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2LAAS-CNRS, Université de Toulouse, France

3University of Basel, Switzerland
4Saarland University, Germany

{mingyu.hao,felipe.trevizan,sylvie.thiebaux}@anu.edu.au, patrick.ferber@unibas.ch,
hoffmann@cs.uni-saarland.de

Abstract
We propose a new approach based on ranking to
learn to guide Greedy Best-First Search (GBFS).
As previous ranking approaches, ours is based on
the observation that directly learning a heuristic
function is overly restrictive, and that GBFS is ca-
pable of efficiently finding good plans for a much
more flexible class of total quasi-orders over states.
In order to learn an optimal ranking function, we in-
troduce a new ranking framework capable of lever-
aging any neural network regression model and ef-
ficiently handling the training data through batch-
ing. Compared with previous ranking approaches
for planning, ours does not require complex loss
functions and allows training on states outside the
optimal plan with minimal overhead. Our experi-
ments on the domains of the latest planning com-
petition learning track show that our approach sub-
stantially improves the coverage of the underly-
ing neural network models without degrading plan
quality.

1 Introduction
Greedy Best-First Search (GBFS) is one of the most widely
used algorithms in satisfying planning. GBFS uses a heuris-
tic function to estimate the cost to reach the goal from a
given node. The nodes are put in a priority queue based on
their heuristic values, and the node with the lowest heuris-
tic value is expanded next. This strategy will return a
plan if one exists, but may result in suboptimal solutions.
Many researchers have made significant efforts to design
informative heuristics to guide GBFS [Bonet et al., 1997;
Hoffmann and Nebel, 2001; Richter and Westphal, 2010],
however the efficiency of the search depends on properties
of the heuristic function which are not yet completely under-
stood [Wilt and Ruml, 2016; Cohen and Beck, 2018].

Therefore, in recent years, the possibility of exploring the
space of heuristic functions using machine learning has raised
increasing attention [Arfaee et al., 2011; Shen et al., 2020;
Ferber et al., 2020; Karia and Srivastava, 2021; Ståhlberg
et al., 2022; Heller et al., 2022; Chen et al., 2024]. These
approaches try to learn or improve a heuristic function for
a planning domain or, occasionally, a single large problem

instance. They typically formulate the learning problem as
one of regression, and train models using pre-computed state-
value pairs extracted from (often optimal) plans generated by
off-the-shelf planners for small problem instances.

However, labelling states with informative values and at-
tempting to learn accurate values for the heuristic is expensive
and unnecessary for the purpose of learning to guide GBFS.
This is because the choice of node expansion by GBFS is
not determined by the actual numerical values of the heuris-
tic but by the relative ordering over nodes they induce [Röger
and Helmert, 2010]. Therefore, regression models, which at-
tempt to learn precise heuristic values, artificially restrict the
target hypothesis space and the training dataset one can learn
from. They also introduce issues such as the difficulty of dis-
tinguishing between states that have close heuristic values.
In fact, for GBFS to find the optimal plan, it suffices for the
heuristic to order the states on the optimal path as preferable
to those off it. This is called the perfect ranking heuristic in
[Chrestien et al., 2023] as it also minimises search effort.

These considerations motivate an alternative framing of
the problem as one of learning to rank pairs of states, build-
ing on the active research on learning to rank in information
retrieval and relevance analysis [Burges, 2010; Damke and
Hüllermeier, 2021; Li, 2022]. Garrett et al. (2016) were the
first to approach this problem for planning by using a statis-
tical machine learning model, namely RankSVM [Joachims,
2002], hand-crafted domain-independent features, and a loss
function measuring the normalised difference between the
number of correctly and incorrectly classified pairs.

In contrast, this paper explores pairwise ranking with mod-
ern deep-learning methods. We propose a novel framework
combining a Direct Ranker [Köppel et al., 2020b] with any
existing neural network regression model for learning heuris-
tics, which are trained end-to-end in order to learn a total
quasi-order, i.e. a total, transitive, and reflexive relation over
pairs of states. This framework does not require complex loss
functions, and exploits the transitivity of the ordering relation
to learn a ranking just slightly stronger than the perfect rank-
ing, from an order of magnitude less data than alternative ap-
proaches. Moreover, it supports efficient batched evaluation
to speed up training.

We evaluate our approach on the learning track of the 2023
international planning competition, using the recent STRIPS-
HGN [Shen et al., 2020] and GOOSE [Chen et al., 2024]



domain-independent graph neural network architectures, as
the underlying regression model. We show that our ranking
approach considerably improves the coverage of both these
models and expands their ability to generalise to larger prob-
lems than those trained on, whilst preserving their plan qual-
ity and time to convergence. We also compare our approach
with the recently and independently developed work from
Chrestien et al. (2023). We show that our framework requires
less training data and generalises better to unseen problems.

2 Background
We start by introducing the necessary background on plan-
ning, greedy best-first search, and learning to rank. We use
JnK to denote {1, 2, ..., n}.

2.1 Planning
We consider classical planning problems described by a tuple
P = ⟨S, s0,G,A, C⟩ where S is a finite and discrete set of
states, s0 is the initial state, G ⊆ S \ {s0} is the set of goal
states, A is the set of actions of which As is the subset appli-
cable in state s, and an action a ∈ As is a deterministic tran-
sition function, which takes state s as input and outputs the
successor state s′. In the following, we write Ns for the set
of successors of a state s: it consists of all states s′ such that
there exists an applicable action a ∈ As with s′ := a(s). The
cost function C(a) returns the non-negative cost of applying
action a. A unit-cost problem is one for which all actions
have cost 1. A plan for P is a sequence of actions a1, . . . , an
that induces a sequence of states (a path) s0, s1, ..., sn where
ai ∈ Asi−1 , si := ai(si−1) for i ∈ JnK, and sn ∈ G. A plan is
optimal if its cost

∑
i∈JnK C(ai) is minimal. In the unit-cost

case, optimal plans are plans of minimal length.
Greedy Best-First Search (GBFS) is the most commonly

used algorithm for satisficing planning. In order to guide the
search towards the goal, GBFS relies on a heuristic function
h : S → R returning an estimate h(s) of the cost to reach the
goal from a given state s, and always expands the state with
the lowest heuristic value on the search frontier. As shown in
Algorithm 1, GBFS maintains two lists of nodes1: the open
list (O) – a priority queue ordered by increasing h value, con-
taining the nodes that have been generated but not yet ex-
panded, and a closed list (C) containing previously expanded
nodes which is used to avoid revisiting the same state twice
and creating loops. At each iteration, the node at the front of
the open list – the node with the lowest h value – is transferred
to the closed list and expanded by generating its successors.
The search stops if a successor is a goal state. Otherwise, any
unvisited successor is added to the open list.

GBFS is guaranteed to find a plan if one exists, but the
plan may not be optimal. In fact, even when guided with the
h∗ heuristic which returns the optimal cost to reach the goal,
GBFS is only guaranteed to return the optimal plan for unit
cost problems. In the following, we assume that problems
have unit cost.

1In the interest of readability, Algorithm 1 identifies nodes with
states, whereas nodes additionally record the h value of the state, the
parent node, and the action applied at the parent.

Algorithm 1 GBFS Algorithm
Input: problem P, heuristic function h
Output: Plan π or unsolvable

1: O := {s0}
2: C := ∅
3: while O ≠ ∅ do
4: s := argmins′∈O h(s′)
5: O := O \ {s}
6: C := C ∪ {s}
7: for all s′ ∈ Ns do
8: if s′ ∈ G then
9: return Extract-Solution(s′)

10: end if
11: if s′ ̸∈ C ∪ O then
12: O := O ∪ {s′}
13: end if
14: end for
15: end while
16: return unsolvable

2.2 Learning to Rank
Learning-to-rank is a well-studied field in machine learn-
ing [Liu and others, 2009; Li, 2022]. Given a set of objects,
in our case a set of states, B = {s1, . . . , sk}, it aims to learn
an order ⪯ that results in the ranking si1 ⪯ si2 ⪯ . . . ⪯ sik ,
where i1, . . . , ik is a permutation of JkK. In this work, we
further require the order to have the following properties:
Definition 1 (Total Quasi-Order ⪯). A total quasi-order ⪯
over a set X is a binary relation with the following properties

• Totality: ∀a, b ∈ X a ⪯ b ∨ b ⪯ a;
• Transitivity: ∀a, b, c ∈ X a ⪯ b ∧ b ⪯ c ⇒ a ⪯ c.

Moreover, totality implies
• Reflexivity: ∀a ∈ X a ⪯ a.

We define the strict order ≺ in the obvious way: a ≺ b iff
a ⪯ b and b ̸⪯ a. Note that transitivity also holds for the
strict order ≺: ∀a, b, c ∈ X a ≺ b ∧ b ≺ c ⇒ a ≺ c.

There are several different approaches to solving the
learning-to-rank problem, such as SVM [Shashua and Levin,
2002; Herbrich et al., 1999], Boosting [Freund et al., 2003;
Wu et al., 2010] and Neural Networks [Burges et al., 2005;
Köppel et al., 2020b]. Based on how the order is represented,
learning-to-rank approaches are divided into three groups:
pointwise, pairwise and listwise [Li, 2022]. Listwise ap-
proaches learn to sort a list of objects to match a desired total
order. For planning, this approach is infeasible since we do
not know a priori the list of states we need to sort.

The pointwise approach represents the total quasi-order by
a ranking function r : B → R which takes in one object and
returns a numerical score [Li, 2022]. This numerical score is
then used to sort B. Note that GBFS uses the heuristic h as a
pointwise ranking function: the set of open states O is sorted
according to their h values (Line 4 of Algorithm 1). Simi-
larly, learning a heuristic function can be seen as learning a
pointwise ranking function with extra constraints imposed by
the definition of a heuristic function, e.g., h(s) ≥ 0 for all s,
h(g) = 0 for all g ∈ G, or even admissibility or consistency.



Figure 1: A example graph representation of part of the search tree.
The optimal path is [s0, s1, · · · sn]. States ti,j are siblings of si and
have higher ranks, i.e., si ⪯ ti,j .

Lastly, a pairwise ranking function takes a pair of elements
as input and it outputs the ordering between the two objects.
Formally, a pairwise ranking function r(si, sj) ∈ {−1, 0, 1}
represents whether si ≺ sj , si = sj or sj ≺ si, respec-
tively [Köppel et al., 2020b]. While learning a pointwise
ranking function is a regression problem, learning a pairwise
ranking is a classification problem, i.e., given two states si
and sj , we need to assign it either −1, 0, or 1. As we show in
the next section, this difference has a large impact on learning
a ranking for planning in comparison to learning a heuristic.

3 Rank-based GBFS
In the context of GBFS, the heuristic function h is used solely
for sorting states in the priority queue as shown in Line 4 of
Algorithm 1. This means h is being used only as a total quasi-
order over the states S. This fact has been exploited by others,
for instance, by using functions other than the cost-to-goal to
order states in GBFS [Ferber et al., 2022] and to analyse what
makes a good heuristic for GBFS [Wilt and Ruml, 2016]. For
this reason, we extend GBFS to use a ranking instead of a
heuristic. Formally, given a total quasi-order ⪯, rank-based
GBFS is the algorithm obtained by replacing Line 4 in Algo-
rithm 1 with: choose s such that s ⪯ t for all t ∈ O. We
relate the two versions of GBFS with the lemma below.
Definition 2 (⪯h). Given a heuristic h, the total quasi-order
⪯h associated with it is so that s ⪯h s′ ⇔ h(s) ≤ h(s′).

Lemma 1 (Rank-based GBFS equivalence). Given a problem
P, a heuristic h, GBFS using h is equivalent to rank-based
GBFS using ⪯h for the same tie-breaking method.

It is easy to see that Lemma 1 holds based on the defi-
nition of ⪯h. Lemma 1 also explains why any monotonic
non-decreasing function f applied to the heuristic h, i.e.,
h′(s) = f(h(s)), does not change the solution found by
GBFS: f preserves order, and therefore the total quasi-order
⪯h and ⪯f(h) are the same. We close this section by looking
at what ranking function we should aim to learn.

An intuitive ranking to learn is the ranking induced by
h∗, i.e., ⪯h∗ since GBFS is guaranteed to find the opti-
mal solution using h∗ under unit-cost actions. However, for
usage with GBFS, ⪯h∗ orders more states than are neces-
sary to find the optimal solution. To see this, consider the
example in Figure 1. The total quasi-order ⪯h∗ imposes
an ordering between any pair of states in the example, in-
cluding between siblings of states on the optimal path, i.e.,
ti,j ⪯h∗ ti′,j′ ⇔ h∗(ti,j) ≤ h∗(ti′,j′). However, the order-
ing among siblings is not needed, i.e., it is sufficient to know

that si ≺ tj,m for j ∈ JiK and m ∈ JkiK. We exploit this fact
to define an optimal ranking as:

Definition 3 (Optimal Ranking ⪯∗). Given a problem P and
an optimal plan π∗ = [s0, s1, ..., sn] for P, the optimal rank-
ing ⪯∗ is a total quasi-order such that si ≺∗ si−1 for all
i ∈ JnK and si ≺∗ t ∀t ∈ Nsi−1

and ∀i ∈ JnK.

Notice that Definition 3 only relates a state si in the optimal
plan with its parent si−1 and its siblings t. Since it does not
enforce an ordering between the siblings t of si, the optimal
ranking is still a total quasi-order. Moreover, due to the tran-
sitivity property of total quasi-orders, we have that si ≺∗ t′

for all t′ ∈ ∪i−1
j=0Nsj , i.e., si is ranked strictly better than any

of its ancestors and their siblings. Next, we prove that GBFS
finds the optimal solution when using an optimal ranking.

Theorem 1. For a solvable problem P with unit costs, given
an optimal ranking ⪯∗, the plan returned by the rank-based
GBFS is optimal.

Proof. Consider a problem P with unit costs, with an optimal
solution π∗ = [s0, s1, ..., sn] and optimal ranking ⪯∗. We
prove by induction that si−1 is expanded at the ith iteration of
the algorithm and that after expansion, the open list is Oi =
∪i−1
j=0Nsj \∪i−1

j=0{sj} for all i ∈ JnK. For readability, given
a state s and set of states X , we abbreviate ∀t ∈ X, s ≺∗

t with s ≺∗ X . For the base case: initially, the open list
of GBFS only contains s0 (Line 1 of Algorithm 1), which
is always expanded at the first iteration of the while loop in
Line 3, leading to O1 =Ns0 \ {s0}. For the induction step:
assume the property holds, we show that si is expanded next
and Oi+1 = ∪i

j=0Nsj \∪i
j=0sj . According to the definition

of the optimal ranking we have: si ≺∗ Nsi−1
(a) and si ≺∗

si−1 (b). Because si−1 was expanded in the last iteration, we
have si−1 ≺∗ ∪i−2

j=0Nsj\∪i−2
j=0{sj} (c). Since ≺∗ is transitive,

(b) and (c) lead to si ≺∗ ∪i−2
j=0Nsj\∪i−2

j=0{sj} (d). Finally, the
union of (a) and (d) gives si ≺∗ ∪i−1

j=0Nsj\∪i−1
j=0{sj}. In other

words, si is ranked at the top of the open list Oi and will be
expanded in iteration i+1. After expansion the queue will be
Oi+1 = Oi ∪ (Nsi \∪i

j=0{sj})=∪i
j=0Nsj \∪i

j=0{sj}.

A key difference between optimal rankings and ⪯h∗ is that
there are several total quasi-orders that are optimal rankings
while ⪯h∗ is unique. This makes learning an optimal ranking
potentially easier than learning ⪯h∗ or even h∗ itself, since
h∗ is also unique. We exploit this in the next section where
we introduce our framework to learn an optimal ranking.

4 Learning an Optimal Ranking
In this section, we introduce a new framework capable of
leveraging any neural network regression model to learn an
optimal ranking function. We also show how to efficiently
integrate the ranking computations into GBFS and how to ex-
tract more data from the optimal plans for training while still
efficiently handling this extra data through batching.

4.1 DirectRanker
Our approach for learning an optimal ranking through pair-
wise classification uses DirectRanker [Köppel et al., 2020b].



Figure 2: The structure of the DirectRanker [Köppel et al., 2020b].

DirectRanker is a general model for pairwise ranking that is
designed to learn total quasi-orders. Its structure is shown in
Figure 2. The model consists of two parts: feature compu-
tation and ranking computation. The first part receives two
objects (in our case, states) si and sj to be ranked and gen-
erates the embedding vectors embsi and embsj , both in Rn,
through the neural networks nni and nnj . The structure of
the neural networks nni and nnj is not restricted; the only
requirement is that both nni and nnj have the same structure
and share weights, i.e., they must be identical.

The second part of the model, ranking computation, com-
putes the element-wise difference of the two embedding vec-
tors and passes it through a single neuron τ with zero bias.
Formally, this second part computes p = σ(w(embsi −
embsj )) where w ∈ R1×n are the weights and σ is the acti-
vation function of τ . The activation function σ must be odd
and sign-preserving, i.e., σ(−x) = −σ(x) and sign(σ(x)) =
sign(x). The input states si and sj are classified as si ≺∗

sj , si = sj , or sj ≺∗ si if p is less than, equal to, or
greater than 0, respectively. Under these assumptions, Direc-
tRanker is guaranteed to return a total quasi-order [Köppel
et al., 2020b, Theorem 1]. Besides the activation function
σ, the loss function used by DirectRanker is also a param-
eter of the framework and we use the same parametrisation
as in Köppel et al. (2020b) experiments: activation function
σ(x) = (1+ e−x)−1 − 0.5 and mean squared error (MSE) as
the loss function [Köppel et al., 2020a].

4.2 Efficient Integration with GBFS
Once we learn the shared weights for nn1 and nn2 as well
as w for the ranking computation, we need to integrate it into
GBFS. Let D(s, t) ∈ {−1, 0, 1} represent the result of the
DirectRanker for s and t. In order to insert a new state s
into the priority queue O, we need to compare s with states
already in O since we have learned a pairwise ranking. How-
ever, the amortised computational complexity of insertion is
O(k log |O|), where k is the time needed to evaluate D(s, t)
for a single comparison.

Since the ranking computation part of DirectRanker is a
single-layer, unbiased neural network, we can transform our
learned pairwise ranking into a point-wise representation to
improve the insertion efficiency in the priority queue. This
transformation is formalised in Lemma 2 and lets us represent
the learned D(s, t) as the point-wise ranking r(s) ∈ R. As a
result, the priority queue in GBFS can now be sorted by r(s)
resulting in an amortised insertion time of O(k′ + log |O|)
where k′ is the time required to evaluate r(s). With this trans-
formation, only a single neural network evaluation is needed

instead of log |O| when using the pairwise ranking function
D(s, t). Although r(s) is being used as a heuristic in GBFS,
it is important to note that it is not a heuristic in the tradi-
tional sense, for instance, r(s) can be negative. Moreover,
since we are learning an optimal ranking, it is possible that
r(t) ≤ r(t′) even though h∗(t) > h∗(t′) for states t and t′

outside the optimal plan.

Lemma 2. Given a DirectRanker model with weights w rep-
resenting the total quasi-order ⪯, we can extract a point-wise
ranking function r : S → R representing ⪯.

Proof. Given two states si, sj ∈ S, without loss of gener-
ality, we assume si ⪯ sj . Then from the definition of the
DirectRanker, we have p = σ(w · (nn1(si)−nn2(sj))) ≤ 0.
Since nn1 and nn2 are identical and σ is sign-preserving,
we have that p ≤ 0 ⇔ w · (nn(si) − nn(sj)) ≤ 0.
Because the right-hand side is a linear transformation, it is
equivalent to w · nn(si) ≤ w · nn(sj). Defining r(s) as
w ·nn(s), we have that p ≤ 0 ⇔ r(si) ≤ r(sj) and therefore
si ⪯ sj ⇔ r(si) ≤ r(sj).

4.3 Efficient Training
Another key difference of our framework lies in the train-
ing methodology. Unlike when learning a heuristic, where a
specific value is required for each state, we train our Direc-
tRanker D(si, sj) to learn the optimal ranking through classi-
fication and then extract the point-wise ranking function r(s).
Thus, given a pair of states si and sj , it is sufficient to deter-
mine their relative optimal ranking, i.e., whether si ⪯∗ sj
or sj ⪯∗ si, without assigning specific values to each state.
This allows us to use siblings of states in optimal plans in the
training process without the need to compute any information
about them. Thus, for a problem with a constant branching
factor b, an optimal plan π∗ of size n encodes O(bn) optimal
ranking pairs for training. This contrasts with methods that
directly learn a heuristic function (e.g., STRIPS-HGN [Shen
et al., 2020] and GOOSE [Chen et al., 2024]), which can only
extract n pairs in the form (s, h∗(s)) from π∗. Note that it is
computationally expensive to compute h∗(s′) for any s′ ̸∈ π∗

since it requires optimally solving the problem from s′.
Another advantage of our framework is that we can effi-

ciently handle this extra training data by batching the pairs
si ≺ t for all siblings t of si and also t = si−1 for each si ∈
π∗ [Damke and Hüllermeier, 2021]. The performance gains
come from the fact that the embedding embsi is computed
only once as opposed to |Nsi−1

| times, i.e., once for each pair
involving si. Formally, let Bsi = {si−1} ∪ (Nsi−1

\ {si}),
i.e., the set consisting of the siblings of si and its parent.
We compute the embeddings for all states in Bsi resulting
in the matrix Er ∈ Rm×n where m = |Bsi | and the j-th
row of Er is the vector embedding of the j-th element in Bsi .
Next, we compute the embedding embsi and stack m copies
of it to create the matrix El ∈ Rm×n. Then we compute
p = σ((El − Er)w) ∈ Rm where the j-th row of p is the
output of τ comparing si and the j-th element in Bsi . Thus,
we compute p by generating only |Bsi | + 1 embeddings as
opposed to 2|Bsi | embeddings. This difference is important
since computing each embedding in our experiments requires
evaluating an expensive neural network architecture.



5 Related Work

The closest work to ours is [Chrestien et al., 2023] which
learns a heuristic function using a pointwise ranking as the
target, as opposed to h∗. As with other approaches that learn a
heuristic function, e.g., STRIPS-HGN [Shen et al., 2020] and
GOOSE [Chen et al., 2024], their learned heuristics can be
used with A∗. However, all these approaches cannot guaran-
tee that the solution found is optimal since the learned heuris-
tic may not be admissible. For this reason, our work focuses
on GBFS which allows us to remove the restriction that the
learned ranking must also be a heuristic.

What makes the approach by Chrestien et al. (2023) dif-
ferent from all previous works on learning heuristics is that
their target is a perfect ranking, a concept they introduced.
A perfect ranking orders a pair of states s and t as s ≺ t
for all s on the optimal path and t ∈ O when s is popped
from the GBFS queue. It is equivalent to an optimal rank-
ing without transitivity nor the requirement that si ≺ si−1

for two consecutive states si−1 and si in π∗. To see the ben-
efits of using an optimal ranking as the target instead of a
perfect ranking, consider a problem with a constant branch-
ing factor b and an optimal plan π∗ = [s0, s1, ..., sn]. The
number of ordered pairs s ≺ t encoded in the optimal plan
is

∑n
i=1 ib = b(n2 + n)/2. To learn a perfect ranking,

Chrestien et al. (2023) use all pairs encoded in the optimal
plan with the exception of the pairs si ≺ sj for si, sj ∈ π∗

and i < j, resulting in (b−1)(n2+n)/2 total pairs. Alterna-
tively, due to transitivity and the requirement that si ≺ si−1

for si ∈ π∗ imposed by our optimal ranking, we can encode
all the b(n2 + n)/2 pairs using only bn pairs. Therefore, our
training data scales linearly instead of quadratically with |π|
while representing all ordered pairs considered by [Chrestien
et al., 2023]. As our experiments will show, this has a large
empirical effect on training efficiency and generalisation.

Our approach also differs in how the target ranking is
learned. We learn a pairwise ranking function using clas-
sification through the DirectRanker architecture that is later
converted to a pointwise ranking to be efficiently used with
GBFS. The heuristic learned by [Chrestien et al., 2023] fol-
lows an approach in which a pointwise ranking function is
learned using the 0-1 loss for an implicit pairwise ranking
function. Their loss function is later relaxed to a logistic loss
in order to use gradient optimisation.

Another work based on ranking is [Garrett et al., 2016].
They learn a pairwise ranking by training a Rank Support
Vector Machine model [Joachims, 2002] using a convex re-
laxation of the Kendall rank correlation coefficient. This
coefficient measures the degree of similarity between two
rankings by computing the difference between the number of
concordant and discordant pairs as a proportion of the total
number of possible pairs. One main difference between our
approaches is that we allow the use of any neural network
for computing features while they use hand-crafted features
extracted from the graph implicitly built by the FF heuris-
tic [Hoffmann and Nebel, 2001]. Another key difference is
that they use as data only the pairs within a suboptimal plan
π, that is, they do not use the states outside of π.

domain Training Testing
blocksworld n ∈ [2, 21] 56 n ∈ [5, 488] 90
childsnack c ∈ [1, 5] 37 c ∈ [4, 292] 90
ferry c ∈ [1, 13] 66 c ∈ [2, 974] 90
floortile t ∈ [2, 30] 64 t ∈ [12, 980] 90
miconic p ∈ [1, 10] 99 p ∈ [1, 485] 90
rovers r ∈ [1, 4] 67 r ∈ [1, 30] 90
satellite s ∈ [1, 10] 90 n ∈ [3, 99] 90
sokoban n ∈ [7, 13] 99 b ∈ [8, 99] 90
spanner s ∈ [1, 10] 89 n ∈ [1, 487] 90
transport v ∈ [1, 5] 47 n ∈ [3, 50] 90

Table 1: Number of problems per domain and problem size in terms
of the most significant object type: n blocks in blocksworld, c chil-
dren in childsnack, c cars in ferry, etc. The full set of parameters
governing problem size can be found in [Segovia and Seipp, 2023].

6 Experiments
In this section, we empirically compare our ranking frame-
work to Chrestien et al. 2023’s framework using GBFS. For
both frameworks, we consider two state-of-the-art neural net-
work regression models, namely STRIPS-HGN [Shen et al.,
2020] and GOOSE-LLG [Chen et al., 2024], for internal fea-
ture computation. To verify that learning a ranking is benefi-
cial, we consider STRIPS-HGN and GOOSE by themselves,
i.e., trained using h∗ as the learning target. As a baseline, we
also consider the hff heuristic [Hoffmann and Nebel, 2001].

6.1 Dataset
We use the 10 domains from the 2023 International Planning
Competition Learning Track (IPC23-LT) [Segovia and Seipp,
2023]. Each domain provides 100 training problems and 90
testing problems. We first solve the training problems using
the Scorpion planner [Seipp et al., 2020] with a 30-minute
time limit. Only problems solved optimally by Scorpion are
used for training, but this still results in a dataset of sufficient
size for our experiments. The training problems are randomly
split between the training set (90%) and the validation set
(10%). The problems in the validation set are used only to
monitor convergence and control learning rates.

The testing set is divided into ”easy”, ”medium” and
”hard” subsets per domain, based on problem size, with 30
problems per subset. In contrast the training set only contains
”easy” problems. Details of the dataset are shown in Table 1.

6.2 Training Settings
The two graph neural network regression models we use are
GOOSE Lifted Learning Graph (LLG) [Chen et al., 2024]
and STRIPS-HGN [Shen et al., 2020]. The former en-
codes the full planning problem and domain in a lifted form,
whereas the latter encodes the problem delete relaxation in a
grounded form. Both models can learn domain-independent
heuristics and our framework inherits this property. However,
our experiments are restricted to domain-specific rankings.

For both regression models, we used the code provided by
their authors with all ReLU activations replaced by LeakyRe-
LUs, except in their last layer. The ReLU function is suitable
for learning heuristics because its values are non-negative;
however, this restriction is not needed for learning a ranking



hff GOOSE PerfRank(GOOSE) OptRank(GOOSE) HGN PerfRank(HGN) OptRank(HGN)
domain sum easy med. hard sum easy med. hard sum easy med. hard sum easy med. hard sum easy med. hard sum easy med. hard sum
blocksworld 28 30 0 0 30 30 5 0 35 30 20 1 51 22 0 0 22 - - - - 23 0 0 23
childsnack 26 19 0 0 19 21 4 0 25 26 4 0 30 6 0 0 6 13 0 0 13 25 0 0 25
ferry 68 30 30 1 61 30 30 2 62 30 30 1 61 26 2 0 28 - - - - 30 8 0 38
floortile 12 1 0 0 1 2 0 0 2 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1
miconic 90 30 30 15 75 30 30 16 76 30 30 15 75 30 30 0 60 24 0 0 24 30 27 1 58
rovers 34 29 2 0 31 28 1 0 29 30 1 0 31 25 0 0 25 10 0 0 10 28 0 0 28
satellite 65 27 2 0 29 27 0 0 27 29 4 0 33 13 0 0 13 6 0 0 6 30 1 0 31
sokoban 36 26 1 0 27 30 2 0 32 30 2 0 32 27 0 0 27 17 0 0 17 30 1 0 31
spanner 30 30 4 0 34 30 30 2 62 30 30 1 61 30 0 0 30 30 4 0 34 30 14 0 44
transport 41 30 8 0 38 30 9 0 39 30 16 0 46 22 0 0 22 6 0 0 6 28 0 0 28
sum 430 252 77 16 345 258 111 20 389 266 137 18 421 201 32 0 233 107 4 0 111 254 52 1 307

Table 2: Rounded average coverage per domain and problem difficulty for the different configurations. Best coverage per domain highlighted
in bold. The best coverage for each regression model is underlined.

and we observed that it results in slower convergence. For
consistency, the same model parameters are used across our
experiments: 4 message-passing layers and hidden dimension
m = 64. For our framework, we use the output from the
second-last hidden layer of the underlying regression model
as the embedding vector, thus embs ∈ R64.

For each domain, we compare GBFS using the following
configurations for the heuristic/ranking:
GOOSE and HGN. The original GOOSE-LLG and
STRIPS-HGN regression models trained using h∗ as target
and their original loss function. The training dataset consists
of all state-value pairs (s, h∗(s)) for s in the optimal plan.
OptRank(GOOSE) and OptRank(HGN). Our optimal
ranking framework combined with the respective regression
models. The training dataset is the set of all ordered pairs
s ≺ t for s in the optimal plan and t ∈ Ns′ ∪ {s′} where s′

precedes s in the optimal plan.
PerfRank(GOOSE) and PerfRank(HGN). Chrestien et
al. (2023)’s framework to learn a perfect ranking heuristic
combined with each model. The loss function associated
with the perfect ranking definition is also used. The training
dataset consists of all ordered pairs s ≺ t for s in the optimal
plan and t ∈ O when s is popped from the GBFS queue.

We use the Adam optimiser and an initial learning rate of
10−3. The learning rate is reduced by a factor of 10 if the
accuracy on the validation set does not improve for 10 con-
secutive epochs. Training is stopped when the learning rate
reaches 10−6 or after 500 epochs.

For each configuration, we solve the problems in the testing
set with Fast-Downward using eager-GBFS [Helmert, 2006],
a time limit of 30 min per problem, and 8 GB of memory.
All experiments are run on an Intel Xeon 2.1GHz CPU and
NVIDIA A6000 GPU with 64GB of memory. The experi-
ments were repeated three times and the average results are
reported. The source code can be found at [Hao et al., 2024a]
and an extended set of results in [Hao et al., 2024b].

6.3 Results
Total Coverage. Table 2 shows the coverage of each con-
figuration on each domain, i.e., the number of problems it
solves for this domain. Overall, using optimal rankings im-
proved the coverage of the underlying regression model: 22%

and 32% increase for GOOSE and STRIPS-HGN, respec-
tively. Our optimal ranking approach also obtained higher
total coverage than the perfect ranking one: 8% and 176%
increase for GOOSE and STRIPS-HGN, respectively. The
large increase in coverage obtained by OptRank(HGN) w.r.t
PerfRank(HGN) can be partially attributed to: (i) STRIPS-
HGN being a slower model to train; and (ii) PerfRank(HGN)
using quadratically more data than OptRank(HGN). The con-
vergence time for all learned configurations is shown in Fig-
ure 3 and we observe that, for any framework, using STRIPS-
HGN to generate features is slower than using GOOSE.

The impact of using STRIPS-HGN is less pronounced on
OptRank(HGN) due to its compact dataset that exploits tran-
sitivity and is nearly equivalent to that of PerfRank(HGN).
Moreover, despite processing O(b) more data than GOOSE
where b is the average branching factor of a domain, Op-
tRank(GOOSE) converges in a similar amount of time.
Hence, it processes training data much faster.

Domain-specific coverage. When considering individual
domains, OptRank(GOOSE) obtains the highest coverage in
3 domains, namely Blocksworld, Childsnack and Transport,
with 46% (16 problems), 15% (4 problems) and 12% (5 prob-
lems) more coverage than the second-best planner, respec-
tively. PerfRank(GOOSE) has the highest coverage only on
Spanner, where it solves one more problem (2%) than Op-
tRank(GOOSE). In Floortile, all configurations perform very
poorly. This domain is known to be hard because it requires a
large receptive field and it has many state space symmetries.

GOOSE configurations. OptRank(GOOSE) improves
GOOSE’s coverage in 6 domains and obtains the same
coverage in the other 4 domains, therefore using optimal
rankings is highly beneficial for this regression model.
E.g, in Blocksworld and Spanner, GOOSE solves none or
hardly any of the medium-difficulty problems, whereas Op-
tRank(GOOSE) solves a large fraction or all of them, demon-
strating a greater ability to generalise to larger problem sizes.
PerfRank(GOOSE) almost always improves the coverage of
GOOSE and its coverage is marginally smaller (2 problems,
representing about 9%) only in Rovers and Satellite. Op-
tRank(GOOSE) has better coverage than PerfRank(GOOSE)
in 5 domains, namely Blocksworld, Childsnack, Rovers,
Satellite and Transport, with 46% (16 problems), 20% (5



Figure 3: Convergence times (sec) grouped by configuration. Each
box shows the training time of all 10 domains and 3 learned models
for the configuration. PerfRank(HGN) Models whose training failed
to converge are excluded.

problems), 7% (2 problems), 22% (6 problems) and 18%
(5 problems) more coverage, respectively. Their coverage
is the same for Sokoban and PerfRank(GOOSE) solves one
more problem than OptRank(GOOSE) for Ferry, Floortile,
Miconic and Spanner.

To better understand the differences between Op-
tRank(GOOSE) and both GOOSE and PerfRank(GOOSE),
Figure 4 compares them regarding the number of nodes ex-
panded, the cost of the returned plan and the search time to
find a plan. We observe that OptRank(GOOSE) generally ex-
pands fewer nodes than GOOSE while achieving similar plan
quality. This means OptRank(GOOSE) spends less time ex-
ploring unpromising regions of the search space and shows
that our learned ranking generalises better than the learned
GOOSE heuristic to unseen problems. Although our frame-
work guarantees to learn a total quasi-order, there is no guar-
antee that the learned quasi-order is an optimal ranking. This
can be observed in the plan quality plots where other ap-
proaches find plans cheaper than OptRank(GOOSE) for some
problems. We also observe that PerfRank(GOOSE) generally
expands more nodes than OptRank(GOOSE) and provides
plans of slightly lesser quality.
STRIPS-HGN configurations. Considering only config-
urations based on STRIPS-HGN, OptRank(HGN) has the
highest coverage in all domains except in Miconic where
it solves two fewer problems than HGN. As with GOOSE,
the usage of optimal rankings is also highly beneficial for
this regression model. Surprisingly, PerfRank(HGN)’s cov-
erage is lower than HGN’s except on Childsnack, Floortile
and Spanner. Moreover, PerfRank(HGN) did not converge
for Blocksworld and Ferry. Note that our experiments use the
original version of STRIPS-HGN [Shen et al., 2020] whereas
Chrestien et al. (2023) use an improved version of STRIPS-
HGN. This and the different benchmark problems for each
domain could explain part of the discrepancy.
Comparison with hff. Finally, none of the learned mod-
els were able to surpass the coverage of hff. However, Op-
tRank(GOOSE) is not far off with just 9 fewer problems
solved. This is an improvement on the competition results
where the deep learning entries attempting to directly learn
a heuristic or a policy did not exceed the score of HGN in
our experiments. Moreover, OptRank(GOOSE) generally ex-
pands fewer nodes and finds plans of better quality than hff.
Hence it is the inference time of GNN models remains an im-
pediment to their competitiveness with special-purpose plan-
ning heuristics.

Figure 4: Comparison between OptRank(GOOSE) and GOOSE
(first column), PerfRank(GOOSE) (second column), and h-FF (third
column) w.r.t. the number of nodes expanded (first row), plan cost
(second row) and search time (third column). Problems only solved
by one of the planners are mapped to the plot’s boundaries. Points
in the lower-triangle parts favor OptRank(GOOSE).

7 Conclusion

Heuristic search algorithms conventionally assume heuristic
functions mapping states to goal-distance estimates. Yet, as
was previously observed, for the popular greedy best-first
search algorithm, the heuristic function merely serves to rank
states, which is an overkill. To find a plan without search, as
we show here, we only require an “optimal” ranking relating
the states on an optimal plan to its neighbours. While this ob-
servation has yet to be used to design model-based heuristics,
as we show here it is highly relevant for learning, and enables
us to obtain much better performance than heuristic functions
learned using the same neural network representations – even
compared to a closely related ranking-learning framework.

It remains of course a bit disappointing that, at least in the
benchmarks used here, the classic hff heuristic still performs
best overall. This may change though with further research
into representations and training algorithms for learning rank-
ings. Apart from this, our results raise interesting questions
regarding learning search guidance information for other set-
tings and algorithms, for instance: Can our approach be ex-
tended to non-unit-cost problems? Are there other algorithms
(e.g., hill-climbing or beam search) in which the heuristic
function can be replaced with a simpler function that can be
efficiently learned? What about variants of greedy best-first
search for other forms of planning, such as top-K?
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lipe Trevizan. Learning Domain-Independent Heuristics
for Grounded and Lifted Planning. Proc. AAAI Conference
on Artificial Intelligence (AAAI), 38(18):20078–20086,
March 2024.

[Chrestien et al., 2023] Leah Chrestien, Stefan Edelkamp,
Antonin Komenda, and Tomas Pevny. Optimize Plan-
ning Heuristics to Rank, Not to Estimate Cost-to-Goal. In
Proc. Advances in Neural Information Processing Systems
(NeurIPS), volume 36, page 25508–25527, 2023.

[Cohen and Beck, 2018] Eldan Cohen and J. Christopher
Beck. Local Minima, Heavy Tails, and Search Effort for
GBFS. In Proc. International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 4708–4714, 2018.
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