true, so the presence of
a does not necessarily refer always to the first state in the path. ∧ and ∨ represent
‘and’ and ‘or’ from propositional logic respectively. ψ1∧ψ2 is satisfied by a path which
satisfies both ψ1 and ψ2. ψ1 ∨ ψ2 is satisfied by any path which satisfies either ψ1 or
ψ2 (or both). Finally, ψ1 → ψ2 is satisfied by p if ψ1 is not satisfied by p or if ψ2 is
satisfied by p.
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Figure 2.1: Intuition for temporal op-
erators in LTL.

To aid the understanding of temporal op-
erators, figure 2.1 shows the intuition for each
as a path through states.

The next operator is straight forward, for
Xψ to hold for a path, ψ should hold for the
paths starting at the next state. Although
LTL describes properties of paths, a ψ can
nonetheless be thought of as holding in a
state, so long as the future beyond that state
is fixed. In this intuition, Xψ holds in a state
if ψ holds in the next state.

The until operator behaves mostly as is
expected from the name. ψ1Uψ2 holds for a
path if ψ1 holds for every suffix of that path
until the first suffix where ψ2 holds. Addition-
ally, there must be some suffix for which ψ2
holds. Note that if ψ2 holds for the path from
the beginning, there need not be any suffix for
which ψ1 holds.

The future operator can also be thought
of as “eventually”. For Fψ to hold for a path,
there must exist some suffix of the path for
which ψ holds.

The globally operator, like the future op-
erator, can be thought of as “always”. For Gψ
to hold for a path, every suffix of that path (including the path itself) must satisfy ψ.

The release operator is very similar to the until operator. The formula ψ1Rψ2 can
be read ψ1 releases ψ2. Under this operator, there is a constraint that ψ2 must be true
at all times, and ψ1 becoming true “releases” ψ2 from its constraint. Superficially, ψ2
must be true until ψ1 first becomes true, resulting in a state from which both ψ1 and
ψ2 are true. The other primary difference from the until operator is that there is no
requirement that ψ1 is true for any suffix of the path. In this case, ψ2 must be true
from every state in the path.

2.2.2 Infinite Extension

In this thesis, the paths of interest are finite, and LTL has been extended in several
different ways to specify the properties of a finite path. In this thesis, infinite extension
semantics [Bacchus and Kabanza, 1998] are applied. The concept of infinite extension
semantics can be summarised as turning a finite path into an infinite path by repeating
the last state an infinite number of times.

Definition 1. For some finite path p ∈
(
2AP

)+
and formula ψ, it is said that p satisfies

ψ under infinite extension semantics, denoted p |=IE ψ, if and only if p last(p)ω |= ψ

where last(p)ω is an infinite repetition of the last state in p.
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There are several other formalisms for extending LTL to finite paths, such as
LTLf [De Giacomo and Vardi, 2013], where the next operator evaluates to false if
it refers to a time beyond the current step, whereas FLTL, one of several formalisms
reviewed in [Bauer et al., 2010] introduces a weak next operator to complement this,
which evaluates to true if it refers to a time beyond the current one. [Baier and Mcil-
raith, 2006] defines f-FOLTL which introduces another symbol final, which evaluates
to true only in the last state of finite path. Of these formalisms, IE-semantics are com-
monly used for planning, and importantly, the state-of-the-art planner PLTL-dual uses
IE-semantics, meaning that integrating with it in turn requires the use of IE-semantics.

Satisfaction under infinite extension semantics (IE-semantics) is equivalent in many
ways to LTL. Bauer and Haslum [2010] find that any equivalence between LTL formulae
exists also between the formulae under IE-semantics. They also show that the problem
of LTL satisfaction under IE-semantics can be reduced to LTL satisfaction, by a short
extension of the LTL formula in question representing the infinite extension. Bauer
and Haslum also review other finite path LTL semantics.

2.2.3 Identities

Two LTL formulae ψ and ψ′ are considered equivalent if, for all paths p ∈
(
2AP

)ω
,

p |= ψ if and only if p |= ψ′. Under this definition, certain families of formulae are
obviously equivalent to each other, and some of these identities are listed in this section.

Various LTL identities are used to simplify formulae and also to convert formulae
to normal forms, detailed in the next section. The list of identities presented here is
far from a comprehensive list of identities for LTL, but lists all the ones used in this
thesis.

The trivial identities for LTL and propositional logic are used to simplify formulae,
in very common cases, and for the most part involve trivial subformulae > or ⊥. This
list is as follows:

ψ ∧ ⊥ ≡ ⊥ ψ ∧ > ≡ ψ
¬¬ψ ≡ ψ
X> ≡ > X⊥ ≡ ⊥

ψU> ≡ > ψU⊥ ≡ ⊥ ⊥Uψ ≡ ψ

And for the derived operators, the following trivial identities can be derived:

ψ ∨ ⊥ ≡ ψ ψ ∨ > ≡ >
ψ → ⊥ ≡ ¬ψ ψ → > ≡ >
⊥ → ψ ≡ > > → ψ ≡ ψ

G> ≡ > G⊥ ≡ ⊥ GGψ ≡ Gψ
F> ≡ > F⊥ ≡ ⊥ FFψ ≡ Fψ
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There are various identities used to move negation inwards and also to separate the
requirements on the first state in the formula from the others, referred to as duality
laws. The duality laws are largely based on the derived operators, and in fact the R
operator is included specifically to be a dual operator for U. The duality laws are as
follows:

¬(ψ1 ∨ ψ2) ≡ ¬ψ1 ∧ ¬ψ2 ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2

¬Xψ ≡ X¬ψ ¬(ψ1 → ψ2) ≡ ψ1 ∧ ¬ψ2

¬(ψ1Uψ2) ≡ ¬ψ1R¬ψ2 ¬(ψ1Rψ2) ≡ ¬ψ1U¬ψ2

¬Gψ ≡ F¬ψ ¬Fψ ≡ G¬ψ.

There are several rewriting rules for moving ∧ and ∨ up and down in the formula
found in propositional logic and called the distributive laws, defined as follows:

ψ1 ∨ (ψ2 ∧ ψ3) ≡ (ψ1 ∨ ψ2) ∧ (ψ1 ∨ ψ3)
ψ1 ∧ (ψ2 ∨ ψ3) ≡ (ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3).

There are distributive laws for LTL also, but they are not applied to construct the
normal forms used in this thesis, and so are omitted from this section. Note that
rewriting a formula according to these rules can (in the worst case) nearly double its
length, whereas the duality and trivial identities add at most one symbol to the formula,
or shorten it.

And finally the most important set of identities is the expansion laws, used to
separate the parts of a formula referring to the future and the parts of a formula
referring to ‘now’.

ψ1Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)) ψ1Rψ2 ≡ ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2))
Fψ ≡ ψ ∨ XFψ Gψ ≡ ψ ∧ XGψ

The expansion laws can be used to reason about each successive step in a path, by
recursively applying them to isolate the constraint on each successive state. Like the
distributive laws, rewriting a formula according to these identities can double the size
of the formula.

2.2.4 Normal Forms

There are two normal forms for LTL used in this thesis, one being the standard negation
normal form extended for LTL, and the other is a form based on conjunctive normal
form for propositional logic, which diverges from the expected form somewhat.

Definition 2. Negation normal form is a structure of logical formulae in which the
negation operator (¬) is applied only to propositional atoms. Formulae in negation
normal form are exactly those constructed by the grammar

ψ =⇒ > | ⊥ | a | ¬a | (ψ) | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ
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where a can be any proposition in AP .

For any formula ψ, there exists a formula ψ′ in negation normal form equivalent to
ψ, which can be found be repeatedly applying the duality laws and double negation
(¬¬ψ ≡ ψ) until all instances of negation are pushed to atomic propositions. In
negation normal form, subformulae of the form a and ¬a are referred to as literals,
and by reasoning about literals only, negation is effectively removed from discourse.
Note however that in this form the inclusion of ∨ and R is necessary, as they are the
dual operators for ∧ and U. The G and F operators are not necessary, but in practice
are included for convenience. Conversely, in negation normal form, it is convenient to
rewrite ψ1 → ψ2 as ¬ψ1 ∨ ψ2 according to its definition.

The second normal form used is based on conjunctive normal form in propositional
logic, and by an abuse of terminology, it will be referred to as conjunctive normal form
(CNF) throughout this thesis.

Definition 3. A formula in conjunctive normal form is a formula in negation normal
form such that all temporal operators are restricted to subformulae referred to as X-
literals (the reason for this name will become evident), such that the main operator on
the subformula is X. Instances of disjunction not inside X-literals may only be applied
to literals and X-literals, where the resulting disjunction is referred to as clause, and
clauses may be connected by conjunctions. LTL formulae in CNF are exactly those
constructed by the following grammar:

ϕ =⇒ clause | clause ∧ ϕ
clause =⇒ literal | literal ∨ clause

literal =⇒ a | ¬a | φ
φ =⇒ X(ψ)
ψ =⇒ > | ⊥ | a | ¬a | (ψ) | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ

where a can be any proposition in AP .

In this definition, and throughout this thesis, φ is used as a symbol for a X-literal,
and ψ is used for an arbitrary LTL formula, often in negation normal form.

Given any formula ψ, by converting it to negation normal form and then repeatedly
applying the distributive law ψ1 ∨ (ψ2 ∧ψ3) ≡ (ψ1 ∨ψ2)∧ (ψ1 ∨ψ3) and the expansion
laws, an equivalent formula ψ′ in CNF can be constructed. It was mentioned in section
2.2.3 that rewriting according to both expansion laws and distributive identities doubles
the length of the formula, so after repeated rewriting, in the worst case, the length of
ψ′ may be exponential in the length of ψ. The value of CNF is not only that it
is very straightforward to represent and reason about, but also that there is a clear
distinction between temporal and non-temporal parts of the formula, with X-literals
being temporal formulae which do not refer to the first state in a path, and the non-
temporal literals restricting only the first state in the path.
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2.2.5 Progression

In order to determine whether an LTL formula is satisfied in the realm of planning, a
commonly used approach is formula progression, introduced by Bacchus and Kabanza
[1998]. Intuitively, the concept of formula progression is updating a formula each time a
new state is observed. As an iterative process, progression can only be used for formulae
which can be proven satisfiable or unsatisfiable by a finite prefix of a path, making it
less applicable for LTL defined on infinite paths. However on finite paths, formula
progression is feasible and can be more computationally efficient than the alternatives
in practice.

Formula progression is a transformation which, given an LTL formula ψ and a state
s ∈ 2AP , constructs a formula ψ′ such that sp |=IE ψ if and only if p |=IE ψ

′ for all paths
p ∈ (2AP )+. In this section, this transformation is performed by a pair of operators
CNF(·, ·) which converts a formula to CNF, simultaneously simplifying it according to
some state, and un-X(·), which removes the X from the start of each X-literal. However,
to make notation and representation easier, instead of using formulae directly, formulae
are represented using a set of sets of formulae.

Definition 4. A CNF set Ψ is a set of sets Φ, referred to as clauses, where each Φ is
a set of X-literals φ. A CNF set Ψ represents the formula∧

Φ∈Ψ

∨
φ∈Φ

φ.

Given a state s and a formula ψ, CNF(ψ, s) is a CNF set Ψ constructed by applying
the following steps:

1. Convert ψ to negation normal form.

2. Traverse the syntax tree to find an instance of U, R, G and F that is not inside
the scope of another temporal operator (U, R, G, F, X). Rewrite the sub-formula
rooted at this operator according to the expansion laws,

3. Evaluate all literals not inside a the scope of a temporal operator according to
the state interpretation s, i.e., replace all such propositions a with > if a ∈ s and
with ⊥ otherwise, and the opposite replacement for ¬a.

4. Simplify the resulting formula according to the trivial identities for LTL.

5. If there exists a temporal operator other than X not inside the scope of an X, go
back to step 2.

6. Use the distribution laws to convert the formula to CNF.

7. Construct a CNF set from the resulting X-literals.

Note that by step 7 there will be no literals outside the scope of a temporal operator,
because of the evaluation performed in step 3. If the formula was already simplified
before step 2, step 4 need only start from the propositions that were evaluated.



§2.2 Linear Temporal Logic 15

As example of the CNF operator, consider the LTL formula ψ = (a∨Xa)U(Gb∨Gc)
in the state s = {c}. The following is a trace of the transformations on ψ to construct
CNF(ψ, s) conflating steps 3 and 4 for brevity.

Step 1: ψ is already in negation normal form.
Step 2: (Gb ∨ Gc) ∨ ((a ∨ Xa) ∧ X(ψ))

Step 3-4: (Gb ∨ Gc) ∨ (Xa ∧ X(ψ))
Step 2: ((b ∧ XGb) ∨ Gc) ∨ (Xa ∧ X(ψ))

Step 3-4: Gc ∨ (Xa ∧ X(ψ))
Step 2: (c ∧ XGc) ∨ (Xa ∧ X(ψ))

Step 3-4: XGc ∨ (Xa ∧ X(ψ))
Step 5: All instances of U,R,G and F are within the scope of an X
Step 6: (XGc ∨ Xa) ∧ (XGc ∨ X(ψ))
Step 7: {{XGc,Xa}, {XGc,X(ψ)}}

So CNF(ψ, s) = {{XGc,Xa}, {XGc,X(ψ)}}.
The un-X(φ) operator removes the X from the beginning of φ, and when applied to

a set, recursively applies un-X to each element of the set. Therefore, given a CNF set
Ψ, un-X(Ψ) will remove the X operator from the beginning of every X-literal in every
clause in Ψ. The resulting set of sets of formulae Ψ′ is not a CNF set, as the formulae
in it are not necessarily X-literals. Semantically, Ψ′ represents the formula∧

Φ′∈Ψ′

∨
ψ∈Φ′

ψ,

and when the two operators are applied simultaneously, CNF(un-X(Ψ), s) is the CNF
set constructed from this formula under the state interpretation s.

Formula progression is performed by chaining these two operators in an alternating
fashion. Given a formula ψ and a finite path p ∈

(
2AP

)+
, whether p |=IE ψ can be de-

termined by stepping through the states in p, labelling the first with Ψ1 = CNF(ψ, p[1])
and labelling each consecutive state p[i+1] with the next CNF set CNF(un-X(Ψi), si+1)
for each i ≥ 1.

At the end of p, Ψ`(p) will not necessarily be > or ⊥, but Bacchus and Kabanza
[1998] provide the idle operator, which determines whether staying in a given state
forever will satisfy a formula. Formally,

idle(ψ, s) ≡

> if sω |= ψ

⊥ if sω 6|= ψ.

The idle operator can be adapted for the CNF set representation simply by considering
the formula represented by it, so idle(Ψ, s) is used interchangeably. idle(ψ, s) can be
computed recursively by algorithm 1, defined for an arbitrary formula ψ.

To discuss the difficulty of progression, it is important to consider what CNF sets
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Algorithm 1 An algorithm for determining whether staying in a state indefinitely will
satisfy a formula.

idle(>, s) = >
idle(a, s) = a ∈ s

idle(¬ψ, s) = ¬ idle(ψ)
idle(ψ1 ∧ ψ2, s) = idle(ψ1, s) ∧ idle(ψ2, s)

idle(Xψ, s) = idle(ψ)
idle(ψ1Uψ2, s) = idle(ψ2)

or X-literals could be reached by progressing a formula ψ on any combination of states.
That is, what can be said about the set

{Ψp | Ψp = CNF(un-X(. . .CNF(ψ, p[1]) . . . ), last(p)),∀p ∈
(
2AP

)+
}. (2.1)

To motivate the following definition, consider the formula ψ = (a ∨ Xa)U(Gb ∧ Gc).
CNF(ψ, {b, c}) is the CNF set

{{XGb,Xa},
{XGc,Xa},
{XGb,X(ψ)},
{XGc,X(ψ)}}

Note that within these clauses are multiple instances of each of only a few unique
X-literals, and these X-literal are constructed from the subformulae of ψ such that
the syntax tree of the subformula has a temporal operator as its root. From such a
subformula, an X-literal is constructed by putting an X at the start.

This makes it more natural to refer to the set of X-literals that can appear in a
CNF set reached by progression of some arbitrary formula ψ, which is denoted Σ(ψ),
and defined as the set of all subformulae of the negation normal form of ψ where the
main operator in the subformula is a temporal operator. Formally, assume without loss
of generality that ψ is in negation normal form, Σ(ψ) is defined recursively as

Σ(>) = Σ(⊥) ≡ ∅
Σ(a) = Σ(¬a) ≡ ∅

Σ(ψ1 ∧ ψ2) = Σ(ψ1 ∨ ψ2) ≡ Σ(ψ1) ∪ Σ(ψ2)
Σ(Xψ) ≡ {Xψ} ∪ Σ(ψ)

Σ(ψ1Uψ2) ≡ {X(ψ1Uψ2)} ∪ Σ(ψ1) ∪ Σ(ψ2)
Σ(ψ1Rψ2) ≡ {X(ψ1Rψ2)} ∪ Σ(ψ1) ∪ Σ(ψ2)

Under this definition, the set of reachable CNF sets expressed in equation 2.1 is a
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proper subset of 22Σ(ψ) , and while this is always a proper subset, there exists a family of
LTL formulae, discussed in [Roşu and Havelund, 2005], for which O(22

√
|Σ(ψ)|) unique

formulae can be reached by progression, and any representation (CNF, formula or
otherwise) must represent these uniquely to be correct.

2.3 Probabilistic Planning

The field of automated planning in artificial intelligence centres on finding plans for
agents to traverse a problem to reach a goal state, having started at an initial state. A
problem is modelled as a set of world states, and actions which transition the world to
a new state and are associated with a cost. An optimal plan is one which reaches the
goal while minimising the cost, which represents some resource, such as time or money.

Many practical problems involve uncertainty or stochastic behaviour, ranging from
uncertainty about the location of a missing person, or whether a robotic gripper will
fail to pick up an object. Stochastic behaviour is modelled by actions with multiple
possible effects: when an agent performs an action, the world transitions to a new state
chosen at random from a fixed probability distribution. One such model is called the
Stochastic Shortest Path problem (SSP), and is the primary model used in this thesis.

2.3.1 Stochastic Shortest Path Problems

SSPs model planning problems as a set of states through which an agent moves, using
actions, in order to reach one of several goal states. Actions have costs, and an optimal
solution to an SSP is one which minimises the total cost to reach a goal from some
initial state. Uncertainty is modelled in an SSP by associating with each action a
probability distribution over outcomes. Apart from the inclusion of a goal state and
initial state, this is very similar to a Markov Decision Process (MDP), and in fact
several common classes of MDPs are special cases of SSPs. The definition of SSPs
in this thesis primarily follows that of [Mausam and Kolobov, 2012], though several
formal concepts are defined similarly to those in [Baumgartner et al., 2018], as they
are better tailored to defining MO-PLTL SSP problems.

Definition 5. An SSP is a tuple S = 〈S, s0,G,A,T, C〉, where S is a finite set of states,
s0 ∈ S is the initial state, G ⊂ S is the set of goal states, A is a set of actions, and
A(s) ⊆ A is the set of actions available in the state s ∈ S. A(sg) = ∅ for all sg ∈ G.
T is the transition function, where T (s′ | s, α) is the probability that an agent in state
s, taking action α ∈ A(s), will be in s′ in the next step. The set of states s′ such that
T (s′ | s, α) > 0 is referred to as the outcomes of action α from state s. Finally, C is a
function C : A→ R which defines the cost associated with each outcome of each action
from each state, so C(α) is the cost resulting from taking action α.

SSPs are defined under an additional two constraints which cannot be succinctly
defined here, but using notation and terminology defined below, these constraints are:
a proper policy must exist; and for all improper policies π, V π(s0) =∞. Equivalently,
these constraints are that the goal can be reached from any state, and there are no 0
cost or negative cost loops in the SSP, respectively.
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2.3.1.1 Formal Concepts

The solution to an SSP is a policy. Intuitively, a policy is a decision rule telling an agent
what actions to take when. A policy is conditioned on something, i.e., the information
which is used to decide what action to take, and the decision can be either stochastic
or deterministic. The most general construct that a policy can be conditioned on is
the complete history of the agent, which is a path through the state space S, and a
deterministic choice is a random choice where the probability of one specific action
is 1. The most general structure of a policy is therefore that of a history-dependent
stochastic policy, which is a function π : S+×A→ [0, 1], defining a probability π(p, α)
for each action α following the history p. As a probability distribution, it has the
property

∀p ∈ S+,
∑

α∈A(last(p))
π(p, α) = 1.

All policies are undefined for any path p with last(p) ∈ G, as no actions can be taken
from a goal state. Naturally, defining a function over the set S+ is hard in the general
case, and evaluating such a policy is also hard, so policies typically use a more compact
representation for the history.

Two other conditioning structures for policies are commonly studied for SSPs; mem-
oryless or stationary policies, and finite memory policies. A finite memory policy is
one which is dependent only on the current state s and a mode, which can take a finite
set of values M , and is updated each time an agent reaches a new state. For a finite
memory policy, π(〈s,m〉 , α) is the probability of an agent choosing action α when in
state s and the mode has the value m. A stationary policy is a policy which depends
only on the last state in the history, so if last(p) = last(p′) for some paths p, p′ ∈ S+,
then π(p, α) = π(p′, α). For a stationary policy, π(s, α) is the probability that α is
chosen from the state s, regardless of the path to that state.

For a deterministic policy, the second parameter to π is omitted, and instead a
policy is a function π : S+ → A where π(p) is the action taken from the history p, and
the path parameter can be substituted for deterministic stationary and finite memory
policies similarly to stochastic policies.

A run r of an SSP is a path p ∈ S+∪Sω annotated with the action taken from each
state, r = s1

α1→ s2
α2→ . . . . If r is finite, the final state last(r) is not annotated with

an action. The notation for paths is used for runs, using subscript to denote actions
or states, e.g., the ith state is denoted r[i]s, and the ith action is r[i]α, but when clear
from context, si and αi are used for brevity and ease of reading. A run can be used
as a path so, for example, π(r, α) is the probability that action α will be chosen at the
end of the run r.

By definition, a run must have, for all i < ` (r), αi ∈ A(si) and T (si+1 | si, αi) > 0.
Given a run r, the cost of r is denoted C(r), and is the sum

C(r) ≡
`(r)−1∑
i=1

C(αi).
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A run r is said to be possible under a policy π if, for all i < ` (r), π(r[≤ i]s, αi) > 0. The
probability of a run under a policy π, denoted Prπ (r), is the product of the probability
all the transitions and choices in the run,

Prπ (r) ≡
`(r)−1∏
i=1

T (si+1 | si, αi)× π(r[≤ i]s, αi).

The set of all runs starting from a given state s (r[1]s = s) possible under a policy
π is denoted runs(s, π), and the set of all runs r such that last(r) ∈ G is denoted
Gruns(s, π) ⊆ runs(s, π).

A policy π is proper if ∑
r∈Gruns(s,π)

Prπ (r) = 1

for all s ∈ S \G. Recall that an SSP must have at least one proper policy. This means
there are no dead ends in an SSP, because if there were, then from those states there
would be no policy which can reach the goal, though there may be pairs of states such
that there is no path between them.

Practical problems do, of course, have dead ends, and they can be dealt with in
several ways. The typical way is to add to the SSP a ‘give up’ or a ‘try again’ action,
representing a failure to solve the problem, with some large associated cost chosen
given some domain knowledge about the problem. For example, a failure to pilot a
Mars Rover to a specimen without damaging it would require a new specimen to be
found. If the cost represents time, then the time it takes to find a new specimen could
be estimated, which would be the cost of a ‘try again’ action. Alternately, there is
some research into solving SSPs with dead ends, which can be found in [Kolobov et al.,
2011; Steinmetz et al., 2016; Trevizan et al., 2017b], however this thesis assumes that
all SSPs have no dead ends.

For some policy π, the expected cost of reaching a goal state from a state s ∈ S is
denoted V π(s), computed as

V π(s) ≡ Er∈Gruns(s,π)C(r)

=
∑

r∈Gruns(s,π)
C(r)× Prπ (r) ,

sometimes referred to as the value of s under π. The objective for an SSP is to find
a policy π that minimises V π(s0). Let Π be the set of all proper policies, then an
optimal policy π∗ is a policy such that V π∗(s0) ≤ V π(s0) for all π ∈ Π. The optimal
value function V π∗(s), is abbreviated as V ∗(s). It is well known that for any SSP, there
exists an optimal policy which is deterministic and stationary, meaning that an optimal
policy can be found while searching only through the set of stationary deterministic
policies.
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2.3.1.2 Solutions

The optimal policy for an SSP can be found in many ways, but most of them are
derived from the Bellman equations:

V ∗(s) = min
α∈A(s)

∑
s′∈S

T
(
s′ | s, α

)
× (C(α) + V ∗(s′))


Which recursively define the value function as the cost to reach the next state plus the
value of the next, and the best action in this state is dependent only on the value of the
other states, not the history nor the actions taken in other states. Algorithms relying
on the Bellman equations find the value function directly, searching through the value
function space, so to speak. This is referred to as the primal space.

Most of the methods discussed in this thesis instead search in the occupation mea-
sure dual space. An occupation measure is a variable xs,α which represents the expected
number of times that an agent starting in the initial state s0 takes action α from the
state s. The set of all occupation measures for an SSP is

X ≡ {xs,α|s ∈ S \G, α ∈ A(s)}.

Given a valid assignment to X, a policy π and the value function at the initial state
V X(s0) can be inferred. The stochastic stationary policy π defined according to X is:

π(s, α) ≡ xs,α∑
α′∈A(s) xs,α′

,

and the cost function from the initial state derived from the occupation measures is:

V X(s0) =
∑

s∈S,α∈A(s)
xs,α × C(α).

A valid assignment to X is one which represents the expected number of times each ac-
tion is taken from each state, and the set of valid assignments to X can be characterised
by observing that the expected number of times that the agent enters a given non-goal
state s ∈ S \G must be equal to the number of times that they leave it; that the agent
eventually reaches a goal state; and that the agent begins in the initial state. These
observations can be encoded as a series of linear equations over X, which is presented
in LP1, optimising for the minimum V X(s0).

Optimising a series of linear equations is a well studied problem, and such a problem
is referred to as a linear program (LP), and each linear equation in an LP is referred
to as a constraint. LPs can be solved by an off-the-shelf LP solver, such as Gurobi
[Gurobi Optimization, 2019]. The methods for solving LPs are outside the scope of this
thesis, but in general terms, there exist algorithms which solve LPs in time polynomial
in the number of variables and size of the coefficients, though algorithms which have a
poorer worst case complexity prove more effective in practice.

To make the function of LP1 clearer, two functions are introduced beforehand, in(s)
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and out(s), representing the flow into and out of the state s respectively. These are
defined as:

in(s) ≡
∑

s′∈S,α∈A(s′)
xs′,α × T

(
s | s′, α

)
out(s) ≡

∑
α∈A(s)

xs,α

Note that in(s) sums the agents coming from other states, and so does not count
the agent entering at the initial state. Instead, LP1 includes a constraint specifically
to encode this case. Below is LP1, and following that a brief justification for the
constraints, as is the norm for all linear programs presented throughout this thesis.

min V X(s0) (LP1)
s.t. xs,α ≥ 0 ∀xs,α ∈ X (C1)

out(s0)− in(s0) = 1 (C2)
out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C3)∑
sg∈G

in(sg) = 1 (C4)

LP1 can be viewed as modelling the SSP as a flow network, with 1 unit of flow
entering at the source (the initial state), travelling through the network, and leaving
through the sink (all the goal states). This terminology will be used often throughout
this thesis to refer to occupation measure linear program, and ‘units of flow’ is used
interchangeably with the expected number of times the agent enters a state or takes
an action. Later on, for problems with multiple agents, it is interchangeable with the
expected number of times agents enter a state or take an action.

The constraints for LP1 can be justified as follows, skipping constraint C1 as it is
a self evident declaration of the variables:

Flow Source (C2). In expectation, the agent leaves the initial state one more time
than enters it from other states. Equivalently in terms of the flow network, the initial
state behaves as a source for the flow network, creating exactly 1 unit of flow.

Flow Conservation (C3). This constraint encodes the concept that when the agent
enters a non-goal state it must exit it again. Equivalently, the amount of flow entering
a state is equal to the flow leaving it.

Sink (C4). This constraint specifies that eventually the agent must reach the goal,
essentially forcing X to encode a proper policy. The goal state acts as a sink for the
flow network, all the flow entering the network eventually reaches the goal and does
not leave it.
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2.3.2 Representations

Several representations exist for SSPs. SSPs are represented in this thesis using the
probabilistic SAS+ formalism, which represents the state of SSPs as a set of variables
that take multiple values. The most common languages for expressing SSPs, used
in the International Conference on Automated Planning and Scheduling (ICAPS) In-
ternational Planning Competitions, are the Probabilistic Planning Domain Definition
Language (PPDDL), introduced by Younes and Littman [2004], and the Relational
Dynamic Influence Diagram Language (RDDL), introduced by Sanner [2010]. The
planning problems used in this thesis are written in PPDDL, so RDDL is omitted from
this section.

2.3.2.1 SAS+

The SAS+ representation, introduced by Bäckström and Nebel [1995], is a factored
formalism for planning problems, defining states in terms of a set of variables V, which
each take one of multiple values specified by their domain Dv for v ∈ V. In the SAS+

representation, a (partial) state s is an assignment s[v] = d such that d ∈ Dv to each
variable V ∈ Vs, where Vs ⊆ V. For the undefined variables v ∈ V \ Vs, the state value
is denoted s[v] = u.

A total state s is one which has Vs = V, and for two states s and s′, s′ ⊆ s denotes
that s[v] = s′[v] for all v ∈ Vs′ . In other words, s′ ⊂ s if s is defined on at least the
same variables as s′, and where they overlap they are the same. This can be thought
of as s′ being a partial state of s. The initial state of a SAS+ problem is a total state,
and the goal specification is a partial state sg such that any total state s with sg ⊆ s

is a goal state.
Trevizan et al. [2017a] extend SAS+ for probabilistic actions and an associated cost

function, meaning that under their definition, a probabilistic SAS+ problem defines
an SSP. In this SSP, S =×v∈V Dv is the set of all total states for the SAS+ problem.
Actions under this definition have effects which change the values of some variables,
and preconditions that require certain variables to have certain values. Preconditions
are partial states, and an action with the precondition p can only be taken in states
s with p ⊆ s. Similarly, the effects of actions are partial states, and in the case that
the effect e is applied to a state s, the resulting state s is s except updated so that
s′[v] = s[v] for v ∈ Ve. The complete formal definition of a probabilistic SAS+ problem
is omitted because the intuition is sufficient for the definitions in this thesis, and the
notation is not used.

2.3.2.2 PPDDL

PPDDL is an effects based language for specifying domains and problems, extended
from the Planning Domain Definition Language (PDDL). That is, PPDDL can specify
a type of problem (a domain) in the abstract, defining types, predicates, and actions.
For example, consider the domain exploding blocks world (International Planning Com-
petition 2008), in which there are blocks, which can be on top of other blocks, on the
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table, detonated, destroyed and so on, and there are actions to pick up and put down
blocks. PPDDL allows for specific instances of problems to be defined for this domain.
For example, a problem in exploding blocks world might have 3 blocks, where block a
is on block, b and blocks b and c are both on the table, and might have goal where
block c is on b.

A given domain and problem together fully specify an SSP in a factored fashion,
meaning that a complicated SSP is described using an exponentially smaller definition,
and the structure of the SSP is available to a planner if it can use the extra information.
On top of this, the capacity to make a single domain and many problems of different size
but similar structure makes PPDDL quite convenient for defining standard benchmarks
for planners.

2.3.3 Heuristic Search

Using a factored representation of an SSP, the size of the SSP is exponential in the
length of the representation, meaning that it is typically computationally intractable to
enumerate (expand) all the states of the SSP. In the worst case, an agent may have to
visit every state in the SSP to reach the goal, so sometimes this is necessary. However,
for many practical problems only a smaller (polynomial) subset of the state space is
necessary for an agent to reach the goal.

Given this, an important task in planning then becomes finding the necessary states
efficiently while ignoring the unnecessary states, and then finding the solution within
this subset of the state space. This technique is referred to as heuristic search, because
it uses a heuristic function to estimate the value function, and searches the factored
state space in a manner informed by this estimate.

Various algorithms exist which perform heuristic search on SSPs, including LAO*

[Hansen and Zilberstein, 2001] and LRTDP [Bonet and Geffner, 2003], sometimes clas-
sified as “find and revise” algorithms, so called because they maintain a table of the
current value function, and repeatedly find and update states for which the bellman
equation is violated; the primary distinguishing aspects being the order in which states
are found.

2.3.3.1 Choosing Heuristics

Figure 2.2 shows a simple case of where heuristic search can be useful, using a deter-
ministic SSP for simplicity’s sake. In the presented SSP, there exists a policy shown
in blue which reaches the goal sg (represented as a square, to distinguish it as an ab-
sorbing state) in only two actions, but whether or not this is the best policy is not
known for sure. h(s1) here represents the value of the heuristic function h at the state
s1. If the quality of the policy found is not an issue, then this is a success for heuristic
search, as only 3 states need to be enumerated to find a policy, when the unexplored
state space may be millions of states.

On the other hand, if an optimal policy is desired, it may be that this policy
is optimal, but this can’t be ascertained without either enumerating the whole state
space or having some form of guarantee on h. Consider the case where h is guaranteed
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to be an underestimate of the true cost to reach the goal, i.e., h(s) ≤ V ∗(s). Given
this guarantee, the known policy and the heuristic form upper and lower bounds on
the value function, i.e., h(s1) ≤ V ∗(s1) ≤ C(α) in this case. If h(s1) = C(α), then the
value function at state s1 is V ∗(s1) = C(α), so no policy can do better than taking
action α from s1.

Figure 2.2: A schematic diagram of the
heuristic search through a simple SSP.

This lower bounding property is
called admissibility. That is, a heuris-
tic h is admissible if h(s) ≤ V ∗(s) for all
s ∈ S. When guided by an admissible
heuristic, heuristic search algorithms are
guaranteed to find optimal solutions, de-
spite potentially expanding only a frac-
tion of the state space.

Constructing an admissible heuristic
is a difficult problem, and they are of-
ten based on some domain knowledge.
For example, in a path finding problem
(with Euclidean geometry), an effective
heuristic might be the euclidean distance
from the current state to the goal. This
is a classical example of a relaxation; if
the obstacles in the pathfinding problem are ignored, the optimal solution is the eu-
clidean distance. Relaxation of parts of a problem is one of the standard ways of
choosing a heuristic, as a relaxed problem is both easier to find a solution to, and the
solution will have a smaller cost, making it admissible and efficient.

The euclidean distance heuristic is an example of a domain specific heuristic, as it
only applies in pathfinding domains with euclidean geometry. This thesis focuses on
domain independent heuristics, which do not relax the structure of the domain, they
relax the structure of the problem representation. Domain independent heuristics are
more general, as they can be used on any problem, so long as it is defined using the
same representation.

2.3.3.2 All-Outcomes Determinisation

Heuristics for SSPs historically have relied on determinisation. This is a relaxation
of the structure of the problem in which the stochastic properties of the problem are
removed. The all-outcomes determinisation of an SSP is an identical SSP except that A
is replaced with a set of determinised actions A′. To construct A′, each action α ∈ A is
replaced with several actions αs1,s′1 , . . . αsn,s′n for each pair s, s′ ∈ S such that α ∈ A(s)
and T (s′ | s, α) > 0. Each αs,s′ is an action with T

(
s′ | s, αs,s′

)
= 1, and the new set

A′(s) of actions available in a state s is defined

A′(s) = {αs,s′ | α ∈ A(s), s′ ∈ S s.t.T
(
s′ | s, α

)
> 0}.

In English, the all-outcomes determinisation of an SSP is another SSP where agents
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are free to choose which outcome every action results in. The cost of the optimal solu-
tion to the all-outcomes determinisation from some state s is an underestimate of the
optimal value function V ∗(s), so could be used as an admissible heuristic. However, the
all-outcomes determinisation of an SSP is a classical (deterministic) planning problem.
Finding the optimal solution to a classical planning problem is PSPACE-hard, which is
prohibitively difficult, so typically the determinisation is relaxed even further by using
heuristics for classical planning problems.

The main focus of this thesis is, however, on heuristics that estimate the probability
of certain events occurring in the execution of a policy. Obviously, removing all the
probabilistic aspects from a problem makes this impossible, apart from the boolean
classification ‘it is possible’ and ‘it is not possible’.

2.3.3.3 Projection

There are a number of heuristics for classical planning which are based on the optimal
solutions to projections. Intuitively, a projection of a probabilistic SAS+ problem onto
a subset of its variables Vp ⊂ V is another probabilistic SAS+ problem SVp with all the
other variables V \Vp removed. The complete formal definition for a projection as used
in this thesis can be found in [Trevizan et al., 2017a], but only the necessary formal
concepts and notation is provided here, and the rest is left to intuition.

Given a state s for a probabilistic SAS+ problem, and a subset of the SAS+ variables
Vp ⊂ V, let proj(s,Vp) be the projection of s onto Vp, with proj(s,Vp) ⊆ s, and defined
for the variables

Vproj(s,Vp) ≡ Vp ∩ Vs.

Recall that the actions for a probabilistic SAS+ problem have preconditions and ef-
fects, which are partial states. The actions for SVp are constructed by projecting each
precondition and effect onto Vp. This may make leave them defined over the empty
set of variables, in which case the action can be taken from any state or has no effects,
respectively. Given the initial state s0 for S, the initial state for SVp is proj(s0,Vp).

For the goal specification sg, the obvious approach would be to have the goal spec-
ification be proj(sg,Vp), but a different definition is used in this thesis. Consider Vp
such that Vsg \ Vp 6= ∅, in this case there are non-goal states s in SVp for which
proj(sg,Vp) ⊆ proj(s,Vp), so projecting the goal as well would make these states goal
states. As actions cannot be taken from goal states, this would not preserve the opti-
mal policy when projected onto Vp. The extreme case for this is when Vsg ∩ Vp = ∅,
in which case every state would become the goal state, and no actions could be taken.
Uses of projection in this thesis require that the policies for the original SAS+ problem
are preserved, so the direct approach is not applicable.

No state s ∈×v∈Vp Dv is a goal state in the projection, instead an artificial state g is
introduced, along with an artificial action αg, which transitions to g with probability 1.
αg is available only in states s such that proj(sg,Vp) ⊆ s. In this way, for a projection
which has Vsg ∩ Vp = ∅, αg is available in all states, but any policy valid in S can be
projected into SVp .

Various heuristics for deterministic planning problems use several projections to
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simplify the state space, making it possible to solve each projection using a simple
forward search, and then use the optimal value functions of these projections as a
heuristic. These heuristics are generally referred to as Pattern Database heuristics
[Culberson and Schaeffer, 1998]. The primary advantage of using projections to define
heuristics is that while the number of states in the probabilistic SAS+ problem is expo-
nential in the sizes of the variable domains, creating a set of separate projections can
use an exponentially smaller number of states. In the case where the set of projections
is a projection onto each variable, the number of states in the projections put together
the sum of the domain sizes. Obviously, projections onto larger subsets of the variables
leads to exponentially larger projections, so for efficiency’s sake, smaller projections are
generally preferred.

2.4 MO-PLTL Constrained Planning

It is natural in a practical problem to consider bounds under which a policy must
operate. For example planning a route of travel between cities that minimises the
travel time might also have the requirement that the expected fuel usage is within some
bound, where this fuel cost is a secondary cost to the travel time. Another example
is where the operator of a Mars rover may wish to guarantee that in the advent of a
dust storm it can safely avoid having its solar panels covered in dust, by always being
near shelter. The case where multiple costs are considered is the most common type
of constraint on planning, and one model for such a problem is a Constrained SSP
(C-SSP).

A C-SSP is an SSP with, instead of a single cost function C, a vector of n cost
functions C1, C2, . . . , Cn, each representing a different resource. Accordingly, there
are n value functions for a given policy V π

1 , . . . , V
π
n . The objective of a C-SSP is to

reach the goal while minimising the primary value function V π
1 (s0), with a bound

V π
i (s0) < ci on the expected cost of the policy for each other cost function. An optimal

policy π∗ for a C-SSP is one which, for all policies π that satisfy all the bounds,
has V π∗

1 (s0) ≤ V π
1 (s0). However, this thesis considers a different type of constraint,

specifically SSPs constrained by PLTL constraints.
A PLTL constraint ψ for a probabilistic SAS+ problem S is an LTL formula ψ

associated with a probability interval z ⊂ [0, 1]. ψ is defined over the propositional
atoms AP = {(v = d) | v ∈ V, d ∈ Dv}, where (v = d) is true in a state s if and
only if s[v] = d. ψ requires that from the initial state s0 of S, any policy π must have
the property that the probability of a run r being chosen such that r |=IE ψ is in the
interval z = [z, z].1 This is denoted

ψ = Pr (ψ) ∈ z,

Given a policy, the probability that ψ is satisfied from some state s is denoted Prπ (ψ | s),

1Note here that r is being used as a path. In reality r |=IE ψ is short hand for p |=IE ψ, where p is
the path represented by r.
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and can be computed as
Prπ (ψ | s) ≡

∑
r∈Gruns(s,π):

r|=IEψ

Prπ (r) .

Hence the constraint ψ requires that all policies π for the constrained SSP must have
the property z ≤ Prπ (ψ | s0) ≤ z. For the probability from the initial state, the state
is omitted, i.e., Prπ (ψ) ≡ Prπ (ψ | s0)

A multi-objective linear temporal logic (MO-PLTL) constraint is a conjunction of
PLTL constraints. That is, a MO-PLTL constraint φ is a set of PLTL constraints
{ψ1, . . . ,ψn} such that any policy π for an SSP constrained by φ must have the prop-
erty Prπ (ψi) ∈ zi for all 1 ≤ i ≤ n. An SSP constrained in such a way is referred to as
a MO-PLTL SSP problem.

The set of policies for a MO-PLTL SSP problem Sφ is Πφ ⊆ Π, defined as the set
of all policies π for Sφ such that Prπ (ψi) ∈ zi for all 1 ≤ i ≤ n. An optimal policy for
Sφ is a policy π∗ ∈ Πφ such that V π∗(s0) ≤ V π(s0) for all policies π ∈ Πφ. Because of
the constrained nature of MO-PLTL SSP problems, and the path dependent semantics
of LTL, an optimal policy for a MO-PLTL SSP problem may be need to be stochastic
and finite memory, respectively [Kwiatkowska and Parker, 2013].

A simple example for why this is the case is a (obviously contrived) constraint
that, with probability [0.5, 1], X(v1 = 1) must hold. Consider a SAS+ problem where
s0[v1] = 1, and there are two actions, α1, which maintains the current state for one
step, and α2, which transitions to a goal s1 in which s1[v1] = 2. The formula can be
satisfied by a policy which chooses α1 then α2, but this particular policy chooses two
different actions in the same state, hence requiring a finite memory policy. This path,
however, costs more than the optimal path to the goal, α2. An optimal policy chooses
between these paths at random, satisfying X(v1 = 1) by taking the first path with
probability 0.5, and the cheaper path with probability 0.5.

A finite memory policy for a MO-PLTL SSP problem can use one of several modes,
though the mode of interest in this thesis is the progression mode [Baumgartner et al.,
2018], which uses as the mode value the progressed CNF set generated up to that state.
The progression mode for MO-PLTL SSP problems has a tuple of CNF sets, one CNF
set for each constraint in φ. As a result, the finite set of values that the progression
mode can take is M =×ψi∈φ 22Σ(ψi) .

Finite memory policies can be converted into stationary policies by compiling the
mode into the SSP itself. A product C-SSP is a constrained SSP where each state is
pair s× = 〈s,m〉, referred to as a product state. The state space is then S× = S×M ,
and actions transition to new product states dependent on both the transition function
and the mode update function next(s,m), which updates the mode each time a new
state is observed. In a product C-SSP, the optimal policy is stationary, but may still
be stochastic to satisfy the constraints.

In the intersection of constrained and heuristic planning, heuristics estimate the
optimal value function for the product C-SSP, V ∗(s×). This means a heuristic for a
product C-SSP is a function h : S× → R, dependent on both the mode and the SSP
state. To effectively design a domain independent heuristic for constrained planning,
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it must take into account both the SSP state and the mode, or at the least, several
heuristics should be used which take account of each, if independently. Heuristic search
is especially important for product C-SSPs, because S is already exponential in size,
and the set of values M for some modes can be very large as well. For instance, the
progression mode is double exponential in the length of the formulae in φ.

The aim of this thesis is to introduce a novel heuristic for product C-
SSPs constructed from MO-PLTL SSP problems, designed for the progres-
sion mode.

For efficiency reasons, heuristics for MO-PLTL SSP problems consider only one
constraint, and an instance of the heuristic is computed for each constraint. As such,
the input to a heuristic for MO-PLTL SSP problems is an augmented state, which is
a pair 〈s,mi〉. An augmented state can be constructed trivially from a product state
s× = 〈s,m1,m2, . . . ,mn〉. In this thesis, an augmented state is always constructed
from the progression mode, so it is denoted 〈s,Ψ〉.

2.5 Summary

This chapter introduced linear temporal logic, an extension of propositional logic to
define the properties of infinite paths, and probabilistic planning, the problem of finding
a plan which reaches the goal of a problem in a stochastic environment. The intersection
of these is the MO-PLTL SSP problem, a planning problem where any valid policy
satisfies a set of PLTL constraints, which state that certain LTL formulae are satisfied
with some given probability.

So that LTL can be defined for planning, it is extended with infinite extension
semantics, where the final state in a path is repeated indefinitely. Given this, it is
defined on finite paths, so it is reasonable to apply an iterative rewriting process to it,
referred to as progression. Progression in this thesis is defined on CNF sets, which are
sets of sets of X-literals, where every X-literal is a temporal formula starting with the
next operator, and a CNF set represents an LTL formula in conjunctive normal form.

Probabilistic planning centres around the Stochastic Shortest Path problem, which
is a shortest path problem in which actions have stochastic effects. SSPs are repre-
sented using SAS+, which is a factored representation with multi-value variables, which
permits projection onto a subset of these variables. Because the full state space of an
SSP is exponential in the size of the SAS+ representation, it is computationally in-
tractable to enumerate all the states, so a technique called heuristic search is applied
to explore the state space intelligently until a sufficient subset of it has been explored
to find a solution. Projection can be used to construct heuristics which keep the prob-
abilistic properties of the underlying problem, as an alternative to the more common
determinisation heuristics.

SSPs constrained by multiple PLTL constraints, referred to as MO-PLTL SSP
problems, can be represented as a product C-SSP, which combines a mode for the
PLTL constraints with the states for the SSP. The resulting state space is the product
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of the set of mode values and the state space of the SSP. Progression can be used as a
mode, where the mode takes the value of a tuple of CNF sets, one for each constraint in
the MO-PLTL constraint. A domain independent heuristic for a product C-SSP uses
the mode and the state to estimate the cost of reaching the goal under the constraints.

In the next chapter, a brief summary is provided of other research in the intersection
between planning and LTL. Of particular note are the PRISM model checker, and
PLTL-dual, which both provide a solution to the MO-PLTL SSP problem.
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Chapter 3

Related Work

The field of LTL in planning has a long history and this thesis is of course not the
first to address PLTL as applied to planning, let alone LTL. This chapter details some
of the work that has been done in the intersection of LTL and planning, organised as
follows:

Section 3.1 details the ways in which LTL has been integrated into planning, pri-
marily as temporally extended goals.

Section 3.2 discusses model checking and strategy synthesis, which focus on LTL
rather than planning, but various work in that field has involved planning, and the
methods are quite reminiscent of those in section 3.1.

Section 3.3 presents the state-of-the-art planner PLTL-dual, which solves MO-PLTL
SSP problems using heuristic search.

3.1 LTL In Planning

For two decades now, the planning community has known that constraining the tem-
poral properties of plans allows planning problems to be much more expressive. These
constraints have often been referred to as temporally extended goals, as the constraints
can also be viewed as objectives, or can be the sole objective of a problem.

3.1.1 Control Knowledge

LTL was first included in planning as control knowledge by Bacchus and Kabanza
[1996]. Control knowledge is domain specific information which aids a planner in
finding a solution to any problem in that domain. Bacchus and Kabanza [1996] defined
control knowledge in terms of first order LTL, where instead of adding constraints
which policies must satisfy, the provided LTL formula encode properties that good
quality policies have. They implemented this in a planner called TLPlan, which
uses progression to update the formulae synchronously with the policy, and paths that
would violate the LTL formulae are abandoned. With good quality control knowledge,
TLPlan was able to complete problems up to an order of magnitude larger than
planners without control knowledge.

TLPlan was later succeeded by TALPlaner [Doherty and Kvarnstram, 2001],
which used a set of logics called Temporal Action Logics (TAC). These differ from LTL
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in that TAL was designed to refer to actions and change in an environment, where
LTL was designed outside the field of planning, and has seen use in several fields.
TALPlaner was shown to perform much better than TLPlan.

In their later work, Bacchus and Kabanza [1998] introduced the concept of tem-
porally extended goals. They extended TLPlan to solve planning problems where,
instead of having a goal state, the goal is defined as the satisfaction of a given LTL for-
mula. To this end, they introduced infinite extension semantics and the idle operator.

Notably, their approach was simply to prune from the search space the paths which
violated this formula, but their approach did not guide the search in any other way
towards achieving the goal. This works fine for safety goals, e.g., a robot must not do
something which may cause it to drop an explosive, because the formula is immediately
violated when the robot does do such a thing. On the other hand, eventualities, e.g.,
the robot must eventually clean out every room, can only be violated by an infinite path
in which that never happens. For goals like this, TLPlan must resort to blind search.

3.1.2 LTL Compilation

Guiding a planner towards a temporally extended goal requires some form of heuristic
search to scale to large problem instances. This was recognised and a common approach
in research into temporally extended goals is to use classical planning heuristics for LTL.
This is done by compiling the LTL formula into the planning problem, i.e., constructing
another planning problem with a final goal state instead of a temporally extended goal,
where the final goal state is equivalent to satisfying the LTL formula.

The techniques involving compilation often rely on conversion to Non-deterministic
Büchi automata (NBA). NBAs are ω-automata, which define languages of infinite
words1, and for any LTL formula ψ, there exists an NBA which accepts a path p

if and only if p |= ψ. An NBA constructed from a given formula, in the worst case, has
a number of states exponential in the length of the formula. For LTL on finite paths,
NBAs are treated as non-deterministic finite automata (NFA).

The non-determinism of an NFA is clairvoyant, i.e., non-deterministic transitions
are chosen such that if a word can be accepted it will be. Equivalently, an NFA accepts
a word if there is any path which accepts it. To represent this, a common technique
is that when transitioning, an NFA goes to all possible states simultaneously. This is
called powerset construction, or on-the-fly determinisation. Under this interpretation,
an NFA is in multiple states at once, and if any of those states are accepting states
after observing a word, it accepts that word.

Edelkamp [2006] and Baier and Mcilraith [2006] provide compilations of temporally
extended goals into final state goals in classical planning. Both approaches involve the
use of NFAs, and can output the resulting planning problem in PDDL. Baier and Mcil-
raith [2006] make use of finite path first order LTL (f-FOLTL), allowing formulae like
all servers must always be connected to some other server to be represented compactly.
They construct parameterised NFAs, which are a compact form of NBA, where the

1The terminology word is typically used for automata, as they define languages, but so long as the
alphabet is 2AP , this is equivalent to paths for LTL as presented in this thesis.
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parametrisation behaves similarly to quantifiers for simultaneously representing all the
objects in the domain. After constructing a parameterised NFA, they compile it into
the planning problem as axioms, which are essentially actions that are taken for free as
soon as they are available. These axioms represent the movement between the states
of the NBA, and a goal state requires that the NFA has reached an accepting state.

On the other hand, the work by Edelkamp [2006] uses propositional LTL. This work
focuses on PDDL3, which includes support for temporally extended goals and prefer-
ences. The language provides only a limited set of temporally extended goal structures,
which are strictly less expressive than LTL. Preferences are measures of a plan’s quality,
and achieving them is weighted by a cost in the primary metric. Hence a plan which
does not achieve a preference is better than a much more expensive plan which does
achieve the preference, provided the difference is larger than the cost associated with
the preference. Temporally extended preferences in PDDL3 are preferences defined
using the same structures as temporally extended goals.

To deal with temporally extended goals and preferences, Edelkamp [2006] converts
them to LTL, and constructs an NBA for the resulting formula. The state of the
automata is represented in the planning problem, and he adds actions to transition
between states of the automata, as well as flags to force the automata and the planning
problem to stay synchronised. He adds a flag for each preference to state whether that
preference is being achieved, and this flag is set to false by an action which costs as
much as it does to fail to achieve the preference.

Both of these works output a classical planning problem, for which there are many
well known heuristics. In this way, any classical heuristic planner can search in a guided
fashion towards the achievement of the temporally extended goals and preferences.

In a later work, Baier et al. [2009] address temporally extended preferences in
a different manner, compiling the temporally extended preferences to parameterised
NFAs similarly to [Baier and Mcilraith, 2006]. They add a flag for each temporally
extended preference which is equivalent to the satisfaction of that preference. Hence
this flag can be used as a simple preference in the final state. For simple preferences,
they present a series of heuristics which can be used to estimate the achievable value
from a state taking into account the preferences. Notably, their heuristics are not
admissible and therefore do not necessarily generate optimal plans.

The approach of compilation has been applied also to non-deterministic planning by
Camacho et al. [2017], in an almost identical way to [Baier and Mcilraith, 2006], where
they construct an NFA and encode it in the effects of actions in the non-deterministic
planning problem. Camacho et al. [2017] also present a compilation of LTL for infinite
paths into non-deterministic planning. This is done with synchronisation actions, and
to represent the acceptance of an infinite path, the problem is constructed such that
at some point a solution must demonstrate a loop while in an accepting state of the
NBA, proving that there is an infinite path which satisfies the LTL.

As well as in the planning community, there is plenty of work in the area of verifi-
cation and synthesis for LTL by the formal methods community. The approaches used
by this community also generally rely on automata.
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3.2 LTL Strategy Synthesis

The question addressed by a solution to a MO-PLTL SSP problem is “how can certain
properties be reliably achieved while also reaching a goal with a minimum cost.” Model
checking and strategy synthesis are where the first half of this question originates.
Intuitively, model checking is the problem of “does a system (e.g., a strategy) satisfy
certain properties,” and strategy synthesis is the question “how can certain properties
be satisfied?” These are both done primarily by constructing automata and analysing
its properties.

3.2.1 Planning as Strategy Synthesis

Intuitively, LTL synthesis is defined as a sort of game, in which the agent controls
one subset of the propositional variables Y ⊂ AP and the environment controls a
disjoint subset X ⊂ AP with X ∪ Y = AP . These variables are assigned values
in sequence, first the environment chooses Y1, then in response the agent X1, and
play alternates. The agent ‘wins’ the game if the infinite word (X1, Y1), (X2, Y2), . . .
constructed by combining these assignments satisfies a given LTL formula ψ. LTL is
useful for automatically synthesising a controller from its specifications, or debugging
those specifications.

Perhaps the most closely related part of strategy synthesis for this thesis is that of
synthesis for LTL on finite paths. This problem is addressed by De Giacomo and Vardi
[2015], and their approach is which is to construct a deterministic finite automaton
(DFA) with the property that any word is accepted by the automaton if and only if it
satisfies a given LTLf formula. Constructing a DFA requires first the construction of
an NFA, followed by the determinisation of this automata. Both steps are exponential
in the input, so the resulting DFA may have an doubly exponential number of states
in the length of the formula. They perform a sort of reachability analysis on the
resulting DFA, identifying states which can be transitioned to in one step no matter
the environment’s choice of assignment to X , and iteratively identifying states which
can reach a goal state in 1 step, then 2 steps and so on until convergence.

Planning seems very similar to strategy synthesis for LTL on finite paths, and in fact
the problems can be cast as each other. Camacho et al. [2018] observe this and provide
a reduction of non-deterministic planning to strategy synthesis for LTLf and vice versa.
Their paper focusses on applying the reduction from synthesis to planning to use state-
of-the-art planners to synthesise a strategy, or alternatively find a certificate that there
is no such strategy. Their reduction from synthesis to planning has flags in the planning
problem which force it to alternate actions representing the environment playing and
the agent assigning variables. The planning problem has variables representing the
states of an NFA constructed from the given LTLf formula, and when the agent makes
an assignment these variables are updated based on the choice of the agent and the
environment.

Notably, Camacho et al. [2018] make use of a technique where they split large
automata into several smaller automata, where a path satisfies the original formula if
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and only if that path is accepted by all automata. This allows them to reduce the size
of very large automata in many cases. They found that splitting the automata could
result in much better performance, but splitting the automata into too many parts
resulted in worse performance than not splitting at all.

3.2.2 PRISM Model Checker

The PRISM model checker [Kwiatkowska et al., 2011] is a tool developed for a variety
of model checking and strategy synthesis problems. Of interest in this thesis are the
techniques implemented in PRISM for strategy synthesis on MDPs [Kwiatkowska and
Parker, 2013], particularly strategy synthesis for PLTL in MDPs. For a single PLTL
constraint, PRISM constructs a deterministic Rabin automata (DRA) [Rabin, 1969]
from the LTL formula in the PLTL constraint and constructs the synchronous product
of the DRA with the MDP.

A DRA is a type of deterministic automata with the same expressive power as an
NBA. Like the DFA in the work of De Giacomo and Vardi [2015], DRAs in the worst
case have size double exponential in length of the original LTL formula. The reason
DRAs are used instead of using on-the-fly determinisation is because the synchronous
product of the two is made up-front, as the approach used by Kwiatkowska and Parker
[2013] requires a holistic analysis of this product.

The result of constructing the synchronous product of the two is a new MDPM×
where the states are pairs 〈s, q〉, s is a state of the original MDP and q is a state of
the DRA. InM×, PRISM identifies the accepting end components, that is, sub-MDPs
insideM× in which every state is reachable from every other state. As it is an MDP,
all the actions available in the MDP stay in it, actions fromM× which would leave the
sub-MDP are removed, and [Baier and Katoen, 2008, pg. 878] provides an algorithm for
identifying these end components. An end component is accepting depending on the
accepting condition of the DRA, as states in an end component are visited an infinite
number of times.

Once the accepting end components are identified, the approach in [Kwiatkowska
and Parker, 2013] is to perform value or policy iteration to find the maximum prob-
ability of reaching these accepting components. If the best policy reaches accepting
end components with a probability outside the bounds of the PLTL constraint, then it
is known that there is no policy which satisfies the PLTL constraint. Otherwise, the
policy can be extracted after value/policy iteration is completed.

This approach is extended to multiple PLTL constraints (MO-PLTL) on an MDP
in a very straightforward manner. For each LTL formula in the PLTL constraints, a
DRA is constructed and the synchronous product of all the DRAs and the MDP is
computed. In this product MDP, the accepting end components for each constraint
are identified, and to allow for the trade-off between objectives, an LP is constructed
which, like LP1, represents the expected number of times actions are used in various
states and there is an LP constraint for each PLTL constraint that the flow entering
accepting components for that PLTL constraint should be within the given bound.

PRISM implements this algorithm also for the case of SSPs, where it requires very
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little adaptation, and thus PRISM provides a solution to MO-PLTL SSP problems.

3.3 PLTL-dual

The state-of-the-art for solving MO-PLTL SSP problems is the PLTL-dual algorithm,
presented by Baumgartner et al. [2018]. This algorithm is a heuristic search algorithm
employing a series of LPs encompassing an increasing subset of the state space. PLTL-
dual integrates heuristics in an innovative way, computing the heuristic value of every
state on the fringe of the explored state space simultaneously.

3.3.1 Algorithm

To find a solution to an MO-PLTL SSP problem Sφ, PLTL-dual constructs the product
C-SSP of the SSP S with a mode for each PLTL constraint in φ. Baumgartner et al.
[2018] define two modes for PLTL constraints, the progression mode and the NBA
mode. The progression mode performs progression on the formula of each PLTL con-
straint, so the mode value for a state is a tuple of CNF sets. The NBA mode constructs
an NBA for each PLTL constraint, and performs on-the-fly determinisation on them.
The mode values of the NBA mode for each constraint are a sets of states in each
NBA, and the separate constraints are collected as a tuple. For each constraint, each
mode defines a subset of the product state space as accepting that constraint: for the
progression mode, states where that constraint has idle(s,Ψi) = >, and for the NBA
mode, states where staying in s forever would satisfy the Büchi acceptance condition
from the current set of states.

Given a subset envelope ⊂ S× of states explored so far, PLTL-dual constructs an
LP reminiscent of LP1 which represents flow through envelope. Let fringe be the
states on the edge of envelope which have not been expanded, and so no actions are
available. Instead of having occupation measures to represent flow out of fringe, flow is
redirected to a series of LPs which compute an array of heuristics from the fringe states
simultaneously. Included in this LP is a constraint that the amount of flow reaching
the accepting set for each PLTL constraint is within the bound of that constraint. A
solution to this LP simultaneously computes a policy in envelope and computes the
heuristic value of fringe states which this policy reaches. The heuristic value of other
states is not necessarily needed, but may be still be implicitly computed during the
process of solving the LP.

The outline of PLTL-dual is presented informally in algorithm 2, finding a solution
to the MO-PLTL SSP problem Sφ. The algorithm starts by defining envelope as the
initial state s×0 = 〈s0,m10 ,m20 , . . . ,mn0〉 of the product C-SSP constructed from Sφ
under any mode. Following this, it finds the nodes on the fringe which were reached
expands every node on the fringe which was reached by the most recently found policy,
denoted fringeR. It expands each of these states, extending the LP to include the newly
found neighbours of states in fringeR, and solves the resulting LP. If the solution found
by the LP has no flow entering the fringe states, then the solution defines a policy π
which does not leave envelope, so is defined for all states reachable under π. The policy
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Algorithm 2 An algorithm to find a policy for a MO-PLTL SSP problem Sφ using
heuristic search.
1: procedure PLTL-dual(Sφ)
2: envelope← {〈s0,m10 ,m20 , . . . ,mn0〉} . The set of explored states
3: fringe← {〈s0,m10 ,m20 , . . . ,mn0〉} . The states on the fringe of the explored set
4: fringeR ← {〈s0,m10 ,m20 , . . . ,mn0〉} . The fringe states reached in the current policy
5: while fringe 6= ∅ do
6: Let new be the states reachable from fringeR in one action
7: envelope← envelope ∪ new
8: fringe← (fringe \ fringeR) ∪ (new \G)
9: Solve LP for envelope . Find the optimal policy for this subset of the state space
10: fringeR ← states in fringe which have flow into them
11: end while
12: Extract π from the solution to the last LP
13: . π does not leave envelope, as fringeR = ∅
14: end procedure
Output: π is an optimal strategy for Sφ, satisfying all the constraints in φ.

π is a solution to Sφ.

3.3.2 Heuristics

The heuristics for PLTL-dual are in two sets, a set of projection occupation measure
heuristics and a set of heuristics for the PLTL constraints. The projection occupation
measure heuristic hpom [Trevizan et al., 2017a], constructs a set of projections which
are solved synchronously, with a constraint between them so they influence each other.

Given a probabilistic SAS+ problem S, the projection occupation measure heuristic
hpom constructs for each variable v ∈ V the projection onto {v}, denoted Sv, and for
each of these projections, the set of occupation measures XSv for the associated SSP.
These occupation measures are denoted xvd,α for each action α and d ∈ Dv ∪ {g}. The
occupation measure xvd,α denotes the expected number of times that action α is taken
from the state s[v] = d in the projection Sv.

Given these projections, hpom constructs an LP with flow constraints on XSv (sim-
ilarly to LP1) for each v ∈ V, and adds to the resulting LP a set of tying constraints,
defined as: ∑

d∈Dv∪{g}
xvd,α =

∑
d∈Dv′∪{g}

xv
′
d,α ∀v, v′ ∈ V, α ∈ A

where A is the set of all actions in S. These constraints need not be defined between
every pair of variables, one reasonable implementation is to define them in a chain, or
from one specific variable to all others. Tying constraints require that the total number
of times each action is taken in one projection is equal to the number of times that
action is taken in all other projections, but there is no restriction on the order they
are taken in each projection. In this way, if an action is necessary in one projection, it
may influence other projections, forcing them to take associated actions.

Including hpom in the LP for PLTL-dual is as simple as having the amount of flow
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reaching any fringe state 〈s,m1, . . . ,mn〉 enter each projection in hpom from the state
proj(s, {v}), where v is the variable for that projection. To incorporate the heuristic
estimate, a projection is chosen (because of the tying constraints, it doesn’t matter
which) and the cost of actions in that projection is included in the objective. Hence
the LP minimises the combined cost of the policy in envelope and also in the heuristic.

In PLTL-dual, it is assumed without loss of generality that all PLTL constraints
are of the form ψi = Pr (ψi) ≥ zi. If a PLTL heuristic has an upper bound this can be
removed by adding another constraint ψ′i = Pr (¬ψi) ≥ zi. Given this, an admissible
heuristic hψi for a PLTL constraint ψi is one that computes an upper bound on the
probability that the LTL formula for ψi is satisfied from a given product state s× ∈ S×
under an optimal policy for the given MO-PLTL SSP problem.

There are two PLTL heuristics presented in [Baumgartner et al., 2018], the first is
the trivial heuristic derived from the definition of an admissible heuristic, which simply
classes all flow which reaches fringe states as accepting, except when flow reaches a state
for which the mode trivially has 0 probability of reaching to an accepting value, i.e.,
mi = ⊥ for the progression mode, and mi = ∅ for the NBA mode.

The second heuristic is the NBA heuristic hBA, which treats the NBA for constraint
ψi as an SSP, and finds the shortest path to an accepting state. Actions in this SSP
Sψi are constructed from the set of actions A in the original MO-PLTL SSP problem.
For each action α ∈ A, a set of new actions are constructed in Sψi for each combination
of transitions in the NBA that each effect in the action could possibly cause. The NBA
heuristic hBA can be computed by constructing a flow network for Sψi , with the added
complication that powerset construction leads to the initial state for hBA to be a set of
states which must be non-deterministically chosen from, so the choice of initial state
is left up to the LP solver, allowing it to make the best possible choice of initial state.
Integrating this heuristic into the LP for PLTL-dual is relatively straightforward: any
flow reaching a fringe state 〈s,m1, . . . ,mn〉 enters Sψi non-deterministically among the
states in mi.

To integrate PLTL heuristics into PLTL-dual, the flow being accepted in the PLTL
heuristic and flow reaching accepting goal states within envelope is summed up and
constrained so that the sum of accepting flow for each PLTL constraint must satisfy
that constraint. Furthermore, tying constraints are extended to the NBA heuristic,
so that actions that are necessary for the constraints are performed in the projection
heuristics, and hence influence the cost estimate also.

3.4 Summary

This chapter introduced other approaches which investigate combined application of
LTL or PLTL and planning. LTL has been used in planning for control knowledge and
temporally extended goals or preferences. Control knowledge applications typically
used progression to prune the search space, improving the efficiency of the solver,
while applications with temporally extended goals typically use a transformation from
LTL formulae to non-deterministic finite automata to represent a temporal property
which behaves as the goal of the planning problem.
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Closely related to planning with temporally extended goals is the topic of synthesis
for LTL on finite paths, which is finding a strategy that is guaranteed to satisfy a given
LTL formula. Methods for this either construct a deterministic finite automaton with
on-the-fly determinisation, or a non-deterministic finite automaton. Strategy synthesis
has also been shown to be equivalent to non-deterministic planning. Of note is the
problem of policy synthesis for MDPs with multiple PLTL constraints, which is solved
by constructing the synchronised product of the MDP with a deterministic Rabin
automata for each PLTL constraint. Solutions to this problem are easily adapted to
MO-PLTL SSP problems.

The state-of-the-art in solving MO-PLTL SSP problems is PLTL-dual, which per-
forms heuristic search by constructing an LP for an iteratively expanding subset of
the state space, which is constructed by taking the product of the given SSP with the
values of some mode for the PLTL constraints. PLTL-dual integrates heuristics in an
innovative way such that they are calculated synchronously with each other, allowing
them to influence each other and improve the overall estimate. One non-trivial heuris-
tic exists for the PLTL constraints in PLTL-dual, which relies on NBAs and the NBA
mode.

In the next chapter, projection is extended to PLTL constraints, making it possi-
ble to consider the satisfaction of a PLTL constraint within a projection. Projection
of PLTL is analysed and cases are found where the projection trivialises the PLTL
constraint, so an algorithm is presented which constructs a series of projections safely
without any individual projection having a trivial constraint.
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Chapter 4

LTL Projection

It is a proven strategy to relax a SAS+ problem by projecting onto one or more subsets
of the variables in the domain as defined in section 2.3.3.3, and vitally for this thesis,
it maintains the probabilistic properties of the underlying problem. The projection of
a planning problem onto a subset of variables Vp is well defined, but to use projection
in the context of LTL constraints, projections of LTL formulae must be defined.

The obvious definition for projection onto a set of variables Vp is that for every
variable v /∈ Vp any valid assignment (v = d) can be made in any state. Given
this, the CNF(·, ·) operator can no longer completely simplify formulae based on the
interpretation s[v] for v ∈ Vp. Instead, the resulting CNF set Ψ contains clauses which
include non-temporal literals (v = d) or ¬(v = d) as well as the temporal X-literals.

The notion of LTL projection used in this thesis does not use this definition. The
inclusion of non-temporal literals increases the number of unique formulae in augmented
states, and would mean that at every state, a satisfiability problem should be solved
to determine if the CNF should be reduced to ⊥. Similarly, acceptance would be
equivalent to the solution of a satisfiability problem, as opposed to the polynomial
algorithm idle(·, ·) in [Bacchus and Kabanza, 1998]. Instead a further relaxation is
performed where every instance of a proposition (v = d) is assumed to be independent.

In this chapter, this assumption is first detailed in section 4.1. In section 4.2, a
method for doing this projection is presented, and considerations for this projection are
raised and addressed in section 4.3, mainly addressing which variables are appropriate
to project onto, given a certain formula.

4.1 Proposition Independence Assumption

Projection of LTL in this thesis is done with regards to an extra relaxation which is
referred to as the proposition independence assumption. This relaxation is that every
instance of a free variable (i.e., a variable not in the projection) in an LTL formula can
be independently assigned a value. This is captured formally in definition 6

Definition 6. Under the proposition independence assumption, the projection of an
LTL formula ψ onto a set of variables Vp ⊆ V is another formula ψVp identical to ψ
except every proposition (v = d) with v /∈ Vp is replaced individually with > or ⊥ in
such a way that any path p = s1s2 · · · sl ∈ S+ such that p |=IE ψ also has p |=IE ψVp .
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The relaxation from the proposition independence assumption simplifies the for-
mula greatly, as the assignment is done on every free variable in the formula, including
those in temporal subformulae. Statically assigning values to propositions in tempo-
ral subformulae is only possible because of the proposition independence assumption.
Consider the formula

ψ = F(v1 = 1) ∧ F(v1 = 2) ∧ (v1 = 3)U(¬(v2 = 1))

which states that v1 must at some point be equal to 1 and 2, but it must first remain
3 until v2 changes from 1. Naturally, there exists no path which satisfies ψ where v1
does not change, so if this formula were projected onto {v2}, no static assignment could
be made to v1 which would allow ψ to be satisfied. On the other hand, allowing each
proposition involving v1 to become true independently results in the formula

ψv2 = F> ∧ F> ∧>U(¬(v2 = 1))
= F(¬(v2 = 1))

The resulting formula ψ′ does not involve v1 and requires simply that v2 eventually
change from the value of 1. It can easily be seen that this is satisfied by any path which
satisfies ψ.

Performing projection in this way would allows variables not in the projection to be
completely eliminated from the formula, and also simplifies the formula to subformulae
which contain the projection variables. When the resulting formula is progressed in
conjunction with expanding a projected SAS+ problem, there are significantly fewer
subformulae to progress to, reducing the augmented state space of the projected prob-
lem.

4.2 Proposition Assignment

The projection of

ψ = F(v1 = 1) ∧ F(v1 = 2) ∧ (v1 = 3)U(¬(v2 = 1))

onto {v1} requires that the proposition (v2 = 1) become false in order to correctly
simplify the formula. Making the proposition false converts the formula to

ψv1 = F(v1 = 1) ∧ F(v1 = 2) ∧ (v1 = 3)U(¬⊥)
= F(v1 = 1) ∧ F(v1 = 2)

which simply specifies that v1 must at some point be equal to 1 and 2, and is clearly
just a relaxation of the original formula. The alternative assignment to (v2 = 1) results
in the subformula (v1 = 3)U(¬>), which is unsatisfiable. This raises the question of
which propositions should be assigned false and which true, and whether this is always
possible.

In this section the operator assignFree(ψ,Vp) is introduced, which assigns true or
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false to every proposition (v = d) in ψ where v /∈ Vp such that assignFree(ψ,Vp) creates
a projection of ψ onto Vp. This operator first converts ψ into negation normal form if it
is not already, and then replaces every literal which contains a variable v /∈ Vψ with >.
Note here that this means that a proposition inside a negated literal would be set to
⊥, making the whole literal true. Following this substitution, the formula is simplified
according to well known trivial LTL identities (see section 2.2.3). The resulting formula
obviously contains no variables which do not appear in Vp, and (provided that the entire
formula doesn’t simplify to >) preserves some of the semantics of the original formula.

Theorem 1. assignFree(ψ,Vp) is a projection of ψ onto Vp.

Proof. This property can quite easily be proven inductively on the structure of formu-
lae. Without loss of generality, it can be assumed that ψ is in negation normal form.
Otherwise, it can first be transformed into negation normal form and this proof will
still be applicable. The base cases are constants and literals, i.e., >, ⊥, (v = d) and
¬(v = d). It is obvious that the property holds in these cases, as either the formula
doesn’t change, or changes to >, which is satisfied by any path. The proof for the
inductive cases are very straight forward and are evident from the semantics of those
operators, so only the proof for the case of two subformulae connected by the until
operator, ψ1Uψ2, is included as a schematic proof for the other operators.

Case assignFree(ψ1Uψ2,Vp):
Assume p ∈ S+ has p |=IE ψ1Uψ2. By the semantics of the until operator, there exists
a suffix p[≥ i] of p, p[≥ i] |=IE ψ2 and every suffix p[≥ j] |=IE ψ1 for 0 ≤ j < i. By the
inductive hypothesis p[≥ i] |=IE assignFree(ψ2,Vp) and p[≥ j] |=IE assignFree(ψ1,Vp)
for 0 ≤ j < i. It follows immediately by the semantics of the until operator that
p |=IE assignFree(ψ1,Vp)U assignFree(ψ2,Vp) From the definition of assignFree, clearly

assignFree(ψ1Uψ2,Vp) = assignFree(ψ1)U assignFree(ψ2),

so p |=IE assignFree(ψ1Uψ2,Vp).

In each case (including those not listed here) if p ∈ S+ has p |=IE ψ then p |=IE
assignFree(ψ,Vp), which is a necessary condition for a projection by definition 6. As
already observed, all instances of propositions with free variables are eliminated by
assignFree(ψ,Vp). By induction on the structure of a formula, theorem 1 holds.

For convenience, the projection of each formula in a CNF set Ψ along with on the
fly simplification is denoted assignFree(Ψ,Vp). In accordance with the semantics of a
CNF set, if an X-literal is Ψ is projected to ⊥, it is removed from the associated clause,
and an empty clause means the entire Ψ simplifies to ⊥. Similarly, if an X-literal
projects to >, the clause it is in is removed from Ψ, and if Ψ is empty, that represents
Ψ simplifying to >.

This section introduced a method to project a formula onto a subset of SAS+

variables, simplifying the formula and allowing LTL constraints to be meaningfully
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represented using only those variables. This can be used in conjunction with a pro-
jection of the SAS+ problem itself, relaxing both the state space dynamics and LTL
constraint.

4.3 Choosing Variables

In order to take advantage of this projection onto a subset Vp ⊆ V, obviously Vp must be
chosen. In the literature, it is common that a number of projections are chosen, and the
problem of choosing the variables for these projections in the context of deterministic
unconstrained planning is well studied. Discussion for these projection strategies can be
found in [Edelkamp, 2007; Helmert et al., 2007; Haslum et al., 2007] among others. An
analysis of strategies for constructing projections given a PLTL constraint is beyond
the scope of this thesis, and in experiments for this thesis variables were chosen at
random, according to considerations detailed in this section. The algorithm used to
choose variables in the experiments for this thesis addresses these considerations and
is also presented in this section.

Given that the projection of the SAS+ problem and PLTL constraint ψ = Pr (ψ) ∈
zi is intended to estimate the probability of satisfying the given constraint, a natural
choice of variables is the variables which appear in propositions in the formula for ψ.
The set of these variables are denoted Vψ. In practice, this set of variables often does not
relax the problem sufficiently, and results in the heuristic taking too long to compute
for it to be effective. Instead n (not necessarily disjoint) subsets Vψ,1,Vψ,2, . . .Vψ,n are
chosen where Vψ,i ⊆ Vψ for all i, and

⋃
0≤i≤n Vψ,i = Vψ.

The resulting projections combined account for all the variables so that the role of
any one variable in the constraint is captured to at least some extent. The omission of
variables not in Vψ may relax away details of the SAS+ problem necessary to accurately
estimate the probability of satisfying ψ, but identifying which variables not in Vψ should
be included is once again a problem beyond the scope of this thesis.

The projection detailed above in conjunction with simplification according to trivial
LTL identities can lead to projections onto certain variables being trivial (i.e., equal
to >). For the projection to be a useful relaxation of the original constraint, it must
keep at least some part of the formula. Given a formula ψ, it is possible to determine
a set of minimal combinations such that all the variables in some minimal combination
must be present in the projection for the projected formula to be non-trivial.

To capture this concept formally, let minvars(ψ) be the set of minimal combinations
{Cψ,1, Cψ,2, . . . Cψ,n}, which are sets of SAS+ variables, such that assignFree(ψ,Vp)
simplifies to > if and only if there is no combination Cψ,i ∈ minvars(ψ) with Cψ,i ⊆ Vp.
These combinations are referred to as the necessary combinations of variables for the
formula ψ.

It can be assumed without loss of generality that the given formula ψ is in negation
normal form and has been simplified according to the trivial LTL identities. To define
minvars(ψ), observe that each LTL operator can be associated with a rule which defines
the necessary combinations based on the combinations for each direct subformula.
minvars(ψ) is formally defined in algorithm 3, and it recursively extracts necessary
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combinations under the assumption ψ is in negation normal form.

Algorithm 3 An algorithm for determining minimal combinations of SAS+ variables
such that projection is non-trivial if and only if the projection contains at least one
minimal combination.

minvars(>) = minvars(⊥) = ∅
minvars((v = d)) = minvars(¬(v = d)) = {{v}}
minvars(ψ1 ∧ ψ2) = reduce(minvars(ψ1) ∪minvars(ψ2))
minvars(ψ1 ∨ ψ2) = reduce({Cψ1,i ∪ Cψ2,j | Cψ1,i ∈ minvars(ψ1), Cψ2,j ∈ minvars(ψ2)})

minvars(Xψ) = minvars(ψ)
minvars(ψ1Uψ2) = minvars(ψ2)
minvars(ψ1Rψ2) = minvars(ψ2)

To find the minimal combinations, if any combination is a subset of another, the
larger set is removed. This is the function of the reduce operator, which is defined as

reduce(S) = {Cψ,i ∈ S | @Cψ,j ∈ S, Cψ,j ⊂ Cψ,i}.

The intuition for the cases of minvars(ψ) can be derived from the trivial LTL identities
and a simple analysis of assignFree. It’s clear that if ψ has already been simplified,
assignFree(ψ) will convert literals to >, and all identities except those for ¬ which
involve > will simplify formulae to a subformula (e.g., >Rψ = ψ) or will simplify the
formula to > (e.g., ψ ∨ > = >). Hence only the identities involving > need to be
considered, specifically only those which simplify the entire formula to >.

For example consider ψ1 ∧ψ2. If either subformula evaluates to >, the conjunction
will still not become > unless the other is > as well. Hence the projection must include
sufficient variables that at least one side is non-trivial, so minvars(ψ1 ∧ ψ2) is the
union of the minimal projection combinations from either side. On the other hand, in
the case of minvars(ψ1 ∨ ψ2), if either subformula projects to >, then the disjunction
would be immediately simplified to >. In this case, both sides must be non-trivial, so
minvars(ψ1 ∨ ψ2) specifies that all the variables in at least one necessary combination
from each side must be present.

Given a constraint ψ = Pr (ψ) ∈ zi, the implementation uses a randomised algo-
rithm to choose a number of subsets of Vψ called batches, such that each batch Vψ,i
contains at least one combination in minvars(ψ). This algorithm (shown as algorithm
4) tracks the variables in Vψ which have been included in some batch to ensure that
every variable in Vψ is included in at least one batch.

Initially, starting at line 6, combinations from minvars(ψ) are chosen such that they
include a variable which has not already been accounted for. If all the variables are
accounted for in this way, the algorithm terminates. It may however be possible for
some variables in Vψ to not be present in any combination in minvars(ψ). In this case,
in the loop at line 10 each such variable is included by choosing a random combination
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from minvars(ψ) and adding that combination along with the un-accounted-for variable
as a new batch. It is possible that this will create multiple batches where one is a subset
of another (e.g., if a batch chosen in the second stage was already chosen in the first
stage). This case is dealt with at line 13 where the smaller, pre-existing batch is
removed.

Algorithm 4 An algorithm for randomly selecting a number of subsets of Vψ such
that a projection onto each is non-trivial.
1: procedure ApportionBatches(ψ)
2: Let ψ be the LTL formula for ψ
3: p← ∅ . The chosen subsets
4: r ← Vψ . The variables not yet in p
5: while ∃Vψ,i ∈ minvars(ψ) s.t. Vψ,i ∩ r 6= ∅ do
6: pi ← randomly chosen Vψ,i ∈ minvars(ψ) with Vψ,i ∩ r 6= ∅.
7: add pi to p
8: r ← r \ Vψ,i
9: end while . r is not necessarily empty

10: for all v ∈ r do
11: pi ← randomly chosen Vψ,i ∈ minvars(ψ)
12: if pi ∈ p then
13: remove pi from p
14: end if
15: add v to pi
16: add pi to p
17: end for
18: end procedure
Output: p is a set of batches. Every v ∈ Vψ is in some Vψ,i ∈ p.

Using algorithm 4, a number of subsets of V are chosen, and a projection of both
the SAS+ problem and the PLTL constraint onto each of these subsets can be used as
a simplified planning problem for the heuristic detailed in later sections.

4.4 Summary

Projection of LTL formula, as a counterpart for projection of SAS+ problems, allows
variables to be safely eliminated from formulae in such a way that any run which
satisfies an LTL formula will also satisfy it’s projection. The primary value in this
projection is the simplification of the formula in a structured way, but it also allows
LTL constraints to be applied to projections of SAS+ problems. This property is
invaluable for use in a planning heuristic that uses SAS+ projections.

The projection of LTL formulas in this thesis relies on the proposition independence
assumption, which allows individual propositions in the formula to be individually
assigned true or false statically. While this causes some loss of information, it avoids
the issue of finding satisfying assignments to free variables, and greatly reduces the
number of subformula that can be produced by progression. Projection under the
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literal independence assumption can be performed by simply replacing every literal in
negation normal form with true, and this operation is defined as assignFree(ψ,Vp).

When performing this operation, it is possible for formulae to be reduced to the
trivially satisfiable formula > depending on the selection of projection variables. An
analysis of the formula can determine which variables are necessary in combination
to prevent this, an algorithm is presented which chooses a number of projections at
random to be used in conjunction. These projections together contain all the variables
in the original formula, so the semantics of each part of the formula will be preserved
after projection to some extent.

In the next chapter, a method for overestimating the probability of a LTL constraint
being satisfied will be presented, which estimates the probability of subformulae of the
constraint individually.
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Chapter 5

Probability Estimation by
Decomposition

Solving SSPs with MO-PLTL constraints efficiently requires that the restrictions on
the plan space imposed by the constraints can be efficiently predicted. This chapter
details a method for estimating the probability of reaching the goal of an SSP while
satisfying a single PLTL constraint ψ. This method revolves around decomposition of
LTL formula, which means in this context breaking formula into sub-formulae which
are treated individually. The probability of satisfying a formula can be estimated based
on the probability of satisfying the sub-formulae.

Using this concept, a planning model called Concurrent Constrained SSP (CC-SSP)
is introduced, representing a decomposition of the formula in every augmented state.
The CC-SSP clones agents, resulting in agents being in multiple states simultaneously,
representing independent satisfaction of several sub-formulae simultaneously in the
same problem. From the solution to a CC-SSP an estimate for the probability of
satisfying a given constraint can be derived. CC-SSPs can be formulated as a flow
problem, though the problem definition allows duplication of flow. The duplication of
flow (equivalently the nature of CC-SSPs that agents are cloned into multiple states
at once) causes the estimated probability to be very poor in some common cases,
especially where there are loops in the underlying SSP.

This chapter first defines and explains LTL decomposition in section 5.1, and uses
this definition to define Concurrent Constrained SSPs in section 5.2. A linear program
representing the flow problem for a CC-SSP is given in section 5.3 and finally examples
where this estimation method performs very poorly are presented and explained in
section 5.4.

5.1 LTL Decomposition

Augmented states in this thesis are defined as pairs 〈s,Ψ〉 of an SSP state and a CNF
set. This CNF set is a set of sets of X-literals, representing a conjunction of disjunctions,
reminiscent of conjunctive normal form in classical logic, except that an X-literal is a
temporal formula φ beginning with the next operator X. The task to be achieved in
this chapter is to estimate the probability of satisfying the formula represented by Ψ
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(a) The probability of a conjunction is less
than that of any conjunct.

(b) The probability of a disjunction is less
than the sum of the probability of the dis-
juncts.

Figure 5.1: A diagrammatic representation of the probability inequalities used in for-
mula decomposition. While these venn diagrams only have two parts, an extension to

more conjuncts or disjuncts is trivial.

from state s under any optimal policy π∗ for the MO-PLTL SSP problem, denoted
as Prπ∗ (Ψ | s). If the probability is from the initial state, the state is omitted in the
notation, so Prπ∗ (Ψ) is the probability of satisfying Ψ and reaching a goal from the
initial state s0.

Given this task, it is natural to relax the problem by calculating the probability of
each clause Φ individually, but constraints could contain only a single clause, meaning
that no relaxation would take place. Instead a further relaxation is done, and the
probability of satisfying each X-literal is estimated individually. To estimate the prob-
ability Prπ∗ (Ψ) for the whole formula from the probabilities of the X-literals in Ψ, the
inequalities are used:

Prπ∗ (Ψ) = Prπ∗
 ∧

Φ∈Ψ
Φ

 ≤ min
Φ∈Ψ

Prπ∗ (Φ) ≤
∑

Φ∈Ψ Prπ∗ (Φ)
|Ψ| (5.1)

Prπ∗ (Φ) = Prπ∗
∨
φ∈Φ

φ

 ≤∑
φ∈Φ

Prπ∗ (φ) . (5.2)

That is, the probability of satisfying a conjunction Ψ is less than or equal to the average
probability of satisfying the conjuncts Φ, and the probability of satisfying a disjunc-
tion Φ is less than or equal to the sum of the probabilities of satisfying the disjuncts
φ. Figure 5.1 provides a diagrammatic representation of these inequalities, though the
reader may notice that the bound on conjunctions is not as tight as it could be. The
probability of satisfying a conjunction is actually less than or equal to the probability
of satisfying any conjunct Φ, and hence is upper-bounded by the probability of satis-
fying the conjunct with the minimum probability. However, formulating the bound in
this way would lead to a bi-level optimisation problem, which is too computationally
expensive to be used in the context of heuristic search. The alternative taken in this
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thesis is to use the average, which can be computed as a linear constraint.
Using decomposition, the probability of satisfying a formula ψ from a state s can

be estimated as

Prπ∗ (ψ | s) ≤
∑

Φ∈Ψ

(∑
φ∈Φ Prπ∗ (φ | s)

)
|Ψ| (5.3)

where Ψ = CNF(ψ, s). Importantly, because of the inequalities in equations 5.1 and
5.2, this estimate is an upper bound on the probability. The relevance of this upper
bound lies in the definition of an admissible heuristic for a PLTL constraint. A heuristic
hψi for a PLTL constraint ψi = Pr (ψi) ∈ zi is defined as a function which estimates the
probability of reaching an accepting goal from a product state s×, and such a heuristic
is admissible if, for all product states s× ∈ S×, hψi(s×) ≥ Prπ∗

(
s×i

)
for every optimal

policy π∗ in the associated product C-SSP. It is sufficient to consider only the mode for
constraint ψi, which in this thesis will be a CNF set Ψ. Hence, an admissible heuristic
in this thesis is a function hψi : S × 22Σ(ψi) → [0, 1] which, given an augmented state
〈s,Ψ〉, upper-bounds the probability of satisfying Ψ from the state s for every optimal
policy π∗, i.e., hψi(〈s,Ψ〉) ≥ Prπ∗ (Ψ | s). This is the basis for the heuristics which will
be detailed in this chapter and chapter 6, but taken as it stands, it does not relax the
problem sufficiently to be used as an effective heuristic.

Consider the formula
ψ = (aUb)UGc.

where a, b and c are propositions. ψ states that aUb must hold until c becomes true
forever. The conjunctive normal form for this formula in a state where a and c hold
would be

CNF(ψ, {a, c}) = {{XaUb}, {X((aUb)UGc),XGc}}.

Note that this contains the X-literal Xψ, so decomposing this formula into the X-literals
would include a formula which is just as hard to satisfy as the original. This is resolved
by allowing formulae to be decomposed after each progression, relaxing the problem
even further. Recurrently decomposing the formula at each state maintains the upper
bound property necessary for PLTL heuristics, but makes the estimation process less
straightforward.

In the next section a new type of planning problem called a CC-SSP is introduced
to perform this estimation. Instead, the probability of satisfying LTL as estimated by
decomposing formulae at every step can be represented by a much simpler recursive
equation, but the dual representation of CC-SSPs presented in section 5.3 lends itself
to integration with PLTL-dual in chapter 6.

5.2 Concurrent Constrained SSPs

To represent the decomposition of formulae at every state, a new type of planning prob-
lem called a Concurrent Constrained SSP (CC-SSP) will be introduced, the optimal
solution of which will be directly related to an estimate of the probability of satisfying
a given formula ψ from an SSP state s. The states of this planning problem are pairs
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〈s, φ〉 where s is an SSP state, and φ is an X-literal. These pairs are called X-literal
states. In a CC-SSP, instead of an agent being in a single state at each step, the agent
is in a set of states P. CC-SSPs are used in this thesis to model decomposition of
formula at every state, and hence to estimate the probability of satisfying a formula.

Before formalising the concept of a CC-SSP in section 5.2.2, the semantics of redis-
tribution (or ‘cloning’) of agents is formalised, as this helps motivate the definition of
CC-SSPs, and introduces several definitions useful for defining them.

5.2.1 State Redistribution

When an agent takes an action from an X-literal state 〈s, φ〉, the X-literal will be pro-
gressed and converted to CNF once again. This would put the agent in an augmented
state under the semantics of a MO-PLTL SSP problem, but under the semantics of a
CC-SSP the agent is redistributed to one or more X-literal states chosen from those
generated by decomposing the CNF found when progressing φ.

Given a clause Φ, let decompose(s,Φ) be an operator which outputs the set of
X-literal states 〈s, φ〉 with the same SSP states, and where φ is in Φ. That is,

decompose(s,Φ) ≡ {〈s, φ〉 | ∀φ ∈ Φ}.

Similarly, applied to a CNF set Ψ, decompose(s,Ψ) outputs a set of all X-literal states
〈s, φ〉 where φ is in some clause in Ψ. That is

decompose(s,Ψ) ≡
⋃

Φ∈Ψ
decompose(s,Φ).

In a CC-SSP C, every time agent would enter an augmented state 〈s,Ψ〉, a coin is
flipped by the environment, choosing a clause Φ from Ψ following a uniform distribution
(i.e., PrC (Φ | Ψ) = 1/|Ψ|), and the agent enters all the states in decompose(s,Φ).
A given X-literal φ may appear in multiple clauses Φ ∈ Ψ, so the probability that,
after redistribution, there is an agent in any given X-literal state 〈s, φ〉 is not uniform
over the possible X-literal states. Assuming an agent is redistributed from 〈s,Ψ〉, the
probability that after redistribution there is a clone of that agent in a given X-literal
state 〈s, φ〉 is denoted PrC (〈s, φ〉 | 〈s,Ψ〉) and can be calculated as

PrC (〈s, φ〉 | 〈s,Ψ〉) ≡
∑

Φ∈Ψ:φ∈Φ
PrC (Φ | Ψ)

=
∑

Φ∈Ψ:φ∈Φ

1
|Ψ|

= |{Φ ∈ Ψ | φ ∈ Φ}|
|Ψ|

As this probability is not dependent on s, Pr (φ | Ψ) will be used interchangeably with
Pr (〈s, φ〉 | 〈s,Ψ〉).
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Figure 5.2: Redistribution of agents. Note how the probability of each X-literal state
is dependent on the number of clauses it is in.

An example redistribution can be seen in figure 5.2 for the CNF set

Ψ = {{XGb,Xa}, {XGb,X((a ∨ Xa)UGb)}}.

where a and b are arbitrary propositions. An agent that would enter 〈s,Ψ〉 is redirected
to either 〈s, {XGb,Xa}〉 or 〈s, {XGb,X((a ∨ Xa)UGb)}〉 with probability 1/|Ψ| = 0.5.
In each case, the agent enters both X-literals in the chosen clause, meaning that there
are, in either case, twice as many agents being simulated concurrently. This can be
thought of as an agent for each item in the disjunction, concurrently (and indepen-
dently) attempting to satisfy that disjunct. It is clear also from figure 5.2 how the
probability of there being an agent in each X-literal state is dependent on the number
of clauses that X-literal appears in. Because XGb appears in both clauses, Pr (XGb | Ψ)
is 1, where the probability of the other clauses is 0.5.

To motivate this definition, it can be related back to equation 5.3. Consider the
expected number of agents reaching a goal in a CC-SSP C from those distributed from
the augmented state 〈s,Ψ〉 under a policy π. The expected number of agents reaching
a goal from an augmented state 〈s,Ψ〉 under a policy π is (using notation which will be
formalised later) denoted Egoals(〈s,Ψ〉 , π). This expectation can be expressed in terms
of the expected number of agents reaching a goal from each state in decompose(s,Ψ)
under π, denoted Egoals(〈s, φ〉 , π), and is expressed as follows

Egoals(〈s,Ψ〉 , π) =
∑

〈s,φ〉∈decompose(s,Ψ)
Pr (φ | Ψ) · Egoals(〈s, φ〉 , π)

=
∑

〈s,φ〉∈decompose(s,Ψ)

|{Φ ∈ Ψ | φ ∈ Φ}|
|Ψ| · Egoals(〈s, φ〉 , π)

=
∑

Φ∈Ψ

(∑
φ∈Φ Egoals(〈s, φ〉 , π)

)
|Ψ| (5.4)
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To take the step ending at equation 5.4, observe that each X-literal φ is counted once
for each clause Φ it is in, and this is equivalent to counting each X-literal in each
clause. Note the strong similarity between equation 5.3 and equation 5.4 achieved
by substituting Prπ∗ (· | s) for Egoals(〈s, ·〉 , π). Of course, as of yet CC-SSPs have
not been formally defined, and hence Egoals(〈s, ·〉 , π) has no meaning, so this is a
superficial relationship, but given an appropriate definition, the optimal solution to a
CC-SSP finds an estimate for the probability of satisfying some CNF set Ψ from a
state s in an SSP.

5.2.2 CC-SSP Definition

In this section, using the definitions from section 5.2.1, CC-SSPs are formally defined.
Definition 7. A Concurrent Constrained SSP is a tuple C ≡ 〈Ŝ, 〈s0,Ψ0〉 ,G,A,T〉,
where Ŝ is a set of augmented states, 〈s0,Ψ0〉 ∈ Ŝ is an augmented state representing
the initial states, G is a set of absorbing goal states. Note that this definition does
not specify the X-literal states which were described in section 5.2.1. The set of all
X-literal states in a CC-SSP is denoted S̃ and is derived from Ŝ below. A is set of
actions defined for the CC-SSP and A(s) is a set of actions available in any X-literal
state 〈s, φ〉 ∈ S̃, and the transition function T (s′ | s, α) is the probability that agent
taking an action α ∈ A(s) when in any X-literal state 〈s, φ〉 ∈ S̃ will transition to s′,
and be redistributed to the X-literal states in decompose(s′,CNF(un-X(φ), s′)). A is
extended with a special action αdie which represents an agent’s path being abandoned.
T (s′ | s, αdie) is not defined for any states s, s′.

Note that any CC-SSP C has a close relationship with an underlying SSP SC which
can be derived from the tuple C = 〈Ŝ, 〈s0,Ψ0〉 ,G,A,T〉 as

SC = 〈S, s0,G,A \{αdie},T, C〉

where S = {s | ∀ 〈s,Ψ〉 ∈ Ŝ} and C is a function which always returns 1, as there is no
cost function in a CC-SSP. A CC-SSP C must satisfy the condition that the underlying
SSP SC has a proper policy, i.e., that there is a policy which, from any state, eventually
reaches a state in G with probability 1. CC-SSPs are used in this thesis to estimate
the probability of satisfying formula while reaching a goal in the underlying SSP SC .

Several sets necessary to define the semantics of a CC-SSP C = 〈Ŝ, 〈s0,Ψ0〉 ,G,A,T〉
are derived from the tuple. The set of X-literal states over which the search is defined
is denoted S̃ and is the combination of the X-literal states from decomposing all the
augmented states in Ŝ.

S̃ ≡
⋃

〈s,Ψ〉∈Ŝ

decompose(s,Ψ)

To define the objective of a CC-SSP, two sets of states are derived, F̂ ⊂ Ŝ is the set of
absorbing augmented states, and Ĝ ⊆ F̂ is a set of augmented states which are goals. F̂
is defined as the set of augmented states 〈s,Ψ〉 ∈ Ŝ where the probability of satisfying
Ψ from while reaching a goal from s in SC is trivially 1 or 0. Given an augmented state
〈s,Ψ〉 there are four cases in which this happens:
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1. If Ψ = ∅, representing >, then Ψ is trivially satisfiable. As it is assumed that
there is a proper policy from any state in the underlying SSP SC , the probability
of reaching a state s′ ∈ G in SC is 1, and any path to that goal state would
satisfy the LTL formula >. Thus there is no point considering states beyond this
augmented state, and we treat it like a goal state.

2. If s ∈ G and idle(s,Ψ) returns >, then a goal has been reached which satisfies Ψ,
meaning the probability is 1.

3. If Ψ = {∅}, representing ⊥, then Ψ is trivially unsatisfiable. Similarly to case 1,
even if s is not a goal, there can be no path to a goal in SC which satisfies the
LTL formula ⊥, and so the probability of reaching an accepting goal state from
this state is 0.

4. If s ∈ G but idle(s,Ψ) returns ⊥, then Ψ is not satisfied at this goal, so the
probability is 0.

Ĝ is the set of augmented states 〈s,Ψ〉 in F̂ which satisfy condition 1 or 2. These are
the cases where the probability that Ψ is satisfied when reaching a goal from s in SC
is trivially 1. Formally

F̂ ≡ {〈s,Ψ〉 | 〈s,Ψ〉 ∈ Ŝ, (Ψ = >) ∨ (Ψ = ⊥) ∨ (s ∈ G)}
Ĝ ≡ {〈s,Ψ〉 | 〈s,Ψ〉 ∈ Ŝ, (Ψ = >) ∨ (idle(s,Ψ) = > ∧ s ∈ G)}

Including states which are not in G as “goal” states is not the norm, but it is done in
the context of CC-SSPs for two reasons. The first reason is that decompose(s,Ψ) is
the empty set when Ψ = {∅} and when Ψ = ∅, meaning that the semantics for actions
would have to be extended to include states of the form 〈s,>〉 and 〈s,⊥〉. The second
is that pruning the state space beyond augmented states 〈s,Ψ〉 where Ψ = > or Ψ = ⊥
can sometimes greatly reduce the size of the CC-SSP, meaning that solving it is much
easier.

5.2.3 Formal Concepts for CC-SSPs

A path through a CC-SSP is a sequence of X-literal states 〈s1, φ1〉 〈s2, φ2〉 . . . with
〈si, φi〉 ∈ S̃ that is either infinite, or is terminated by an augmented state 〈sn,Ψn〉 ∈ F̂.
A path terminated in this way is called a complete path, and if 〈sn,Ψn〉 ∈ Ĝ, the path
is also a goal path. Let S̃+ be the set of all incomplete paths through a CC-SSP, S̃+F̂

be the set of all complete paths through a CC-SSP and S̃+Ĝ ⊆ S̃+F̂ be the set of goal
paths.

Intuitively, a run R of a CC-SSP is a sequence P1
A1→ P2

A2→ . . . of sets of paths of
increasing length, where each path represents the history of an agent up to that step,
and each set is annotated with a function representing which actions were taken from
those histories. Each set of paths Pi has Pi ⊂ S̃+ ∪ S̃+F̂, each path in Pi has length i,
and by a slight abuse of notation, Pi ∈ R denotes that Pi is one of the sets of paths in
R. Each Ai is a function Ai : Pi∩ S̃+ → A which annotates, for all incomplete paths in
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Figure 5.3: The paths present in a run are extended and cloned in each Pi until they
are completed or abandoned.

Pi which action was taken. Some paths will be terminated by reaching an augmented
state in F̂ or will be abandoned using the special action αdie. For convenience, the set
of paths that are extended in the next set is denoted

alive(Pi,Ai) = {p | p ∈ Pi ∩ S̃+,Ai(p) 6= αdie}

A run can be finite or infinite, and in the case that it is finite, the final set Pn and
annotation An have alive(Pn,An) = ∅. The length of a run is ` (R), which is defined
as the maximum i such that Pi ∈ R, and can be infinite.

Each set Pi of a run is the set of paths representing the first i steps of all agents
which complete at least i steps. At each successive set Pi+1, the incomplete paths
from Pi are extended by one state. In the case that an agent would be redistributed
to multiple X-literal states, the associated path p in Pi is cloned for each new state,
so that Pi+1 contains multiple paths which are p followed by one new state from the
redistribution. In figure 5.3, this is shown schematically, with each path in Pi being
extended, abandoned or completed at each step. In figure 5.3 note that the run is
finite, with the final set Pn containing only complete paths, meaning the domain of An
is empty. The progression to a successive set of paths Pi+1 from Pi is formalised as
follows.

For all i such that alive(Pi,Ai) 6= ∅, Pi+1 exists. For each incomplete path p ∈
alive(Pi,Ai), let Pi+1,p ⊆ Pi+1 be the set of paths in Pi+1 prefixed by p. Pi+1 contains
only the paths in these sets, i.e.,

Pi+1 =
⋃

p∈alive(Pi,Ai)
Pi+1,p .
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Every path p′ ∈ Pi+1,p is equal to p extended by one state. For every path to
action mapping p = 〈s1, φ1〉 . . . 〈si, φi〉 7→ α in Ai, there exists a state si+1 with
T (si+1 | si, α) > 0, such that either

• transitioning to si+1 reaches an absorbing augmented state, i.e.,

〈si+1,CNF(un-X(φi), si+1)〉 ∈ F̂

in which case Pi+1,p = {p 〈si+1,CNF(un-X(φi), si+1)〉}; or

• there exists a clause Φ ∈ CNF(un-X(φi), si+1) such that

Pi+1,p = {p 〈si+1, φi+1〉 | φi+1 ∈ Φ},

which effectively clones p for each X-literal in the clause Φ.

The second case encapsulates the redistribution of agents, whereas the first case cap-
tures the completion of paths. Abandoned paths, those paths for which Ai(p) = αdie,
are not included or extended in Pi+1.

A run starts at a specified state. That is, if a run starts at an X-literal state 〈s1, φ1〉,
then P1 is the singleton set {〈s1, φ1〉}. Otherwise if the run starts an augmented state
〈s1,Ψ1〉 then P1 is decompose(s1,Φ) for some Φ ∈ Ψ1 by redistribution.1

A policy for a CC-SSP is defined as a function π : S̃+×A→ [0, 1] which specifies a
probability π(p, α) of each action being taken from the end of a given path. Note here
that all agents follow the same policy independently, and so the policy is dependent
on a path p, rather than being dependent on a set of paths Pi. Stationary policies,
that is policies where π(p, α) is dependent only on the final state in p, are sufficient to
optimize CC-SSPs. As such, only stationary policies will be considered in this thesis,
and π(〈s, φ〉 , α) is used to denote the probability π(p, α) where p ends with 〈s, φ〉.

The probability of a run R in a CC-SSP C given a policy π is denoted PrC (R | π),
and defined

PrC (R | π) ≡ PrC (P1)
`(R)∏
i=1

PrC (Pi+1 | Pi,Ai) · PrC (Ai | Pi, π) .

The probability PrC (P1) is based on the initial state of the run, if it starts from an
X-literal state 〈s, φ〉, P1 contains only 〈s, φ〉 and PrC (P1) = 1, whereas if the run starts
from an augmented state 〈s,Ψ〉 then P1 is equal to decompose(s,Φ) for some Φ ∈ Ψ,
and PrC (P1) = Pr (Φ | Ψ). The probability PrC (Ai | Pi, π) of a given action mapping
being chosen under the policy π is

PrC (Ai | Pi, π) =
∏
p∈Pi

π(last(p),Ai(p))

Finally, the probability of each transition PrC (Pi+1 | Pi,Ai) is found by reconstructing
1A subscript 1 is used for the first state in a run to distinguish from the initial state of a CC-SSP,

〈s0,Ψ0〉. In the case that a run starts from the initial state, we have that s0 = s1 and Ψ0 = Ψ1.



58 Probability Estimation by Decomposition

which state and clause resulted in the extensions in Pi+1. For each incomplete path p =
〈s1, φ1〉 . . . 〈si, φi〉 ∈ alive(Pi,Ai), consider the probability thatAi(p) resulted in the set
Pi+1,p of paths in Pi+1 prefixed by p. This probability is denoted PrC (Pi+1,p | Ai(p)),
and there are two cases for Pi+1,p:

• Pi+1,p is a singleton set containing a completed path p 〈si+1,Ψi+1〉, in which case

PrC (Pi+1,p | Ai(p)) = T (si+1 | si,Ai(p))

as the probability is simply dependent on the transition to the new state.

• Pi+1,p is a set containing incomplete paths p 〈si+1, φi+1〉 for all φi+1 ∈ Φ for some
Φ ∈ CNF(un-X(φi), si+1). In which case

PrC (Pi+1,p | Ai(p)) = T (si+1 | si,Ai(p)) · PrC (Φ | CNF(un-X(φi), si+1)) .

That is, the probability is that of both the transition to si+1 and the choice of
Φ, which are independent events.

Given this definition, the probability of a transition from Pi to Pi+1 given Ai is

PrC (Pi+1 | Pi,Ai) =
∏

p∈alive(Pi,Ai)
PrC (Pi+1,p | Ai(p)) ,

being the product of the probabilities of each independent path extension forming Pi+1.
A run is possible under a policy π if PrC (Ai | π) > 0 for all Ai, that is, if every

action mapping could possibly have been chosen while following the policy π. The set
of all runs starting at an X-literal state 〈s, φ〉 possible under a policy π is denoted
runsC(〈s, φ〉 , π), and similarly the set of all runs starting at an augmented state 〈s,Ψ〉
possible under a policy π is denoted runsC(〈s,Ψ〉 , π).

The number of agents reaching a goal in a given run R is the number of paths in R
in S̃+Ĝ, that is, the number that are terminated by reaching a state in Ĝ. This amount
is denoted

#goals(R) ≡
∑
Pi∈R
|S̃+Ĝ ∩ Pi|

The expected number of agents which reach a goal from a given X-literal state 〈s, φ〉
while following policy π is

Egoals(〈s, φ〉 , π) ≡ ER∈runsC(〈s,φ〉,π) [#goals(R)]

and similarly for the number of agents reaching a goal state from a given augmented
state 〈s,Ψ〉,

Egoals(〈s,Ψ〉 , π) ≡ ER∈runsC(〈s,Ψ〉,π) [#goals(R)] .

The objective of a CC-SSP is to maximize the expected number of agents that
reach a goal state 〈s,Ψ〉 ∈ Ĝ from the initial state 〈s0,Ψ0〉. There exist policies π
for some CC-SSPs such that Egoals(〈s,Ψ〉 , π) is infinite. It is natural to limit policies
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such that Egoals(〈s,Ψ〉 , π) is finite, and as this is to be used as probability estimate,
1 is a reasonable bound. A bounded policy π for a CC-SSP C is a policy which has
Egoals(〈s0,Ψ0〉 , π) ≤ 1. Let the set of all bounded policies for C be ΠC . An optimal
bounded policy π∗ for a CC-SSP C is a policy which has

Egoals(〈s0,Ψ0〉 , π∗) ≥ Egoals(〈s0,Ψ0〉 , π)

for all π ∈ ΠC .
Requiring a bounded policy does not reduce the maximum expected agents reaching

goals below what it would be otherwise, with the obvious exception of the bound to 1.
That is, if there exists a policy π for which Egoals(〈s0,Ψ0〉 , π) > 1, then an optimal
bounded policy π∗ can be constructed by removing any infinite loops in the policy (by
having agents take the αdie action during the loop with some small probability) and
making agents take the αdie action in the initial states with some probability such that
Egoals(〈s0,Ψ0〉 , π∗) is reduced to exactly 1.

5.2.4 CC-SSPs as Heuristic Estimation

Given an SSP S = 〈S, s0,G,A,T, C〉, a state s ∈ S and an LTL CNF set Ψ, the
probability Prπ∗ (Ψ | s) that Ψ will be satisfied under any optimal policy π∗ for S
is upper bounded by the optimal expected number of agents reaching goals in an
associated CC-SSP C. The associated CC-SSP is C〈s,Ψ〉

s = 〈Ŝ, 〈s,Ψ〉 ,G,A,T〉, where Ŝ
is the set of augmented states S× 22Σ(Ψ)) .

This upper bounding property is clear from the way agent’s paths are defined, and
was demonstrated earlier by equation 5.4. An agent entering the state 〈s,Ψ〉 need only
satisfy some clause Φ ∈ Ψ, and then an agent is placed in an X-literal state for each
φ ∈ Φ. These agents in turn need only satisfy φ, and as agents can independently
choose the best actions for satisfying each X-literal, the expected number of agents
that reach goals from each of these is at least as much as the probability that φ could
be satisfied from s.

Let hdec
S be a heuristic function for a MO-PLTL SSP problem S called the decom-

position heuristic, where

hdec
S (〈s,Ψ〉) ≡ max

π∈ΠC
Egoals(〈s,Ψ〉 , π)

over the related CC-SSP C〈s,Ψ〉
s . Notice that the underlying SSP for C〈s,Ψ〉

s is S, and so
generating the state space Ŝ is at least as complex as generating the full state space S.
On the other hand, this relaxation reduces the number of LTL formula considered in
the state space, as the number of X-literals derivable from a formula is much less than
the number of possible CNF set formula constructed from the same formula.

Firstly, as hdec
S estimates only the probability for a single PLTL constraint ψi, Ŝ is

much smaller than the state space for the MO-PLTL SSP problem, which has a state
space S× 22Σ(ψ1) × · · · × 22Σ(ψn) . As well as this, while generating the CC-SSP requires
all the states in Ŝ to be considered, solving a CC-SSP requires only S̃, which is much
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smaller, as S̃ = S× Σ(ψi).
It was noted above that the underlying SSP for the CC-SSP used in hdec

S is S, so in
the worst case the full state space of S is generated to compute hdec

S . For any practical
SSP, this is intractable, but the decomposition heuristic can benefit from SAS+ and
LTL projection as described in chapter 4 to make the state space feasible to compute.
Let hs-dec

S,ψ be the decomposition splitting heuristic for an SSP S constrained by the
PLTL constraint ψ. This heuristic maintains a set of batches Vψ,1,Vψ,2 . . .Vψ,n of the
set of SAS+ variables V as returned by algorithm 4 or any other variable grouping
algorithm. The heuristic value for a state is found by finding the optimal solution to a
CC-SSP for each batch, and the minimum is the result. Formally,

hs-dec
S,ψ (〈s,Ψ〉) ≡ min

i
hdec
SVψ,i

(〈proj(s,Vψ,i), assignFree(Ψ,Vψ,i)〉)

In practice, these heuristics can be used for each state during a search, and are
computed using a linear program in the occupation measure dual space. The constraints
used to compute hdec

S can be reused for each state, only changing the initial state of
the CC-SSP, so the time necessary to generate the constraints is amortised over all the
uses of hdec

S . Furthermore, S̃ can be generated on-the-fly, as only the subset of S̃ which
is reachable from a given state 〈s,Ψ〉 is necessary to compute hdec

S (〈s,Ψ〉).

5.3 LP Formulation

The heuristic value hdec
S (〈s,Ψ〉) can be calculated similarly to the optimal solution for

an SSP. In this thesis, this is done in dual space, by finding the optimal occupation
measures. This models the CC-SSP as something like a flow network, where flow
entering an X-literal state is representative of agents entering the same X-literal state
in expectation. One of the rules, for example, is that agents leaving an X-literal state
(other than one of the initial state) must have entered this state, so the flow leaving
an X-literal state must be less than or equal to the flow entering it.

The primary advantage of using the dual representation is in the integration of
this heuristic with the state-of-the-art planner PLTL-dual, and so will be detailed and
explained in the following chapter. For the sake of illustration, the formulation hdec

S is
provided in this section and extended in chapter 6.

5.3.1 Occupation Measures

The linear program for hdec
S is defined over the occupation measure variables xs,φ,α,

where xs,φ,α represents the expected number of times that action α ∈ A is executed in
the X-literal state 〈s, φ〉 by all agents put together. This is quite a natural represen-
tation for CC-SSPs, as the objective is the expected number of agents entering goals,
which can be defined quite easily in terms of the expected number times actions which
can terminate at goals are executed. Representing the paths of all the agents using an
LP also means that the behaviour of all agents is calculated simultaneously.
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Formally, an occupation measure represents the expectation

xs,φ,α = ER∈runsC(〈s0,Ψ0〉,π)

`(R)∑
i=1
|{p ∈ Pi| last(p) = 〈s, φ〉 ,Ai(p) = α}|, (5.5)

and we denote the set of all occupation measures

XC ≡ {xs,φ,α | 〈s, φ〉 ∈ S̃, α ∈ A(s) \ {αdie}}

Though the linear program in section 5.3.2 is defined in terms of these occupation
measures, the outcome can be interpreted without inferring π from this equivalence.

It is worth noting that there exist bounded policies for which xs,φ,α would be infinite,
which makes finding the associated solution to an LP very impractical. This can
occur, for example, when a policy specifies that an agent must loop between two states
indefinitely. An infinite loop can even emerge in an optimal bounded policy, as not all
agents must reach goals for Egoals(s0, π) to reach 1, and so unnecessary agents could get
trapped in infinite loops. However, it is never necessary to have an occupation measure
be infinite, as any such infinite loops can be eliminated by modifying the policy so an
agent will take the αdie action with some small probability each time around the loop.

Using occupation measures allows the problem to be thought of as a flow problem,
with a source (the initial state) and a sink (the absorbing states). In this line of
thinking, occupation measures represent expected flow between states, and the αdie
action allows flow to leak out of the network without reaching the absorbing states.
This technique was used to solve SSPs with dead ends in [Trevizan et al., 2017b], with
an implicit “give-up” action.

5.3.2 Linear Program

The linear program (LP2) in this section can be used to calculate hdec
S , and can be

reused for each state that hdec
S is evaluated on, only needing to change the source state.

Several functions are presented in advance to clarify the behaviour of the network and
the purpose of each constraint is described in detail.

The functions to be used in LP2 capture the movement of flow (i.e., movement of
agents in expectation) from one X-literal state to the next by actions. They are defined
as follows:

in(s,Ψ) ≡
∑

〈s′,φ〉∈S̃,α∈A(s′)\{αdie}:
CNF(un-X(φ),s)=Ψ

xs′,φ,αT
(
s | s′, α

)
∀ 〈s,Ψ〉 ∈ Ŝ

out(s, φ) ≡
∑

α∈A(s)\{αdie}
xs,φ,α ∀ 〈s, φ〉 ∈ S̃

receive(s, φ) ≡
∑

Ψ:∃Φ∈Ψ,
φ∈Φ

PrC (φ | Ψ) in(s,Ψ) ∀ 〈s, φ〉 ∈ S̃
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Figure 5.4: The flow being redistributed through a given X-literal state, in a process
analogous to redistribution of agents in a CC-SSP.

These functions are depicted in figure 5.4, showing how they capture the movement
and redistribution of agents through the flow network. The functions are described as
follows:

• in(s,Ψ) represents the flow passing through the augmented state 〈s,Ψ〉, defined
as the expected flow from actions which can end at 〈s,Ψ〉 from X-literal states.
This can be seen in the left side of figure 5.4, where actions which have some
probability of taking an agent to 〈s,Ψ〉 are summed up. Note that in(s,Ψ) is not
used directly in LP2, and augmented states are not directly represented either.
This is analogous to the fact that, in CC-SSPs, agents move only between X-literal
states. The abandon action αdie is not counted as taking this action does not
move an agent to another state. It will instead be represented in the constraints
of LP2.

• Similarly, out(s, φ) is the flow leaving the X-literal state 〈s, φ〉 along all the actions
available in that state. This can be seen on the right hand side of figure 5.4, and
is the sum of the occupation measures leaving 〈s, φ〉.

• Finally, receive(s, φ) represents the flow reaching the X-literal state 〈s, φ〉, after
being redistributed from augmented states. It is defined as the flow entering each
augmented state which can redistribute to 〈s, φ〉, multiplied by the probability
that the augmented state redistributes to this one. This a natural definition
of this expectation. Figure 5.4 depicts this in the middle section, with several
augmented states feeding into one X-literal state. An important note is that, as
the sum

∑
〈s,φ〉∈decompose(〈s,Ψ〉) PrC (φ | Ψ) can be greater than 1, more flow can be
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received by the children of a given augmented state than reaches that augmented
state. This is referred to as “flow duplication” and is analogous to the cloning of
agents in CC-SSPs.

Note that as the flow into a given X-literal state is dependent on Pr (φ | Ψ), it can
be considered without specifically enumerating the clauses Φ ∈ Ψ. Diagrams of flow
networks representing CC-SSPs in this thesis therefore omit the states associated with
disjunctions that can be seen in the centre of figure 5.4.

Using these functions, an LP can be defined to compute the value of the heuris-
tic hdec

S (〈s0,Ψ0〉), and is defined below as LP2. As mentioned before, this LP can
be constructed once when hdec

S (〈s0,Ψ0〉) is first computed, and only the subset of S̃
(and the associated subset of XC) reachable from 〈s0,Ψ0〉 is necessary. To compute
hdec
S (〈s′0,Ψ′0〉)2 for any state in this reachable subset, LP2 can be reused, changing the

source constraint (C8) to the new source state. If hdec
S (〈s′0,Ψ′0〉) is computed for some

〈s′0,Ψ′0〉 not in the generated subset of S̃, the LP is be extended to include all X-literal
states (and associated occupation measures) reachable from this new initial state. LP2
is defined as follows:

max sinkacc (LP2)
s.t. xs,φ,α ≥ 0 ∀xs,φ,α ∈ XC (C5)

sinkacc ≤ 1 (C6)

sinkacc =
∑

〈s,Ψ〉∈Ĝ

in(s,Ψ) (C7)

out(s0, φ)− receive(s0, φ) ≤ PrC (φ | Ψ0) ∀ 〈s, φ〉 ∈ decompose(s0,Ψ0) (C8)
out(s, φ)− receive(s, φ) ≤ 0 ∀ 〈s, φ〉 ∈ S̃ \ decompose(s0,Ψ0) (C9)

The heuristic estimate hdec
S (〈s0,Ψ0〉) is the objective sinkacc, which represents the

expected number of agents reaching goal states. LP2 behaves a lot like a flow network,
but with flow duplication as described above. The purpose of each constraint can be
categorised as:

Objective Upper Bound (C6). To restrict LP2 to finding only bounded policies,
the objective is upper bounded to 1. Obviously, as LP2 is used to estimate a probability,
limiting the estimate to be no greater than 1 is a very natural approach.

Objective Definition (C7). To aid with clarity, the objective is denoted sinkacc
and is defined to be equal to the expected number of agents reaching absorbing goal
states, i.e., states in Ĝ.

Flow Constraints (C8 - C9). The flow out of an X-literal state must be less than
or equal to the flow leaving that state. The abandon action αdie is not directly repre-
sented, and instead an inequality is used. (C9) is equivalent to out(s, φ) + xs,φ,αdie −
receive(s, φ) = 0, but requires one less variable to represent the same relationship,
similarly for (C8). Constraint (C8) represents the flow into the source states decom-

2Here 〈s′0,Ψ′0〉 is used to denote a new state for which the heuristic is computed, but the subscript
0 is used because the heuristic is computed using a CC-SSP for which this state is the initial state.
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posed from 〈s0,Ψ0〉, allowing PrC (φ | Ψ0) into each such state as well as allowing flow
through the state.

As LP2 calculates hdec
S (〈s0,Ψ0〉) directly, it is not necessary to extract a policy from

the solution found, but if a policy was necessary, it can be computed as π(〈s, φ〉 , α) =
xs,φ,α

receive(s,φ) for α ∈ A(s)\αdie, and the probability of αdie can be found from the implicit
leaking of flow; π(〈s, φ〉 , αdie) = 1− out(s,φ)

receive(s,φ) .

5.4 Limitations

This approach is not without limitations, the primary limitations are sourced from
the cloning of agents, or equivalently the duplication of flow. One such limitation is
that loops in the underlying SSP can be greatly abused in CC-SSPs, leading to gross
overestimates. As discussed earlier, hdec

S also expands the entire state space, which can
be prohibitively large.

To construct LP2, the entire state space S is expanded, and the linear program
contains a constraint for each state in S̃, which can be larger than S. For any practical
problem, S is already exponential, and if it weren’t there would be no need for heuristic
search. This limitation is averted in the presented implementation in two ways:

• Expansion of S̃ stops when reaching a non-goal state s paired with a trivial LTL
formula > or ⊥, meaning that for simple constraints, large amounts of S̃ (or even
the entire state space) are pruned before computation of LP2.

• Instead of computing hdec
S for the full underlying SSP S, it can be projected onto a

set of batches Vψ,1,Vψ,2 . . .Vψ,n, and hdec
SVψ,i

can be computed for each batch. This
is hs-dec

S,ψ , and the state space S̃ of the CC-SSP associated with each heuristic will
be drastically smaller, given a reasonable choice of batches. However projecting
onto these batches makes the hs-dec

S,ψ much less informative than hdec
S , leading it

to return an estimate of 1 in most cases, except when the formula is trivially
unsatsifiable.

5.4.1 Innate Limitations of Decomposition

Aside from the issue with intractable state spaces, estimating by decomposing LTL
formulae causes drastic overestimates in some cases by its fundamental nature. De-
composition assumes the independence of the X-literals in the constraint, and when
they are dependent, the estimate found by hdec

s is quite inaccurate. Two similar trivial
examples demonstrate this, both consisting of only one action leading from the initial
state to goal states.

In figure 5.5, two very similar SSPs are presented, along with their associated CC-
SSPs. The probability that Xa ∧ Xb is satisfied from the initial state of the SSP in
figure 5.5(a) is zero, as there is only one possible outcome, which satisfies only Xa.
It can be seen in the associated CC-SSP in figure 5.5(b) that there is a 50% chance
that an agent would be redistributed to the state 〈{b},Xa〉, from which it can satisfy
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(a) A simple MO-PLTL
SSP problem

(b) The CC-SSP from the SSP in Fig. 5.5(a)

(c) Another sim-
ple MO-PLTL SSP
problem

(d) The CC-SSP from the SSP in Fig. 5.5(c)

Figure 5.5: These SSPs (and the assocated CC-SSPs to the right) result in significant
overestimates from hdec

S despite how trivial they are.
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the X-literal. The occupation measures and flow redistribution for a solution which
achieves a 50% estimate are shown in blue in figure 5.5(b). The estimate returned by
hdec from the initial state would therefore be 0.5, which is a significant overestimate
from 0. This type of overestimate is, however, not an issue for constraints which require
that an LTL constraint be satisfied with probability 1. Averaging over ‘and’ operators
alone will always lower the probability estimate if any conjunct has a probability less
than 1.

On the other hand, when adding the expected number of agents reaching goals due
to ‘or’ operators, the estimate can reach 1 quite easily. The SSP presented in 5.5(c)
demonstrates this, as the probability of satisfying the constraint Xa ∨ Xb is obviously
50%. On the other hand, the CC-SSP in figure 5.5(d) essentially adds the probability
of satisfying each disjunct independently and as the two disjuncts are not independent,
this is a significant overestimate. The end result is an estimate of 1 agent reaching the
goal in expectation, equivalent to an estimation of a 100% probability, achieved by the
policy shown with occupation measures and flow redistribution shown in blue.

Decomposition is a reasonable relaxation of the problem, and significant overes-
timates in some situations are to be expected by any heuristic. A heuristic which
estimates accurately in all situations likely would take too long to compute to be ef-
fective. However, the next section demonstrates how loops in the underlying SSP lead
to these properties being abused by repeating the decomposition indefinitely.

5.4.2 Loops

If there is a loop in the underlying SSP, such that an agent can return to the same
state with probability 1, then a policy can abuse this by having an agent continue
around this loop (almost) indefinitely to repeat the decomposition at one or more of
the loop states forever. Two simple cases of loop abuse are presented, one for ‘and’
decomposition and the other for ‘or’ decomposition.

The case for ‘and’ is presented in figure 5.6, where the probability of satisfying the
formula (Xa)Ub is obviously 0, as b is not true in any state. Despite this, the CC-SSP
presented in figure 5.6(b) has a bounded policy which has 1 agent reaching the only
goal state 〈{a},>〉 in expectation. This policy has agents loop back by action α1 from
the state 〈{a},X((Xa)Ub)〉 until by chance they are redirected to the state 〈{a},Xa〉.
Being redirected to 〈{a},Xa〉 will happen eventually with probability 1. From this
state, the action α1 satisfies Xa, ending in the state 〈{a},>〉. This policy is:

π(〈{a},X((Xa)Ub), α1〉) = 1
π(〈{a},Xa〉 , α1) = 1

and the occupation measures for this policy are shown in blue in figure 5.6(b). In this
way, the right hand side of the until operator is completely bypassed, even though the
semantics of until dictate that the right hand side must eventually become true.

The case for ‘or’ is presented in figure 5.7, where the probability of satisfying the
formula aU(bUc) is trivially p, as the constraint can only become true for a path that
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(a) A MO-PLTL SSP problem
containing a loop

(b) The CC-SSP from the SSP in Fig. 5.6(a)

Figure 5.6: A loop in the underlying SSP allows ‘and’ decomposition to be abused to
ignore part of the constraint.

reaches the state {c}. However, for any p > 0, these exists a policy for the CC-SSP in
figure 5.7(b) which achieves an 1 agent reaching {c} in expectation. This policy has an
agent go round the loop a sufficiently large number of times in expectation, (at least
1
p times) and has all agents entering the state 〈{a},X(bUc)〉 take action α2. Having
agents go around the loop many times in expectation can be achieved with a stationary
policy:

π(〈{a, b},X(aU(bUc))〉 , α1) = 1− p
π(〈{a, b},X(aU(bUc))〉 , αdie) = p

π(〈{a, b},X(bUc)〉 , α2) = 1
π(〈{b},X(bUc)〉 , αdie) = 1

essentially creating a sufficient number of agents to overcome any low probability of
reaching the goal. The occupation measures for this policy are shown in blue in fig-
ure 5.7(b). Worryingly, because the linear program considers all the states expanded
previously, infinite flow generation can occur even if the loop is unreachable from the
initial state.

Consider the case where the same linear program is being used later to compute
hdec
S (〈{b}, {{X(bUc)}}〉), in this case the only reachable states are 〈{b},X(bUc)〉 and

〈∅,⊥〉, so obviously the estimate should be 0, however the linear program as it was
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(a) A MO-PLTL SSP problem containing a loop

(b) The CC-SSP from the SSP in Fig. 5.7(a)

Figure 5.7: A loop in the underlying SSP allows ‘or’ decomposition to be abused to
create any number of agents necessary.
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presented in this chapter allows the unreachable loop from {a, b} to itself to have any
amount of flow going around it. This puts flow into 〈{a},X(bUc)〉, and this flow can
reach the goal state 〈{c},>〉, even though this goal state is unreachable from the initial
state. Consider for example the following assignment to the occupations measures:

x{a},X(aU(bUc)),α1 = 1
p

x{a},X(bUc),α2 = 1
p

where the 1
p units of flow entering 〈{a, b},X(bUc)〉 are leaked immediately. Note how

the flow entering the X-literal state 〈{a},X(aU(bUc))〉 is equal to the flow leaving it.
The term flow is used here instead of describing the movement of agents, as no run from
the initial state 〈{a, b}, {{X(bUc)}}〉 can replicate these occupation measures, and yet
they form a valid solution to LP2. This particular issue can be resolved by not reusing
the linear program, but a similar issue exists where a reachable loop spontaneously
generates flow, allowing most of a CC-SSP to be skipped, even though the loop was
reachable from the initial state, demonstrated schematically in figure 5.8.

Figure 5.8: A loop which an agent
can travel around with probability
1 can spontaneously generate flow,
allowing portions of a CC-SSP to

be skipped.

Clearly LP2 is not a faithful formulation of
a CC-SSP, but sufficiently emulates one outside
of this issue of loops. Spontaneous generation
of flow from loops can be averted by extending
the LP, and a similar issue has been studied and
resolved in the research of the Travelling Sales-
man Problem, where loops on their own are re-
ferred to as subtours. A discussion of two of these
approaches can be found in [Desrochers and La-
porte, 1991], but in summary the techniques add
extra constraints and sometimes extra variables,
one restricts that any two states must be con-
nected (equivalently in the case of this thesis that
states which are included in the policy must be
connected), and the other enforces an ordering
such that no loops can occur apart from at the
starting point. Neither of these approaches are
directly applicable, but adding further constraints
and variables can prevent spontaneous flow generation.

5.5 Summary

Estimating the probability of satisfying an LTL formula while reaching the goal of
an SSP is an important task for improving planning under PLTL constraints, and
a fast estimation can be used as a heuristic to guide a planner towards a valid plan.
Decomposition of formulae in CNF is proposed as a method to estimate this probability,
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where the probability of satisfying each X-literal in the CNF formula is individually
computed. The probability of satisfying the full CNF formula can then be estimated by
arithmetic on the probabilities of the individual X-literals. It is not sufficient to perform
a single decomposition, and instead decomposition is performed after each formula
progression. To simulate this, a planning problem called a CC-SSP is introduced which
simulates decomposition at each step by cloning and redistributing agents between
decomposed states.

The novel heuristic hdec
S generates a CC-SSP from the SSP S and an LTL formula,

and estimates the probability of satisfying the given LTL formula in the SSP as the
optimal objective value of the CC-SSP. CC-SSPs benefit from having a smaller state
space in terms of the LTL formula compared to an MO-PLTL SSP problem, but the
state space can still be prohibitively large for a heuristic. The heuristic hs-dec

S,ψ (s) chooses
the minimum value hdec

SVψ,i
(s) over a number of projections of the SSP S, where the state

space of each is significantly smaller than the CC-SSP for hdec
S .

Policies in CC-SSPs are evaluated by how many agents reach the goal states in
expectation, which lends them to an occupation measure representation, and to this
end a linear program is presented which simulates a given CC-SSP through the occu-
pation measures. Using a linear program has some advantages, but introduces issues
with spontaneous flow generation. These advantages will be exploited in chapter 6, in
which hdec

S will be adapted for integration with the state of the art planner PLTL-dual.
By happy coincidence, this adaptation also resolves the spontaneous flow generation
problem.



Chapter 6

Decomposition Heuristic for
Planning

The ultimate goal of this thesis is to introduce an effective heuristic for MO-PLTL
SSP problems which when used in the state of the art planner PLTL-dual will be
sufficiently informative and efficient that it can be used to improve scalability of PLTL-
dual. Two admissible heuristics which upper-bound the probability of satisfying an LTL
formula from a state were presented in chapter 5, but PLTL-dual improves the usage
of heuristics in several ways.

To integrate a heuristic into PLTL-dual, it must interface correctly with the planner
and other heuristics. Specifically it must be defined for a weighted distribution of initial
states, and it must allow for tying constraints. These are described in section 6.1.

To make it more informative and allow for tying constraints, an extension for hdec
S

to trace the actions taken by agents which reach goals is described in section 6.2, the
resulting heuristic for PLTL-dual is presented in section 6.3, including an extension of
the linear program defined in chapter 5 to compute this new heuristic.

6.1 Interfacing with PLTL-dual

Heuristics in PLTL-dual must meet a few extra requirements beyond simply estimating
the probability of satisfying a constraint from a state. PLTL-dual iteratively extends
the known state space, and uses a linear program to find the optimal solution to the
partial problem defined by the known state space, taking into account the heuristic
value of each fringe state. Unlike other heuristic search algorithms, the heuristic for
each fringe state is calculated in tandem with solving the partial problem, so the
heuristic must be defined as a linear program which can be included into the linear
program for PLTL-dual.

6.1.1 Weighted Initial States

One of the ways heuristics in PLTL-dual can be more efficient is that they are com-
puted once over all the reachable states in the fringe, rather than being each computed
individually. PLTL-dual determines the expected movement of an agent (flow) through

71
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the known state space and agents either reach known goal states, or reach the fringe,
from which heuristics are computed. To be usable in PLTL-dual, a heuristic must be
defined as a linear program over a set of initial states Ŝinit, as the solver may find a
policy which reaches multiple states on the fringe of the known state space. For each
of these states there is some probability that an agent reaches that fringe state, and
these probabilities may not add up to one, as there may be a probability that agents
reach goals inside the known state space. Let Ps,Ψ be the probability that an agent
reaches a fringe state 〈s,Ψ〉 ∈ Ŝinit, referred to the weight on 〈s,Ψ〉 or equivalently the
flow into 〈s,Ψ〉. This weighting P is distinct from a probability distribution, as

0 ≤
∑

〈s,Ψ〉∈Ŝinit

Ps,Ψ ≤ 1 .

The case where
∑

〈s,Ψ〉∈Ŝinit
Ps,Ψ = 0 is important as it implies that no agents reach

the fringe of the known state space, so PLTL-dual has found a closed policy and can
terminate, and the heuristic itself need not be computed.

Computing a heuristic for a weighted initial state is semantically different from
computing a heuristic for a single initial state. Consider a heuristic hψ for a PLTL
constraint ψ defined over a weighted set of initial states Ŝinit. Under the assumption
that Ps,Ψ agents reach each state 〈s, ψ〉 ∈ Ŝinit in expectation, hψ estimates the ex-
pected number of these agents which satisfy each formula ψ from the associated state
s such that 〈s, ψ〉 ∈ Ŝinit. Such a heuristic hψ is admissible if this is an overestimate.

Extending hdec
S to have a weighted initial state is quite straight forward. Given a

set of initial augmented states Ŝinit ⊂ Ŝ and a weighting P over the states 〈s,Ψ〉 ∈ Ŝinit,

hdec
S (Ŝinit,P) ≡ max

π∈ΠC

∑
〈s,Ψ〉∈Ŝinit

(Ps,Ψ × Egoals(〈s,Ψ〉 , π)) .

Equivalently, one can imagine that instead of an agent starting a specific augmented
state in the CC-SSP, the initial state 〈s,Ψ〉 is chosen at random with probability Ps,Ψ,
and with probability 1 −

(∑
〈s,ψ〉∈Ŝinit

Ps,Ψ
)
, no initial state is chosen and the agent

fails to reach a goal.

6.1.2 Tying Constraints

Computing all the heuristics simultaneously allows them to depend on each other, and
this dependence is captured in PLTL-dual with tying constraints. Tying constraints
are typically of the form ∑

s∈Sh1

xh1
s,α =

∑
s∈Sh2

xh2
s,α

where h1 and h2 are two different heuristics, Shi is the state space used to compute
heuristic hi, and xhis,α represents an occupation measure used to compute hi. Tying
constraints exist between one heuristic and all other heuristics (i.e., tying h1 to h2,
h1 to h3, h1 to h4 and so on), and exist for each action α ∈ A. Tying constraints
intuitively require that all actions deemed necessary by some heuristic are performed
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(a) (b)

Figure 6.1: This MO-PLTL SSP problem and its associated CC-SSP demonstrate that
tying constraints cannot be applied naïvely to hdec

S .

in other heuristics, potentially influencing them, but different heuristics can have these
actions performed in different orders.

As an example of tying constraints, consider the projection heuristics for a problem
where an agent must push an object between two rooms, r1 and r2. The agent can
be in either room; pos = r1 or pos = r2, and similarly for the object position,
obj-pos. Let the goal be the assignment (obj-pos = r1), and the initial state be
(obj-pos = r2), (pos = r1). The projection onto pos is disjoint from the goal, so
the artificial goal action αg can be taken anywhere, making this projection trivial.
However, the projection onto obj-pos requires that the action ‘push r2 r1’ is taken,
to move the object to r1. The tying constraints would require that this action is taken
in the other projection. Suppose ‘push r2 r1’ had the precondition pos = r2 and
the effect pos = r1. To make this possible in the projection onto pos, that projection
would have to first do the action ‘move r1 r2’. This in turn makes the projection
onto obj-pos perform the ‘move r1 r2’ action, but because the action has effects and
preconditions disjoint from obj-pos, it can do this action at any time in the plan.
Obviously, for more complicated problems, the combined projection heuristics will not
find the full plan, but only a relaxed one.

For PLTL constraint heuristics, tying constraints provide much more information
to the search than the probability estimate from the heuristic, meaning that including
tying constraints in hdec

S is vital for its efficacy. Tying constraints for hdec
S are not

possible without some modification, as the occupation measures from multiple agents
add up to more uses of a given action than is necessary in the actual solution, and
sometimes more than is possible. Consider the SSP in figure 6.1(a), and the constraint
Pr (Xa ∨ Xb) = 1. Obviously, there is only one policy, which is to take the action α1
from the state ∅ with a 0.5 chance of reaching each goal state, either of which satisfies
the formula. In the CC-SSP for this problem, an agent starts in each of 〈∅,Xa〉 and
〈∅,Xb〉, and the only policy π ∈ ΠC with Egoals(〈∅, {{Xa,Xb}}〉 , π) = 1 is shown in
the form of occupation measures and flow redistribution in blue in figure 6.1(b). Under
this policy, the action α1 is taken once by each agent no matter what, so the expected
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number of times it is taken is twice. With a naïve inclusion of tying constraints, this
would force the cost heuristics to take action α1 twice in expectation, which is not only
impossible, but if it were possible it would make those heuristics overestimate the true
cost of reaching the goal, meaning they are inadmissible.

Clearly tying constraints cannot be applied directly to hdec
S without some further

modification. Observe in figure 6.1(b) that if only the actions taken by agents that even-
tually reach goals (i.e., half the agents leaving each 〈∅, ·〉 X-literal state) are counted,
then action α1 is taken only once in expectation. This concept is called tracing accept-
ing flow, and introduces several improvements to hdec

S .

6.2 Tracing Accepting Flow

In a CC-SSP, it is conceivable that under a policy π, with a small probability ε, one
agent reaches an X-literal state 〈s, φ〉 from which many of its clones reach goal states.
In this case, if Egoals(〈s, φ〉) ≥ 1

ε , then this small probability alone is sufficient to push
the probability estimate up to 1. Similarly, when there is a loop in the CC-SSP near
a goal, spontaneous flow generation can skip the majority of the CC-SSP, even when
no flow from the initial state reaches this loop. These are obviously flaws in the design
of hdec

S , and it would increase the informativeness of hdec
S if they were resolved in some

way.
It is necessary to allow that multiple clones of a single agent can reach a goal

to maintain the admissibility of hdec
S ; recall figure 6.1(b), in which it is possible for

two agents to reach the goals 〈{a},>〉 and 〈{b},>〉 in the same run, and if this were
prevented in any way, Egoals(〈∅, {XFa,XFb}〉 , π) would be less than 1. However,
a natural restriction is that as Egoals represents a recursive probability estimate, it
should be bounded to 1 recursively.

An internally bounded policy π is a policy such that Egoals(〈s,Ψ〉 , π) ≤ 1 for
all 〈s,Ψ〉 ∈ Ŝ and Egoals(〈s, φ〉 , π) ≤ 1 for all 〈s, φ〉 ∈ S̃. As an intuitive example, if
under some internally bounded policy π, 0.5 agents reach some X-literal state 〈s, φ〉
in expectation, then at most 0.5 agents can reach goals in expectation having gone
through 〈s, φ〉.

The concept of tracing accepting flow is introduced to compute internally bounded
policies in the occupation measure dual space. The idea behind an accepting flow
trace is that the flow reaching the goal states of a CC-SSP should be traced backwards
to the source state, and that this trace should not allow any flow duplication. This
trace is defined by labelling portions of the occupation measures in the flow network
as accepting flow, and as a trace, the amount of accepting flow entering a state should
be equal to the accepting flow leaving it.

To put the above example in terms of accepting flow, if 0.5 units of accepting flow
are traced from goal states back to some X-literal state 〈s, φ〉, then exactly 0.5 units
of accepting flow can be traced from 〈s, φ〉 to the source state. If there was no such
trace to the source, then the policy π encoded by the occupation measures, is not an
internally bounded policy, as Egoals(〈s, φ〉 , π) > 1.

Tracing accepting flow not only increases the informativeness of the estimate derived
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Figure 6.2: An example trace of accepting flow through part of a CC-SSP. Flow is
labelled in blue, and accepting flow labelled in red.

from a CC-SSP, but also provides an expression that can be used for tying constraints,
and resolves the issues of unreachable loops and spontaneous flow generation identified
in section 5.4.2.

Figure 6.2 shows an example trace of accepting flow through part of a CC-SSP, with
accepting flow labelled in red and flow labelled in blue. The action and state labels have
been omitted for clarity. Observe how the accepting flow is conserved between entering
and leaving a state, allowing the flow at the end to be traced backwards towards the
source.

6.2.1 Determinisation

To label specific parts of the flow through the network representing a CC-SSP as
accepting flow, the occupation measures are split up into components in a way akin to
the all-outcomes determinisation for probabilistic planning. This is necessary as the
flow along a probabilistic action α may lead to multiple different states, where only
agents directed to one such specific state go on to reach goal states. Similarly, in CC-
SSPs, agents can be cloned into multiple X-literal states, and it is possible that only
some of these clones will go on to reach goal states, or that if they did it would not be
under an internally bounded policy. As such, tracing accepting flow requires that each
possible outcome can be traced independently.

To this end, accepting flow is labelled by two sets of variables. Formally, given a
CC-SSP C = 〈Ŝ, 〈s0,Ψ0〉 ,G,A,T〉 with X-literal state space S̃ and underlying state
space S, these sets of variables are

ỸC ≡ {ys,φ,α,s′ | 〈s, φ〉 ∈ S̃, α ∈ A(s) \ {αdie}, s′ ∈ S s.t.T
(
s′ | s, α

)
> 0}

ŶC ≡ {ys,Ψ,φ | 〈s,Ψ〉 ∈ Ŝ, φ s.t. 〈s, φ〉 ∈ decompose(s,Ψ)}.

ỸC is the set of variables ys,φ,α,s′ labelling the accepting flow along actions from X-
literal states, and, for each action and state, there is a variable for each outcome of
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that action. A variable ys,φ,α,s′ ∈ ỸC labels what quantity of the flow from 〈s, φ〉 to
〈s′,CNF(un-X(φ), s′)〉 by the action α is accepting flow. On the left hand side of figure
6.2, accepting flow only travels down one of the outcomes of the probabilistic action,
as none of the flow reaching the other outcome ever reaches accepting states.

Similarly, ŶC is the set of variables ys,Ψ,φ which label accepting flow from augmented
states to X-literal states. A variable ys,Ψ,φ ∈ ŶC labels what quantity of the flow
redistributed from 〈s,Ψ〉 to 〈s, φ〉 is accepting flow. That is, all the flow which would
enter 〈s,Ψ〉 is redistributed (and duplicated) into states in decompose(s,Ψ), and from
some of those states there may be accepting flow. The variables in ŶC trace accepting
flow backwards by specifying which augmented states the flow into a given X-literal
state comes from. On the lower right side of figure 6.2, the flow into only some of the
redistribution states is labelled as accepting flow, as not all states have flow going to
goals.

6.2.2 Upper Bounding

The variables in ỸC and ŶC represent portions of the flow represented by the occupation
measures in XC . Because of this, they are obviously upper bounded by their associated
occupation measures. For the variables in ỸC , this is a straightforward upper bound
proportional to the probability of the given outcome:

ys,φ,α,s′ ≤ xs,φ,α · T
(
s′ | s, α

)
,

however there are no occupation measures directly associated with the labels in ŶC ,
but the amount of flow being redistributed from any augmented state to a specific
X-literal state can be defined in terms of in(s,Ψ), which is a function of the occupation
measures representing actions that would end at 〈s,Ψ〉, defined in section 5.3.2. Using
in(s,Ψ), the upper bound for these variables is

ys,Ψ,φ ≤ in(s,Ψ) · Pr (φ | Ψ) .

This upper bounding property is can be observed in several places for the accepting
flow shown in figure 6.2, primarily on the left hand side, where the accepting flow for
the whole system is upper bounded by the flow into one outcome of a probabilistic
action.

6.2.3 Spontaneous Flow Generation

One of the primary limitations of hdec
S was that of spontaneous flow generation. Under

an internally bounded policy, spontaneous flow generation technically can occur, but
any flow that reaches goals must be traced back to the source state, so spontaneous
flow generation cannot be responsible for flow reaching goals. This rules out the case
described in section 5.4.2 (see figure 5.8) in which flow is immediately leaked upon
entering the network and a loop near a goal state creates sufficient flow to have 1 unit
of flow entering goal states. Similarly, the case described in the same section where
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an unreachable loop generates flow to reach a goal state unreachable from the source
state cannot occur.

6.2.4 Tying Constraints

Tying constraints between the projection heuristics in PLTL-dual account for the move-
ment of the agent whether or not it satisfies the LTL formula. On the other hand, ac-
cepting flow considers only the movement of agents which eventually reach goal states of
a CC-SSP, which are associated with the satisfaction of the LTL formula. This requires
that tying constraints between a CC-SSP flow network and the projection heuristics
must use an inequality, with accepting flow lower bounding the flow in the projection
heuristics. As an extreme example, consider the case where it is impossible for the
LTL formula to be satisfied from some non-goal state. In this case, there would be no
accepting flow in the CC-SSP network, and the projection heuristics would have to take
some actions to reach the goal. Under an equality constraint, this case would cause
a contradiction. Similarly, because there is no guarantee that either of two CC-SSPs
allow more accepting flow than the other, there cannot be any form of tying constraint
between them.

Tying constraints between the accepting flow variable ỸC and the occupation mea-
sures in another heuristic h2 therefore are of the form∑

ys,φ,α′,s′∈ỸC :α′=α

ys,φ,α′,s′ ≤
∑
s∈Sh2

xh2
s,α (6.1)

for all α ∈ A. Note that because the variables in ŶC are not associated with actions,
they are not necessary for tying constraints.

Now that tying constraints have been proposed, as well as the notion of a weighted
initial state, a heuristic to be integrated into PLTL-dual will be defined in the next
section.

6.3 LP Formulation

Inclusion of accepting flow tracing in the definition hdec
S results in a new heuristic called

the traced decomposition heuristic ht-dec
S . For a pre-specified SSP S, ht-dec

S estimates
the probability of satisfying given LTL CNF sets Ψ from associated states s while also
reaching the goal of S by constructing and solving the linear program LP3 defined in
section 6.3.1. The initial states and CNF sets are defined as a set Ŝinit of augmented
states 〈s,Ψ〉, and a probability distribution PrŜinit

(〈s,Ψ〉). The estimate derived by
ht-dec
S is the objective of LP3; sinkacc. This linear program is an extension of LP2 to

include accepting flow tracing constraints, a weighted initial state, and when integrated
with PLTL-dual, also includes tying constraints.

Just like hdec
S , the state space of ht-dec

S is exponential, so SAS+ and LTL projection
is employed to generate relaxed SSPs S1, . . . ,Sn such that ht-dec

Si is not too computa-
tionally expensive to use as a heuristic for each Si. Let hsdt

S,ψ be the split decomposition
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trace heuristic, defined for some SSP S constrained by the PLTL constraint ψ. Sim-
ilarly to hs-dec

S,ψ , hsdt
S,ψ is defined over a set of batches {Vψ,1,Vψ,2, . . . ,Vψ,n} as found by

algorithm 4 or any other variable grouping algorithm, and computes ht-dec
SVψ,i

for each
Vψ,i, returning the minimal estimate found this way.

In the context of PLTL-dual however, hsdt
S,ψ constructs the linear program for ht-dec

SVψ,i
for each Vψ,i it maintains, and each is tied by tying constraints to the projection
heuristics for PLTL-dual. These linear programs are effectively each part of the overall
linear program for PLTL-dual.

6.3.1 Linear Program

The extension of LP2 to trace accepting flow is presented in this section, along with
several functions introduced to make the definition of the linear program clearer. Simi-
larly to LP2 in section 5.3.2, this linear program can be constructed once the first time
ht-dec
S (Ŝinit,P) is computed, constructing only constraints for states reachable from

each 〈s,Ψ〉 ∈ Ŝinit, and is reused each time the heuristic is computed. In the case
that ht-dec

S (Ŝ′init,P′) is to be computed, but some state in Ŝ′init is not yet generated, the
linear program is extended to include constraints for all states reachable from each of
the new initial states in Ŝ′init.

Four functions are introduced for LP3 and are used to represent accepting flow
leaving and entering both X-literal states and augmented states, with two to represent
accepting flow in and out of each. They are defined as follows:

accIn(s,Ψ) =
∑

〈s′,φ〉∈S̃,α∈A(s′)\{αdie}:
(CNF(un-X(φ),s)=Ψ)∧(T(s|s′,α)>0)

ys′,φ,α,s ∀ 〈s,Ψ〉 ∈ Ŝ

accRedist(s,Ψ) =
∑

φ:〈s,φ〉∈decompose(s,Ψ)
ys,Ψ,φ ∀ 〈s,Ψ〉 ∈ Ŝ

accReceive(s, φ) =
∑

Ψ:〈s,φ〉∈decompose(s,Ψ)
ys,Ψ,φ ∀ 〈s, φ〉 ∈ S̃

accOut(s, φ) =
∑

α∈A(s)\{αdie},s′∈S:
T(s′|s,α)>0

ys,φ,α,s′ ∀ 〈s, φ〉 ∈ S̃

These functions are very similar in definition and function to the ones for LP2.
Notice however that because there are variables for augmented states, the flow through
augmented states is represented with two functions separate from those for X-literal
states, where LP2 uses only two functions for X-literal states. These functions are
listed below:

• accIn(s,Ψ) and accRedist(s,Ψ) represent accepting flow through the augmented
state 〈s,Ψ〉. Accepting flow coming in is defined in terms of variables ys′,φ,α,s ∈
ỸC , where s is the outcome of an action from the state 〈s′, φ〉. Flow out is
represented as redistribution variables ys,Ψ,φ ∈ ŶC redirecting flow to individual
literal states in decompose(s,Ψ).
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• accReceive(s, φ) and accOut(s, φ) represent the accepting flow being distributed
through the literal state 〈s,Ψ〉 from and to augmented states. Conversely to the
flow through augmented states, the flow in is defined in terms of ŶC , and the flow
out is defined in terms of ỸC .

Combining accepting flow with a weighted initial state add a slight challenge for
ht-dec
S . Accepting flow is traced in such a way that the amount of accepting flow

entering and leaving the network is identical. However, in the case that the amount
of flow reaching goal states is less than that entering the network, only some of the
flow entering the network will be labelled as accepting flow. The linear program must
include constraints that specify that the accepting flow entering the network is equal to
the accepting flow leaving, which for a single initial state is simple, the accepting flow
entering at the source state would be exactly the amount leaving the network, e.g.,

accRedist(s0,Ψ0)− accIn(s0,Ψ0)− sinkacc = 0.

However, this is not applicable when there are multiple initial states, as it should
be possible to trace accepting flow to each, but the total amount of flow leaving them
should be exactly equal to sinkacc. To resolve this issue, LP3 contains an extra variable
is,Ψ for each state 〈s,Ψ〉 ∈ Ŝinit \ F̂, representing what portion of the flow entering the
network at that particular state is accepting flow.

With the functions defined above, LP3 is defined over the variables XC , ỸC , ŶC and
is,Ψ for ∈ Ŝinit\F̂ and is presented in figure 6.3. If LP3 is computed in conjunction with
other heuristics (i.e., in PLTL-dual), it can include the tying constraints in equation
6.1 for each action α ∈ A, tied to any heuristic h2 other than another instance of this
one.

Before the constraints in LP3 are explained individually, consider first a holistic
view of LP3. LP3 computes an internally bounded policy for a CC-SSP using a pair of
flow networks. The primary flow network uses the variables in XC , which are occupation
measures for the CC-SSP, representing the expected movement of agents through the
CC-SSP, and includes flow duplication and potentially spontaneous flow generation.
The secondary flow network uses the variables in ỸC and ŶC , and is defined over exactly
the same state space as the primary network. The secondary network network labels
the flow in the primary network which is accepting flow, i.e., flow which will eventually
reach states in Ĝ. In its entirety, the secondary network provides a trace of accepting
flow from the source states to the goal states, with no flow duplication. As all the flow
in the secondary network must exist in the primary network, the flow in the secondary
network is upper-bounded by the flow in the primary network. Below, each constraint
in LP3 is explained and fit into this explanation.

Accepting Flow Source (C14). The accepting flow entering the network at each
source state can be no more than the flow reaching that state. This is clear from the
definitions of both.

Objective Definition (C15). The flow leaving the network is defined to be
sinkacc, which is equivalent also to the sum of all flow reaching goal states in each
network. If a goal state is in the set of initial states Ŝinit, which can occur primarily when
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max sinkacc (LP3)
s.t. xs,φ,α ≥ 0 ∀xs,φ,α ∈ XC (C10)

ys,φ,α,s′ ≥ 0 ∀ys,φ,α,s′ ∈ ỸC (C11)
ys,Ψ,φ ≥ 0 ∀ys,Ψ,φ ∈ ŶC (C12)
0 ≤ is,Ψ ≤ 1 ∀ 〈s,Ψ〉 ∈ Ŝinit \ F̂ (C13)
is,Ψ ≤ Ps,Ψ ∀ 〈s,Ψ〉 ∈ Ŝinit \ F̂ (C14)
sinkacc −

∑
〈s,Ψ〉∈Ŝinit∩Ĝ

Ps,Ψ =
∑

〈s,Ψ〉∈Ĝ

in(s,Ψ) =
∑

〈s,Ψ〉∈Ĝ

accIn(s,Ψ) =
∑

〈s,Ψ〉∈Ŝinit

is,Ψ (C15)

out(s, φ)− receive(s, φ) ≤
∑

Ψ:〈s,Ψ〉∈Ŝinit

Ps,Ψ · Pr (φ | Ψ)
∀ 〈s, φ〉 ∈

⋃
〈s,Ψ〉∈Ŝinit

decompose(s,Ψ) (C16)

out(s, φ)− receive(s, φ) ≤ 0 ∀ 〈s, φ〉 ∈ S̃ \
⋃

〈s,Ψ〉∈Ŝinit

decompose(s,Ψ) (C17)

accRedist(s,Ψ)− accIn(s,Ψ)− is,Ψ = 0 ∀ 〈s,Ψ〉 ∈ Ŝinit \ F̂ (C18)
accRedist(s,Ψ)− accIn(s,Ψ) = 0 ∀ 〈s,Ψ〉 ∈ Ŝ \ (Ŝinit ∩ F̂) (C19)
accOut(s, φ)− accReceive(s, φ) = 0 ∀ 〈s, φ〉 ∈ S̃ (C20)
ys,φ,α,s′ − xs,φ,α · T

(
s′ | s, α

)
≤ 0 ∀ys,φ,α,s′ ∈ ỸC (C21)

ys,Ψ,φ − in(s,Ψ) · Pr (φ | Ψ) ≤
∑

Ψ:〈s,Ψ〉∈Ŝinit

Ps,Ψ · Pr (φ | Ψ)
∀ 〈s, φ〉 ∈

⋃
〈s,Ψ〉∈Ŝinit

decompose(s,Ψ) (C22)

ys,Ψ,φ − in(s,Ψ) · Pr (φ | Ψ) ≤ 0
∀ 〈s,Ψ〉 ∈ Ŝ \ {〈s0,Ψ0〉}, φ : ∃Φ ∈ Ψ, φ ∈ Φ (C23)

Figure 6.3: An LP to compute the traced decomposition heuristic, simulating flow
through a CC-SSP and tracing the flow which reaches accepting states.

the formula for an initial state is >, then agents starting at that initial state will reach a
goal without moving. This cannot be represented using occupation measures, so sinkacc
is artificially increased by the weight of all initial goal states. The final equality requires
that the total accepting flow entering the network, represented with the variables is,Ψ
for each 〈s,Ψ〉 ∈ Ŝinit, is equal to the accepting flow leaving the network. Note that
the previous network required that the objective was upper bounded at 1, but the
inclusion of the secondary network automatically creates this upper bound. Specifically
the combination of constraint C14 and C15 create this upper bound.

Primary Flow Network (C16-C17). The representation of flow through the
network for the variables in XC . (C16) represents the flow into the initial states,
allowing an extra Ps,Ψ × Pr (φ | Ψ) flow to enter the network. This is the amount
of flow reaching the state 〈s,Ψ〉 from external sources redistributed to this X-literal
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state. In the same way as constraints C8 and C9, these constraints use inequalities to
represent the αdie action.

Secondary Flow Network (C18-C20). The flow network for the variables in
ỸC and ŶC . This flow network uses an all-outcomes determinisation to label the flow to
each outcome individually. In contrast to the primary flow network, the constraints use
equality, as the αdie action guarantees that an agent will not reach a goal, and there is
no duplication of flow from disjunctions. C18-C19 encode the flow through augmented
states, allowing the LP solver to choose which decomposed states flow should go to.
In C18 flow into the secondary flow network at any one state in Ŝinit is set equal to
is,Ψ. C20 encodes the flow through literal states, allowing the solver to choose exactly
which augmented states flow should go to.

Accepting Flow Upper Bound (C21-C23). As explained in section 6.2.2, these
constraints require that the flow through the secondary network is upper bounded by
the flow in the primary network. Specifically, they require that for each outcome of an
action or for each X-literal state that flow is redistributed to, the flow for that outcome
or state in the secondary network is less than the associated fraction of the flow in
the primary network. The most important case of this is C22, where the flow being
redistributed from a source state is accounted for, increasing the upper-bound on ys,Ψ,φ
by Ps,Ψ · Pr (φ | Ψ).

6.4 Limitations

The primary limitation of this approach is that tracing accepting flow introduces a very
large number of extra constraints and variables. This naïve form of the all-outcomes
determinisation can result in an exponential increase in the number of actions, as was
observed in [Rintanen, 2003]. In the context of this heuristic, this equates to potentially
an exponential number of variables in the linear program. As well as this, one of the
advantages of hdec

S was that Ŝ was not directly represented, and the much smaller space
S̃ was represented using constraints. Recall that Ŝ is equal to S × 22Σ(ψ) in the worst
case, where S̃ is only S × Σ(ψ) in the worst case. LP3 includes several variables and
constraints for each state in Ŝ, making it much more sensitive to the size of the LTL
constraint.

hsdt
S,ψ averts this issue somewhat by projecting both the state space and the formulae

onto subsets of Vψ, but the number of constraints produced to compute hsdt
S,ψ can still be

very large, and when the structure of the formula forces there to be many overlapping
minimal combinations of Vψ, hsdt

S,ψ will make many copies of the same state space. As
well as new issues, some of the limitations of hdec

S persist in ht-dec
S .

Like hdec
S , ht-dec

S can abuse loops in the underlying state space, though only so much
as an internally bounded policy will allow. The cases shown in figures 5.6 and 5.7 still
result in the same significant overestimates for ht-dec

S , primarily because these loops
have 1 unit of flow entering them. With an accepting flow trace, if such a loop could
only be reached by f units of flow, then at most f units of accepting flow can pass
through that loop.
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Figure 6.4: A case where spontaneous flow generation from an unreachable loop con-
tributes to the accepting flow trace shown in red.

Section 6.2.3 discussed how adding the accepting flow tracing constraints prevented
most cases of spontaneous flow generation from increasing the heuristic estimate, how-
ever there are still some cases where spontaneous flow generation creates flow that
contributes to accepting flow. Figure 6.4 shows a CC-SSP generated with the LTL
constraint aU(bUc) from the state {a, b}, but where the heuristic is computed from the
augmented state 〈b, {{X(bUc)}}〉. There is a loop unreachable from this initial state
which allows spontaneous flow generation, which feeds into 〈b, {{X(bUc)}}〉. Only 1/3
of the flow leaving 〈b, {{X(bUc)}}〉 from the action α3 reaches the goal state 〈c,>〉, so
without the spontaneous flow generation leading into that state, there would only be
1/3 units of flow reaching 〈c,>〉. Instead, because of the spontaneous flow generation,
the estimate found by ht-dec

S is 1.
The issue of spontaneous flow generation could possibly be averted by forcing all

the occupation measures leading into a state to be equally responsible for accepting
flow, meaning that all ways the flow enters a state which has accepting flow leaving it
(〈b, {X(bUc)}〉 in this case) would have to be traced back to some initial state. Adding
this constraint would prevent spontaneously generated flow from reaching any state
which had accepting flow leaving it, i.e., any state from which flow reaches goals.

6.5 Summary

Constructing a heuristic based on decomposition which can be integrated into PLTL-
dual requires that the heuristic is constructed as a linear program accepting a weighed
set of initial states from which the heuristic is computed, and inclusion of tying con-
straints to extract extra information out of the heuristic. A weighted initial state is
straightforward to include, but hdec

S does not lend itself to tying constraints. To resolve
this and other issues the concept of an internally bounded policy and an accepting flow
trace were introduced.

To enforce that the policy found by a linear program is internally bounded, accept-
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ing flow is defined such that if f units of flow reach goal states of a CC-SSP from some
specific state, then f units of flow must have reached that state from the source state.
Equivalently, if f units of accepting flow leave a specific state, then f units of accepting
flow must enter it, and this accepting flow can be traced forwards and backwards to
the goal states and source respectively.

Including a concept of accepting flow resolves some issues that existed in hdec
S related

to spontaneous flow generation, and tying constraints can be defined on the accepting
flow trace, meaning that ht-dec

S , which is hdec
S with the addition of accepting flow tracing

and a weighted initial state, can be integrated into PLTL-dual.
Like hdec

S , the state space for ht-dec
S is often intractable, so when integrated into

PLTL-dual, instead hsdt
S,ψ is used, which computes ht-dec

SVψ,i
over several projections Vψ,i of

Vψ simultaneously. Each of these instances of ht-dec
SVψ,i

is tied to the projection heuristics
for PLTL-dual.

In the next chapter, the results of an empirical evaluation of hsdt
S,ψ are presented. In

these experiments, hsdt
S,ψ is compared with the state-of-the-art planner PLTL-dual and

other competitive solvers for MO-PLTL SSP problems on several planning domains,
and the results are analysed.
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Chapter 7

Experiments

Empirical experiments were performed to analyse the effectiveness of hsdt
S,ψ in compari-

son to other approaches, including hBA in PLTL-dual, i2-dual with the trivial heuristic,
and the PRISM model checker [Kwiatkowska et al., 2011]. Baumgartner et al. [2018]
found success when PLTL-dual used a mixture of hBA and the trivial heuristic, not
using hBA for constraints where the NBA was larger than 100 states. The experiments
compare against this variant also.

The benchmark domains and experimental setup are detailed in section 7.1, and
the results are presented in section 7.2. The results are then analysed in section 7.3.

7.1 Setup

The experiments were performed on three domains, two from [Baumgartner et al., 2018]
and one adapted from [Trevizan et al., 2016]. The experiments were run on Ubuntu
16.04 with an Intel i7-7700 CPU clocked at 3.60 GHz, and used one thread. Gurobi
version 8.1.1 [Gurobi Optimization, 2019] was used for optimizing LPs. Problems are
defined in the probabilistic STRIPS fragment of PPDDL, which was converted to SAS+

using the Fast Downward translator [Helmert, 2006]. LTL formulae are converted to
NBAs using the LTL3BA converter [Babiak et al., 2012].

7.1.1 Algorithms

Because of the large number of problems, each algorithm was run only once on each
problem instance in each domain, time limited to 20 minutes per instance. The algo-
rithms compared are

1. i2-dual using the trivial heuristic and the progression mode. Baumgartner et al.
[2018] found this algorithm to be quite competitive, as it doesn’t suffer as much
as hBA as the size of the formulae increases. They also found that it expands
fewer states than i2-dual using the NBA mode with the trivial heuristic, so the
progression mode is used over the NBA mode. This algorithm is listed as “Trivial
heuristic” in the results.

2. PLTL-dual using hBA and the NBA mode. This is the only other heuristic al-
gorithm for MO-PLTL SSP problems with a heuristic that depends on the LTL

85
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mode state. This algorithm is referred to as “NBA heuristic”.

3. PLTL-dual using the NBA mode and using hBA for constraints where the size
of the NBA is 100 states or less. This was the most effective algorithm in the
experiments by Baumgartner et al. [2018], showing that the NBA heuristic does
improve the effectiveness of i2-dual. This variant is referred to as “NBA heuristic
(100)”.

4. PLTL-dual using the progression mode and hsdt
S,ψ for all constraints ψi ∈ φ. By

a minor abuse of terminology, this is listed as “Decomposition heuristic” in the
results and is referred to as such throughout this chapter.

5. The PRISM model checker [Kwiatkowska et al., 2011], version 4.5. This was
the state-of-the-art for MO-PLTL SSP problems before PLTL-dual was intro-
duced, and no comparison exists for the priority search domain, so it included
for completeness.

7.1.2 Domains

Experiments were done on problems from each of the following 3 domains.

Factory. The factory domain models a production line of n reliable or unreliable
machines, where machine mi makes part pi, and with the exception of m1, part pi−1
is consumed when using machine mi. For an unreliable machine mi, using it fails to
make part pi with probability 0.2, despite still consuming pi−1. Each problem has k
unreliable machines, being m2 to mk+1, and problems are indexed as ‘n-k’. Using a
machine mi requires it to be on, and for machines other than m1, pi−1 must be in
stock. The actions and costs are: turning a machine on (cost: 1); turning a machine
off (cost: 1); using m1 (cost: 4); using mi, (cost: 3 if mi is unreliable, 5 otherwise).
The initial state has no parts produced and all machines off, and the goal state is to
have pn produced and all machines off.

There are two PLTL constraints for the factory domain. The first is that m1 must
eventually be on (Pr (F(m1 = on)) = 1). The second is that, starting at machine m1
when m1 is turned on, an imaginary baton is passed down the line, where a machine
mi with the baton must not be turned off until mi+1 is on, and upon turning off mi,
the baton is passed to mi+1 and mi must never be turned on again. When mn has the
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baton, no requirement is placed on mn. This is written

ψf2 ≡ G[(m1 = on)→ ((m1 = on)U
((m2 = on) ∧ G¬(m1 = on)∧
((m2 = on)U
((m3 = on) ∧ G¬(m2 = on)∧
. . .

((mn−1 = on)U
((mn = on) ∧ G¬(mn−1 = on))) . . . ))))]

The probability bound for the second constraint is Pr (ψf2) = 1.

Wall-e. The Wall-e domain models the movement of two robots, Wall-e and Eve,
moving through a chain of n connected locations l1, . . . , ln, where each location li is
connected to a room ri. At each step, either robot can move to an adjacent room or
location, or if they are together, they can move simultaneously to the same location or
room. All actions cost 1, except for leaving a room together, which costs 5. All actions
are deterministic, except for leaving a room together, where they may bump into each
other and both fail to leave the room with probability 0.1. The initial state has Wall-e
in l1 and Eve in r2, and the goal has Wall-e in ln

There are 5 PLTL constraints for the Wall-e domain. The first is that they must
eventually be together:

Pr (F(together = >)) ∈ [0.5, 1].

The second is that Wall-e cannot enter any rooms except rn twice:

Pr
(∧
i<n

G((wpos = ri)→ ((wpos = ri)UG¬(wpos = ri)))
)
∈ [0.8, 1],

where wpos is the position of Wall-e. The remaining three are that Eve must stay in
her starting room until Wall-e comes to fetch her:

Pr ((eve-in-room = >)U(together = >)) ∈ [0.8, 1],

once they meet, they want to (eventually) be together forever:

Pr (G((together = >)→ FG(together = >))) = 1,

and that Eve must visit the first three rooms:

Pr (F(epos = r1) ∧ F(epos = r2) ∧ F(epos = r3)) = 1.

Priority Search. The priority search domain is adapted from the Search and Rescue
domain in [Trevizan et al., 2016]. This domain features a robot in an n×n grid, locating
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missing victims of a disaster. A location li,j can either be unknown, i.e., it is not known
if there is a victim there, or it is known that there is no victim at li,j . When at an
unknown location, the robot can search that location, though unlike the Search and
Rescue domain, the robot is incapable of rescuing people alone, so no further interaction
is required beyond searching unknown locations. Whenever the robot decides, it can
end its mission by returning to its starting location and using the end mission action.
The robot can travel to the 4 adjacent locations at one of three speeds: slow, normal
and fast. The normal and fast movement actions fail with probability 0.05 and 0.1
respectively, in which case the robot does not move its current position. The costs
represent time, and are: search an unknown location (cost: 1); move (cost: 1 for
fast, 2 for normal speed, and 4 for slow); end the mission (cost: 1). Problems are
randomly initialised, with the robot in a random location, and each location is labelled
as unknown with probability p ∈ {0.25, 0.5, 0.75}. Let the set of initially unknown
locations for a search priority problem be U . The following PLTL constraint requires
that all locations in U are searched, thus preventing the agent from performing the
goal action before searching for victims.

Pr

 ∧
li,j∈U

F¬(li,j-unknown = >)

 = 1,

The PLTL constraints for this problem are defined in terms of a randomly chosen
“danger zone”. The danger zone is randomly chosen given a problem initialisation, and
is a vertical or horizontal line of n−1 contiguous locations DZ = {li,j , li,j+1 . . . li,j+n−2}
or DZ = {li,j , li+1,j . . . li+n−2,j} that does not contain the initial location but does
contain at least one unknown location. The danger zone is also never along the edge of
the grid. There are two PLTL constraints, first is that the locations in the danger zone
have priority over others. The robot must search these first before searching anywhere
else:

Pr

 ∧
li,j∈U\DZ

(li,j-unknown = >)

U

 ∧
li,j∈DZ

(li,j-unknown = >)

 = 1,

and the second is that the agent must not stay within the danger zone for more than
two steps, for its own operational safety:

ψps3 ≡ G

 ∨
li,j∈DZ

(loc = li,j)

→
¬ ∨

li,j∈DZ
X(loc = li,j) ∨ ¬

∨
li,j∈DZ

XX(loc = li,j)

 .
The probability bound on the second constraint is more forgiving than the first; Pr (ψps3) ∈
[0.8, 1]. Moving hastily out of the danger zone has the possibility of leaving the robot
stuck in the zone for an extra step, violating this constraint.

Because priority search problems are randomly generated, 10 problems of each pa-
rameterisation n ∈ {4, 5}, p ∈ {0.25, 0.5, 0.75} were generated, and each was solved
once with each algorithm. To demonstrate the importance of batch choice when allo-
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cating from Vψ, a variant of hsdt
S,ψ was also included in experiments on the priority search

domain. This variant used the batches returned by algorithm 4, except for the first con-
straint, where the set of batches generated by algorithm 4 is {{li,j-unknown} | li,j ∈ U},
this variant instead uses the batches {{li,j-unknown, pos} | li,j ∈ U}. This is denoted
“Decomposition heuristic + position” in the results.

7.2 Results

The results of the experiments are presented in the form of the amount of time in
seconds it took to each algorithm to solve each problem once. The time taken for the
factory and Wall-e domains are plotted in figure 7.1, where the x axis represents the
problem size, and the y axis represents the number of seconds on a log scale. The
measured values in seconds can be found in appendix A. Missing data points are those
for which that algorithm was cut off by the 20 minute time limit, notably for both NBA
heuristic and NBA heuristic (100) on factory problem 7-6 and 8-4. The PRISM model
checker also suffered memory cut-offs for Wall-e problems with n ≥ 6, and factory
problems with n ≥ 5.

The time taken for the Priority Search domain is tabulated in table 7.1, which
shows for each parameterisation, the coverage of that algorithm, i.e., how many of the
10 random problems were completed within the 20 minute time limit. The mean time of
those is listed, along with a 0.95 confidence interval. The mean and confidence interval
are N/A when no problems were completed by that algorithm for those parameters.
The case n = 5, p = 0.75 is omitted from the table as no algorithms completed any
problems generated with those parameters within the time limit.

The number of states expanded is a relevant metric for comparing the informative-
ness of heuristics, but CPU time is the primary metric on which heuristics are usually
compared in the literature, as it captures the trade-off between informativeness and
speed, and the practical purpose of a heuristic is ultimately to make search faster. To
prevent clutter, the number of states expanded by each algorithm (except PRISM) are
presented in appendix A.

7.3 Discussion

The reader may note that there is no experimentation here for hs-dec
S,ψ . This is because,

while experiments were performed to determine how informative hs-dec
S,ψ is, the proba-

bility estimate hs-dec
S,ψ (〈s,Ψ〉) is indistinguishable from the trivial heuristic on all three

domains. In fact, the probability estimate found by hsdt
S,ψ(〈s,Ψ〉) and the NBA heuris-

tics are also equivalent to the trivial heuristic in practice. This is evidence that most
of the information PLTL-dual extracts from heuristics is through the tying constraints,
rather than from the probability estimate.

The results for the factory and Wall-e domains match those found by Baumgartner
et al. [2018] for the most part, except that in the Wall-e domain, the NBA heuristic
capped at 100 states does not dominate the i2-dual with the trivial heuristic, only
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Trivial
heuristic

NBA
heuristic

NBA
heuristic (100)

Decomposition
heuristic

Decomposition
heuristic + position

PRISM

n = 4, p = 0.25
coverage 10 8 9 10 10 10
average time (s) 1.78 632.51 768.66 5.47 6.37 1.76
0.95 CI 0.24 213.42 219.43 0.49 1.96 0.07

n = 4, p = 0.50
coverage 10 0 10 10 10 10
average time (s) 92.27 N/A 323.79 197.63 59.95 59.49
0.95 CI 41.38 N/A 142.20 84.45 36.50 4.75

n = 4, p = 0.75
coverage 0 0 0 0 6 0
average time (s) N/A N/A N/A N/A 555.50 N/A
0.95 CI N/A N/A N/A N/A 367.85 N/A

n = 5, p = 0.25
coverage 10 0 10 10 10 10
average time (s) 36.57 N/A 105.52 105.36 69.76 32.56
0.95 CI 18.24 N/A 54.09 40.72 18.56 1.91

n = 5, p = 0.50
coverage 0 0 0 0 3 0
average time (s) N/A N/A N/A N/A 288.52 N/A
0.95 CI N/A N/A N/A N/A 192.53 N/A

Table 7.1: Time in seconds to complete each parametrisation of the priority search
domain, aggregated over 10 random problems.
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Figure 7.1: The solution time in seconds of the factory and Wall-e domains plotted
against problem size.
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computing a solution faster when n = 7. This can be attributed to the fact that the
experiments in this thesis were performed only once, leading to noisy results. Fur-
thermore, there were two bugs found in their implementation, one of which made the
progression representation not canonical, potentially reducing the efficiency of the pro-
gression mode. The results for the factory domain differ only in that the shorter time
limit of 20 minutes caused more time-outs than they observed with their 30 minute
time limit.

As is expected and was observed in [Baumgartner et al., 2018], the PRISM model
checker performs very well on small problems, but cannot scale up, primarily because it
runs out of memory while generating large DRAs. Interestingly, in the priority search
domain, PRISM was competitive with the trivial heuristic in all cases. This may be
because the DRAs for the priority search domain are not too large, e.g., the DRAs for
n = 4, p = 0.50 have 256, 3 and 5 states respectively.

7.3.1 Wall-e Domain

The most striking result for the decomposition heuristic is the result in Wall-e, where
it completes problems of over twice the size in the same time as any other algorithm.
Even for the largest problems it solved, it expanded fewer states than the NBA heuristic
(100) did. For n = 7, the NBA heuristic (100) expanded 9144 states, where the decom-
position heuristic expanded 1543, an 83% improvement, and for the largest problem
the decomposition heuristic solved (n = 15), it only expanded 5889 states.

To analyse how the decomposition heuristic helps solve Wall-e so much compared
to the trivial heuristic, first the behaviour of the projection heuristics on the Wall-e
domain should be considered. As the goal is simply to have Wall-e reach location ln, the
projection heuristic for Wall-e’s location will find an optimal policy for this problem
without constraints, and the projection onto Eve’s location and the other variables
will not need to do anything. Hence, the trivial heuristic solver will first rapidly search
states in which Wall-e moves through locations l1 to ln and Eve does not move, however
Wall-e needs to enter room r2 to fetch Eve with probability 0.8, and Eve must move
around. The projection heuristics, however, provide no information about how close
any one state is to this goal, so Eve blindly searches around.

From this, the success of hsdt
S,ψ in the Wall-e domain can likely be attributed primar-

ily to the fifth constraint: that Eve must enter the first three rooms. The decomposition
heuristic will project this constraint onto one batch, containing Eve’s position, in which
50% of agents will have Eve go to room r1 and 50% of agents will have Eve go to room
r3. This 50% is enough that the planner will greatly prefer policies which have Eve
travel towards one of her objectives. Constraint one and three, which can both only be
satisfied if Eve and Wall-e are together, will require that an action that moves them
together (at any location) is performed by the projection heuristics.

7.3.2 Factory Domain

In a notable contrast to Wall-e, in the factory domain the decomposition heuristic
performs worse than any other algorithm except PRISM. The only exception is the



92 Experiments

hardest two problems completed, 7-6 and 8-4, where the NBA heuristics timed out,
but the decomposition heuristic was still outperformed by the trivial heuristic. On the
smaller problems, the decomposition heuristic took approximately twice as long as the
trivial heuristic for n < 6. Notably, the decomposition heuristic prunes more states
that the other algorithms only for n ≥ 7. The proportion of the search space pruned
by the decomposition heuristic seems to be positively associated with n and negatively
associated with k.

Similarly to the Wall-e domain, it is informative to consider the behaviour of the
trivial heuristic. The projection heuristics would aim to have part pn produced, and
each machine off. The projection for pn can always produce pn immediately, as the
preconditions for producing it are disjoint from the projection. The projection for the
status of each machine would immediately turn off the machine. Because of this, the
heuristic value of each state is simply how many machines are on plus 1 if pn is yet
to be produced. If a machine is turned off in such a way that it passes the imaginary
baton when it is still needed to produce a part, the result is a dead end that the trivial
heuristic will not detect immediately.

With the decomposition heuristic, practically no further guidance is provided. The
batches that the second constraint are projected onto are those for the status of m1
and one other machine, with one batch for each machine. Each one simply requires
that they are turned off and then on in a specific order, but tying constraints relax the
order of actions between heuristics. The heuristics do still require that the machines
are turned off, but the projection heuristics already do this. In the case of dead ends, it
is not clear whether the decomposition heuristic recognises them, and as the parts are
not included in the projections, it seems likely that the dead ends are not recognised
by the decomposition heuristic either.

From how little information there is to be gained from LTL heuristics for the factory
domain, it seems likely that the NBA heuristic is just as uninformative on this problem
as the decomposition heuristic. This is reinforced by the evidence that using the NBA
heuristic takes consistently slightly longer than the trivial heuristic. From the way that
using the decomposition heuristic made the solution time twice as slow compared to
any other algorithm, it seems that it is computationally much more expensive than the
NBA heuristic for reasonably sized NBAs.

7.3.3 Priority Search Domain

The priority search domain results show several interesting trends, the first reflecting
the observation of Baumgartner et al. [2018] that sometimes using the NBA mode
results in more product states than the progression mode. The NBA heuristics both
took much longer and expanded many more states than the trivial heuristic with the
progression mode for these problems. An analysis of one priority search problem with
n = 4, p = 0.25 found that with the NBA mode, there were 2397 unique product states
reachable from the initial state, where with the progression mode, there were 1739
unique states, only about 75% of the quantity.

The priority search domain is, in essence, just the travelling salesman problem
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(TSP) with probabilistic actions and the danger zone constraints (some locations have
priority and the agent can’t stay in it for more than 2 steps). Existing algorithms
for the TSP have solved instances with a number of goals in the tens of thousands.
What makes this problem hard is the inclusion of probabilistic actions, that movement
between the goals is not abstracted out of the problem (the TSP is defined on a graph)
and that this is being solved by a general planning algorithm, rather than a specialised
algorithm. To make this even more difficult, the branching factor for this formulation
is much higher, as there are three forms of movement.

Along with the NBA heuristics, the decomposition heuristic with default batches
also performed very poorly, consistently taking more than twice as long as the trivial
heuristic and expanding only 2% fewer states on average. Clearly the decomposition
heuristic does not provide any significant information, and this is primarily because
of the way projections and tying constraints work. Consider only the constraint that
all unknown locations must be searched. If this constraint is projected onto a batch
{li,j-unknown} for some li,j it will be F¬ 〈li,j-unknown,>〉, and SAS+ projection will
have two states, one where it is unknown and the other where it is not unknown, reach-
able by a single action: search in li,j . Because of the tying constraints, the batches
in combination will force the projection heuristics to take these actions. Conceptually,
this should in turn force the projection onto the position of the robot to include ac-
tions which move to these locations, however in practice, in this projection searching a
location does not change the state, so the LP finds a solution where the search actions
are performed as isolated subtours. If however, the position and the unknown status
of a given location are in the same projection, searching that location could not be an
isolated subtour.

The variant decomposition heuristic + position had batches chosen so that the
position was included in each batch for the second constraint of the priority search
domain. The results for this variant show a significant improvement in both completion
time and states expanded. The increase in informativeness was expected, but adding
the position to each batch means that the constraints representing the state space
for the position variable are duplicated for each unknown location. Theoretically, the
increase in the number of constraints is linear in the number of unknown locations,
where the total number of states is exponential in the number of unknown locations.
Because of this, it is reasonable that an improvement in informativeness will pay off the
linear increase in the number of variables, and more so for larger problems or problems
with more unknown locations.

This is the trend that can be observed in the data, the variant of the decomposition
heuristic performs worse than no heuristic when p = 0.25, and for n = 4, p = 25
it even does worse than the decomposition heuristic with default batches. However,
for problems where p ≥ 0.50, this variant provides an improvement over the trivial
heuristic, and even completed some problems that no other algorithm could complete.

There is an anomaly in the data where the time the NBA heuristic (100) variant
took to complete problems of size n = 4, p = 0.50 was twice as fast as the easier
problems n = 4, p = 0.25, while every other algorithm performed significantly worse
than on the easier problems. This is because the increase in probability increased the
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size of the NBAs to 512, 258 and 4, respectively, meaning that the variant only used
a heuristic for the last constraint. For p = 0.25, the NBAs had size 64, 34 and 4,
respectively. From this massive decrease in computation time from removing instances
of hBA, it is clear that the constraints hBA add make the LP much harder to solve and
don’t provide sufficient information in this domain to make up for it.

7.3.4 Conclusions

From the experimental results, it seems that hsdt
S,ψ is computationally expensive, but also

quite informative. There is significant evidence that the effectiveness of it is sensitive
to the choice of batches for projection, and issues with projections making the relaxed
problem too trivial was a common theme, both in the factory and the priority search
domains.

As is common for heuristics, the effectiveness of the heuristic was only observed
for larger problem instances, and on smaller problem instances the heuristic was a
significant hindrance. This can be overlooked, as a 6 times slower solution time on a
problem that only takes one second is not a particular worry.

7.4 Summary

In this chapter, experimental evaluation of the decomposition heuristic was presented.
The novel heuristic hsdt

S,ψ was compared with the previous state of the art and other
competitive algorithms on three different domains. Two domains had been used for
benchmarking MO-PLTL SSP problem solvers previously (Wall-e and factory), and the
results for existing algorithms were replicated. One new domain (priority search) was
introduced which reinforced the earlier findings.

The novel heuristic performed exceptionally well the Wall-e domain, while the oth-
ers showed mixed results. Creating a variant with a forced choice of projection variables
caused a significant improvement on the priority search domain, demonstrating that
hsdt
S,ψ is very sensitive to the choice of projection variables.
In the final chapter, a summary of the thesis is presented, along with directions of

research that might deal with the limitations presented in this chapter and others, as
well as other directions that show promise for more research in the field.



Chapter 8

Conclusion

Finding safe optimal policies under uncertainty is a difficult task with many applica-
tions. The problem is represented as a Stochastic Shortest Path problem subject to
multiple constraints specified in probabilistic linear temporal logic, the combination of
which is referred to as a MO-PLTL SSP problem. Solving an MO-PLTL SSP problem
requires the synchronised product of the SSP with a state-based representation for the
PLTL constraints, referred to as a mode.

Modes for LTL feature a number of states which is double exponential in the length
of the LTL formula, and the state space of SSPs is also exponential in the size of its
factored representation. As such, the number of product states is too large to feasibly
compute in most cases.

Existing techniques for MO-PLTL SSP problems primarily construct the full prod-
uct C-SSP, and then perform a reachability analysis on it. A more recent algorithm
called PLTL-dual applies heuristic search, which is a technique that uses heuristic
estimates to construct a policy without enumerating the complete state space.

There exists only one non-trivial heuristic for PLTL introduced with PLTL-dual.
This heuristic relies on the non-deterministic Büchi automata mode, and empirical
evaluation shows that can be less efficient than the progression mode with the trivial
heuristic. The existing heuristic involving the NBA mode also proved quite inefficient
when the NBA for PLTL constraints became too large.

This thesis addresses these issues by introducing a new heuristic for MO-PLTL SSP
problems, aimed for integration with PLTL-dual and relying on the progression mode.
This heuristic combines two relaxations, projection and the novel concept of formula
decomposition.

Projection is commonly used for heuristics, but a projection cannot be subject to
a PLTL constraint which references variables removed by projection. Projection was
extended to PLTL constraints in such a way that only projection variables remain in
the formula, but the resulting formula describes some of the same paths as the original
formula.

Decomposition is a relaxation in which the satisfaction of an LTL formula is reduced
to the satisfaction of the subformulae in appropriate combinations. In order to repre-
sent this decomposition being repeated at each step, a new planning problem called a
Concurrent Constrained SSP was introduced. It features multiple agents being cloned
into states associated with subformulae of the formula associated with their current
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state.
The solution to this problem is computed using a linear program, which represents

the movement of these agents as a flow network. This approach suffered from significant
limitations, including spontaneous generation of flow, which allowed most of a CC-SSP
to be skipped. Furthermore, this approach could not be integrated directly into PLTL-
dual.

To remedy this, further constraints were added to the LP for CC-SSPs to encode
the requirement that flow should find its way from the source to the goals. These
constraints were based on the concept of an accepting flow trace, i.e., that flow which
reached goals should be traced back to the source in full. This removes most issues
with spontaneous flow generation, and also allows this approach to be integrated into
PLTL-dual.

The split decomposition trace heuristic hsdt
S,ψ was introduced, which constructs sev-

eral projections, and performs decomposition with an accepting flow trace on each.
This heuristic was empirically evaluated against the other algorithms and variants for
MO-PLTL SSP problems, showing that it made significant improvement over the other
approaches. The empirical evaluation also showed several areas for improvement.

The split decomposition trace heuristic was shown to be very sensitive to the choice
of variables on which to project, and appears to have a larger overhead on smaller
problems than the NBA heuristic.

8.1 Future Work

The future work here is separated into two groups: improvements or analysis of the
heuristics discussed in this thesis, and future work in related topics.

8.1.1 Work in this Thesis

There are several areas of potential improvement for the work in this thesis, but mostly
the suggestions here are for further analysis of the work presented.

Batch Choice Algorithms As was made very evident in the experiments, particu-
larly on the priority search domain, the efficacy of hsdt

S,ψ is very sensitive to the choice
of batches onto which projections are made. It would be improved very significantly
if a more effective batch choice algorithm were studied. This algorithm could also be
used for the projection heuristics in PLTL-dual, replacing the use of single variables
with intelligently chosen batches of variables.

Disjunctive Normal Form The choice of conjunctive normal form for formulae
in this thesis was inspired partially by the discussion of CNF with a ‘Tseitin style’
transformation in Baumgartner et al. [2018], and primarily because separating the
clauses in CNF lends itself to a probability upper bound. The separation of X-literals
within clauses was a later addition once CNF was already practically locked in. Roşu
and Havelund [2005] state that (at least for runtime verification) disjunctive normal
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form (DNF) is typically used as a canonical representation of LTL formula, as opposed
to CNF. The methods in chapters 5 and 6 could relatively easily be adapted for a DNF
representation.

Further analysis of hsdt
S,ψ Decomposition has been tested without use of projection,

with the expected result that the state space is still so complex that computing the
heuristic is prohibitively slow for large problems. However, projection of PLTL and
SSPs has not been tested independently of decomposition. It is not clear without
performing tests on projection alone how much of the improvements seen from hsdt

S,ψ
can be attributed to decomposition.

Accepting Flow Trace Improvements The number of variables introduced by
including an accepting flow trace is several times more than the number of occupation
measures in the flow problem without the trace. This greatly increases the overhead
for hsdt

S,ψ, and this overhead was observed in some experiments in the factory domain. It
may be possible that some variables can be eliminated from the representation, which
would greatly improve the solution time for the LP with the accepting flow trace. It
may also be possible to make the accepting flow trace more informative by making all
flow into a state equally responsible for the accepting flow leaving it.

8.1.2 Future Related Work

The construction and analysis of hsdt
S,ψ has revealed some areas for further research,

especially relating to PLTL-dual.

NBA Mode vs Progression Mode The experiments on the new priority search
domain revealed an extreme case where the NBA mode generated significantly more
states than the progression mode. Investigating exactly what cases this occurs in (and
why) may lead to improvements in the NBA mode and other representations for LTL.

Other Heuristics The success of hsdt
S,ψ reveals that there are definitely opportunities

for effective heuristics for PLTL constraints. Discovering better heuristics for MO-
PLTL SSP problems may lead to improvements not only in planning but also in strategy
synthesis for LTL.

Split Automata Camacho et al. [2018] make use of technique which splits large
automata up into smaller ones, resulting in much more manageable state spaces. It
may be possible to apply this optimisation in PLTL-dual, and it may also be possible
to extend the same idea to the progression mode. Doing so would likely make the NBA
mode much more competitive, given that it currently performs much slower than the
progression mode.
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Appendix A

Further Results

The following is the data from the experiments listed in chapter 7. In that chapter,
only aggregate results were provided in the form of graphs and a table of averages and
coverage, and all showed only the solution time. The number of states is also relevant, so
it is provided here, along with the times for the Wall-e and factory domains. Instances
where the algorithm was cut off by the 20 minute time limit are marked ‘t/o’ for time-
out. The number of states expanded by PRISM is omitted, as PRISM does not output
the complete number of states in the problem, only the states in each DRA and the
MDP.

Problem
Size

Trivial
heuristic (s)

NBA
heuristic (s)

NBA
heuristic (100) (s)

Decomposition
heuristic (s)

PRISM (s)

n = 3 1.30 2.09 2.00 1.02 0.49
n = 4 4.36 5.58 6.59 1.73 4.14
n = 5 30.31 43.22 42.25 5.00 41.32
n = 6 115.42 217.13 148.38 9.83 t/o
n = 7 494.52 711.36 377.36 17.67 t/o
n = 8 t/o t/o t/o 28.39 t/o
n = 9 t/o t/o t/o 49.50 t/o
n = 10 t/o t/o t/o 93.50 t/o
n = 11 t/o t/o t/o 145.98 t/o
n = 12 t/o t/o t/o 220.59 t/o
n = 13 t/o t/o t/o 360.45 t/o
n = 14 t/o t/o t/o 582.22 t/o
n = 15 t/o t/o t/o 785.97 t/o

Table A.1: Time in seconds to complete each Wall-e instance.
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Problem
Size

Trivial
heuristic

NBA
heuristic

NBA
heuristic (100)

Decomposition
heuristic

n = 3 651 682 669 383
n = 4 1382 1362 1420 555
n = 5 3169 3117 3102 911
n = 6 5620 5846 5829 1172
n = 7 9700 9183 9144 1543
n = 8 t/o t/o t/o 1886
n = 9 t/o t/o t/o 2284
n = 10 t/o t/o t/o 2956
n = 11 t/o t/o t/o 3389
n = 12 t/o t/o t/o 3897
n = 13 t/o t/o t/o 4564
n = 14 t/o t/o t/o 5330
n = 15 t/o t/o t/o 5889

Table A.2: States expanded for each problem in the Wall-e domain.

Trivial
heuristic

NBA
heuristic

NBA
heuristic (100)

Decomposition
heuristic

Decomposition
heuristic + position

n = 4, p = 0.25
coverage 10 8 9 10 10
average 560.40 771.63 741.67 546.60 377.90
0.95 CI 69.41 108.83 104.33 64.88 78.42

n = 4, p = 0.50
coverage 10 0 10 10 10
average 3542.80 N/A 4836.70 3484.60 1887.40
0.95 CI 951.32 N/A 1300.37 914.81 848.06

n = 4, p = 0.75
coverage 0 0 0 0 6
average N/A N/A N/A N/A 7427.33
0.95 CI N/A N/A N/A N/A 2390.53

n = 5, p = 0.25
coverage 10 0 10 10 10
average 2327.00 N/A 3038.30 2278.60 1375.90
0.95 CI 651.13 N/A 856.55 613.71 396.24

n = 5, p = 0.50
coverage 0 0 0 0 3
average N/A N/A N/A N/A 3794.67
0.95 CI N/A N/A N/A N/A 1529.22

Table A.3: Aggregated number of states to complete each parametrisation of the pri-
ority search domain.
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Problem
Size

Trivial
heuristic (s)

NBA
heuristic (s)

NBA
heuristic (100) (s)

Decomposition
heuristic (s)

PRISM (s)

2-0 0.08 0.16 0.13 0.08 0.06
2-1 0.11 0.11 0.13 0.09 0.06

3-0 0.11 0.14 0.16 0.16 0.15
3-1 0.13 0.13 0.16 0.16 0.15
3-2 0.13 0.16 0.14 0.17 0.15

4-0 0.23 0.19 0.20 0.42 52.83
4-1 0.22 0.23 0.25 0.47 53.44
4-2 0.23 0.30 0.28 0.58 52.71
4-3 0.27 0.30 0.33 0.55 53.99

5-0 0.64 0.63 0.63 1.72 t/o
5-1 0.67 0.80 0.70 1.77 t/o
5-2 0.78 0.86 0.91 1.98 t/o
5-3 1.00 1.09 1.16 2.67 t/o
5-4 1.72 1.83 1.95 3.44 t/o

6-0 3.22 3.20 3.48 7.56 t/o
6-1 3.70 4.30 4.13 8.45 t/o
6-2 4.31 4.48 5.33 10.03 t/o
6-3 5.50 7.09 7.53 12.84 t/o
6-4 11.30 13.36 12.86 19.75 t/o
6-5 26.92 34.69 34.81 38.84 t/o

7-0 28.75 30.84 30.30 40.34 t/o
7-1 25.89 35.59 29.81 47.53 t/o
7-2 41.48 46.23 41.48 59.55 t/o
7-3 61.77 66.34 59.00 78.03 t/o
7-4 118.77 132.86 137.11 143.11 t/o
7-5 278.42 368.64 351.44 419.48 t/o
7-6 904.98 t/o t/o 1006.23 t/o

8-0 318.25 340.30 304.50 269.78 t/o
8-1 324.61 374.66 359.11 347.05 t/o
8-2 463.47 516.33 613.11 461.38 t/o
8-3 564.56 872.11 608.28 649.63 t/o
8-4 1131.81 t/o t/o 1190.31 t/o

Table A.4: Time in seconds to complete each factory instance.
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Problem
Size

Trivial
heuristic

NBA
heuristic

NBA
heuristic (100)

Decomposition
heuristic

2-0 26 22 22 19
2-1 24 22 22 24

3-0 68 59 59 58
3-1 78 67 67 70
3-2 78 78 82 80

4-0 191 161 161 167
4-1 180 178 201 205
4-2 220 242 242 240
4-3 255 251 251 264

5-0 456 442 454 436
5-1 521 503 481 488
5-2 568 551 558 571
5-3 623 600 599 686
5-4 764 765 796 794

6-0 1058 1068 1074 995
6-1 1069 1201 1186 1122
6-2 1220 1227 1342 1253
6-3 1389 1438 1456 1412
6-4 1813 1835 1843 1826
6-5 2733 2701 2636 2610

7-0 2901 2596 2538 2252
7-1 2649 2782 2659 2550
7-2 3224 3174 2963 2760
7-3 3794 3512 3388 3052
7-4 4376 4336 4271 3897
7-5 6328 5983 5859 5864
7-6 9568 t/o t/o 8414

8-0 6726 6271 6758 4889
8-1 6604 6409 7092 5712
8-2 8727 7153 8291 6207
8-3 9013 8163 8755 6925
8-4 11023 t/o t/o 8502

Table A.5: States expanded for each problem in the factory domain.
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