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Abstract

As urban traffic congestion is on the increaseworldwide, it is critical tomaximize capacity and
throughput of existing road infrastructure through optimized traffic signal control. This thesis
builds on the body of work using mixed integer linear programming (MILP) approaches that
attempt to jointly optimize traffic signal control over an entire traffic network and specifically
improve the scalability of these methods to larger numbers of intersections.

The main contribution of this thesis is the Queue Transmission Model (QTM), a MILP
formulation for traffic signal control, which can be evaluated at non-homogeneous time in-
tervals. This property can be used to extend the planning horizon of a traffic signal controller
by strategically adjusting the spacing between samples. By using more samples near the start,
and fewer at later stages, the planner can adapt to long term changes in traffic flow, while
improving the short-term fidelity. The performance of this approach is evaluated on several
networks of differing topology, and the results show that, compared to homogeneous time
control with the same number of intervals, this method is able to produce solutions with
substantially lower overall travel times, and better per vehicle delay distribution.

Another contribution of this thesis is modeling light rail systems that share intersections
with vehicle traffic, to aid the many cities considering light rail in understanding its impact
on signal timing and delay. Amethod is described to incorporate light rail schedules and fixed
time control as additional constraints on QTM signal timing, such that the controller is able
to produce signal plans that take the light rail into account when optimizing for the vehicle
traffic. A micro simulator is then used to evaluate the performance of all these extensions,
comparing fixed time control to optimized adaptive control, using multiple scenarios of net-
work topology, light rail schedules and traffic levels. The results show that optimized adaptive
control plans have substantially lower average delay, better per vehicle delay distribution and
lower numbers of stops. In some scenarios, switching to optimized adaptive control nullifies
the impact on signal timing of introducing light rail, while persisting with fixed time control
requires a significant reduction in traffic levels to achieve the same outcome.

The final contribution of this thesis is to compare QTM with several different formula-
tions for MILP based traffic signal optimization both theoretically and empirically. First, it is
demonstrated using variational theory, that all the models find equivalent discrete solutions
to kinematic wave theory. This result is used to finally address the issue of unintended vehicle
withholding, and to show for the first time that withholding has no impact on the optimality
of the solutions. Finally, a series of experiments is run on networks of increasing size, using
vehicle platoons of varying length and arrival time. The results show that when comparing
both the solve time and the quality, QTM is able to find better policies with lower delay, and
in less time than the other formulations.
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2 Introduction

1.1 Motivation

Beyond the basic requirements of safe and orderly traffic coordination, traffic signal control
schemes have long sought to improve utilization. Existing infrastructure makes widespread
use of fixed time control, optimized offline for average conditions, but oftenwith some form of
real time actuation to improve responsiveness. Several adaptive control methods have found
widespread adoption [Sims and Dobinson, 1980; Hunt et al., 1981], where a baseline fixed
schedule is adapted to sensed traffic conditions using heuristically driven feedback control
algorithms.

Optimized control strategies promise to further improve utilization. Typically such ap-
proaches use some form of model predictive control [Garcia et al., 1989], where the control
input (the signal plan) is optimized based on the predicted response of a model of the system
dynamics (the traffic flow), given an objective (to minimize delay). We can separate optimal
strategies broadly into two categories: approximate and exact. Approximate methods use
heuristics and decomposition to reduce the computational load, at the sacrifice of true opti-
mality. Exact methods on the other hand, use mathematical programming to find the exact
optimal solution. Of particular interest are those methods employing Mixed Integer Linear
Programming (MILP). Among the first works to describe a MILP for traffic signal optimiza-
tion is that of Garter [Gartner et al., 1974]. Gartner proposes using a platoon based model of
traffic flow to optimize the basic traffic signal parameters, with the emphasis on finding coor-
dinated strategies along arterial routes. The Cell Transmission Model (CTM) [Daganzo, 1994]
provided a practical framework to solve kinematic wave (KW) basedmacroscopic traffic flows
described by the “LWR” theory of Lighthill, Whitham and Richards [Lighthill and Whitham,
1955; Richards, 1956]. Lo [Lo, 1998] was the first to propose a MILP using CTM, capturing
the queuing dynamics of signalized traffic flow, and offering globally optimal solutions span-
ning multiple intersections. This was followed by MILP formulations for the LWR based Link
Transmission Model (LTM) [Yperman et al., 2005; Hajiahmadi et al., 2012], and for the Link
based Kinematic Wave Model (LKWM ) [Han et al., 2012]. Using the vatiational calculus of
Hamiltonian-Jacobi theory, Daganzo developed Variational Theory (VT) [Daganzo, 2005a,b],
as a general framework for solving KW based traffic problems, and later [Wada et al., 2017]
cast VT as a MILP for traffic signal optimization.

1.2 Contributions

Themajor contribution of this thesis is the queue transmissionmodel (QTM), a non-homogeneous
time MILP-based model of joint intersection control that blends elements of cell-based and
link-based modeling approaches. The QTM offers the following key benefits:

• Unlike previous CTM-based joint intersection signal optimization [Lo, 1998; Lin and
Wang, 2004], the QTM is intended for non-homogeneous time steps that can be used for
control over large horizons.

• Any length of roadway without merges or diverges can be modeled as a single queue
leading to compact QTM MILP encodings of large traffic networks (i.e., large numbers
of cells and their associated MILP variables are not required between intersections).
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Further, the free flow travel time of a link can be modeled exactly, independent of the
discretization time step, while CTM requires a further increased discretization to ap-
proach the same resolution.

• The QTM accurately models fixed travel time delays critical to green wave coordina-
tion as in Gartner, Gartner and Stamatiadis, and He [Gartner et al., 1974; Gartner and
Stamatiadis, 2002; He et al., 2011] through the use of a non-first order Markovian up-
date model and further combines this with fully joint intersection signal optimization
in the spirit of Lo, Lin and Wang, and Han [Lo, 1998; Lin and Wang, 2004; Han et al.,
2012].

Experiments with this novel QTM-based MILP control in a range of traffic networks, demon-
strate that the non-homogeneous MILP formulation achieves (i) substantially lower delay
solutions, (ii) improved per-vehicle delay distributions, and (iii) more optimal travel times
over a longer horizon in comparison to the homogeneous MILP formulation with the same
number of binary and continuous variables.

One benefit of optimiztion based control is the that additional contraints can be added to
the model without having to reformulate. Using this approach:

1. QTM is leveragedwith the addition of light rail constraints for optimal adaptive control,
by actively optimizing the signal plan over a fixed time horizon from the current traffic
state.

2. A novel method that extends QTM to optimize conventional fixed-time signal control
schedules, with and without light rail schedule constraints and common cycle length
constraints, which can be incorporated immediately into existing fixed-time traffic con-
troller infrastructure,

3. QTM’s support for multiple phases per cycle is utilized as a novel way to model the lost
time associated with signal changes, and show that it is critical to finding optimized
signal plans.

4. A comprehensive suite of experiments using a microsimulator to validate the effective-
ness of these contributions, both quantitatively and through visual inspection of the
simulation results.

Fixed and optimized control is compared on several traffic networks, with and without light
rail, to show that optimal adaptive control can reduce traffic delay by up to 57.8% over opti-
mal fixed-time control when light rail is introduced, and virtually nullifies its impact when
compared to using fixed-time control before the introduction of light rail.

A key problem faced by MILP based traffic flow models making linear relaxations is lost
time: trafficmay not advance downstream even when there is free capacity to do so, requiring
additional binary variables to directly model the non-linearities, or additional objective terms.
Using Variation Theory, it is shown for the first time that traffic withholding has no impact
on the optimal solution. Additionally, Variational Theory is extended to include turn proba-
bilities which shows that solving a QTM traffic signal optimization with turn probabilities is
equivalent to a stochastic shortest path problem in space-time.



4 Introduction

To date there has been no comprehensive comparison of the various MILP based ap-
proaches to traffic signal optimization. This work contributes the first extensive comparison
of CTM, LTM, VT and QTM with micro-simulation validation.

1.3 Thesis Outline

Chapter 2 introduces basic concepts of traffic engineering needed to understand the algo-
rithms described later in this thesis. LWR theory as a macroscopic model of traffic flow is
introduced and several discrete models are derived from the theory. These models are then
cast as mixed integer linear programs for traffic signal control.

Chapter 3 formally introduces the Queue Transmission Model as a model of traffic flow
with non-homogeneous time steps and shows how to encode it as a linear program for com-
puting traffic flows. Next, the traffic signals states are represented by discrete phase vari-
ables that are optimized subject to a delay minimizing objective and standard minimum and
maximum time constraints for cycles and phases. This results in the MILP formulation of
traffic signal control. Finally a series of experiments using QTM-based MILP control in a
range of traffic networks is used to demonstrate that the non-homogeneousMILP formulation
achieves (i) substantially lower delay solutions, (ii) improved per-vehicle delay distributions,
and (iii) more optimal travel times over a longer horizon in comparison to the homogeneous
MILP formulation with the same number of binary and continuous variables.

Chapter 4 looks at novel extensions to QTM and provides micro-simulation validation.
QTM is leveraged with the addition of light rail constraints, and a novel method that extends
QTM to optimize conventional fixed-time signal control schedules with common cycle length
constraints. QTM’s signal timing constraints are extended to model the lost time associated
with signal changes, and it is shown that modeling lost time is critical to finding optimized
signal plans. A comprehensive suite of experiments using a microsimulator is used to validate
the effectiveness of these contributions, both quantitatively and through visual inspection of
the simulation results.

Chapter 5 looks at how QTM relates to the LWR kinematic wave equation using Vari-
ational Theory and compares QTM with CTM, LTM and VT models. QTM is extended to
fully model multiple shockwaves and the equivalence between QTM, LTM, CTM, and VT is
formally derived using Variational Theory, which provides a framework for understanding
the traffic withholding problem. For the first time it is shown that traffic withholding has
no impact on the optimal solution. QTM is then used to extend VT with turn probabilities,
which shows, using Variational Theory, that QTM is equivalent to a stochastic shortest path
problem, and solves a Markov Decision Problem value function. A novel continuous time
MILP for exactly solving QTM is then described.

Finally, in Chapter 6, using the new framework established in the previous chapters, QTM
performance is compared to CTM, LTM and VT in terms of both solve time and solution
quality.
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6 Background and Related Work

2.1 Overview

This chapter will introduce the basic concepts of traffic theory referred to throughout this
work, and describe several important traffic flow models and their Mixed Integer Linear Pro-
gramming (MILP) formulations.

Following an over view of basic traffic flow concepts in Section 2.2, Section 2.3 outlines
LWR theory, a first order macroscopic model of traffic flow that underpins all the methods
described herein. Section 2.4 describes one of the first successful discrete time models based
on LWR theory, the Cell Transmission Model (CTM). Newell’s Theory for solving LWR prob-
lems using cumulative counts is introduced in Section 2.5, and the Link Transmission Model
(LTM), a discrete time formulation of Newell’s Theory, is outlined in Section 2.6. Variational
Theory is introduced in Section 2.7, as a further extension of Newell’s theory for solving gen-
eral non-homogeneous LWR problems. And finally, in Section 2.8, MILP formulations of all
these models for traffic signal optimization are detailed in full.

2.2 Traffic Flow Modelling

This section will introduce some basic concepts in traffic flow modelling and analysis, used
throughout this thesis.

2.2.1 Space-Time Diagrams

One of the most effective ways to visualize the evolution of traffic flowing along a roadway is
through the space-time diagram. The trajectory of each vehicle is plotted on a graph with the
time of travel along the x-axis and position on the road along the y-axis. See Fig. 2.1. Several
useful parameters can be ascertained from the space-time diagram:

• velocity of a vehicle, or indeed other phenomena moving with the traffic such as shock-
waves, can be determined from the slope of its trajectory.

• traffic density in vehicles per unit distance is indicated by the vertical spacing of the
traces.

• traffic flow in vehicles per unit time is indicated by horizontal spacing of the traces.

• crossing traces indicate overtaking traffic

In general, the density, k, and flow, q, can be calculated for any arbitrary region on the space-
time diagram with the equations (2.1) and (2.2), where 𝐴 is the area of the region, and 𝑡𝑖 and
𝑥𝑖 are respectively the travel time and distance travelled through the region by vehicle 𝑖 .

k =

∑
𝑖 𝑡𝑖

𝐴
(2.1)

q =

∑
𝑖 𝑥𝑖

𝐴
(2.2)
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Figure 2.1: Space-Time diagram of vehicle flow along a roadway. The first two vehicles (red
and green) traverse the length of the roadway unimpeded (t=8s plot). The slope of their tra-
jectories is the free flow speed. A red traffic signal change at 10s brings the next five vehicles
to a standstill, forming a stop-line queue (t=25s plot). The queue is indicated by horizontal
trajectories until the return of a green signal at 30s. From t=35s the 5 vehicles are de-queuing
and the trajectories return to the free flow speed. Backwards waves during the queuing and
de-queuing process can been seen as inflections travelling through the trajectories.

2.2.2 Cumulative Curves

If a counter is placed on the road side that senses and keeps a count of passing vehicles, then
a cumulative count is generated over time. For example, see Fig. 2.2. While the cumulative
count is a step function, typically with large traffic volumes it is interpreted as piece-wise
smooth function referred to as a cumulative curve, N (t), where the floor, ⌊N (𝑡)⌋ is the cu-
mulative vehicle count at time 𝑡 . Cumulative curves have some useful properties in traffic
engineering. Consider two cumulative curves generated by sensors separated by some dis-
tance 𝑑 along the road at 𝑥1 and 𝑥2, then

• the horzontal distance between two curves at level 𝑛 gives the travel time between the
two points for vehicle 𝑛.

• the vertical distance between the two curves at time 𝑡 gives the number of vehicles
currently travelling between points 𝑥1 and 𝑥2.

• the slope of the curve gives the flow rate in vehicles per second.

We will see that the properties of cumulative vehicle functions will underpin several of the
traffic models descried later in this chapter.

2.2.3 Fundamental Relationship of Flow and Density

If we sample regions over a space-time plot of traffic flow, and calculate the density and flow
for the regions, we can plot a curve relating flow as a function of density, often referred to as
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Figure 2.2: Cumulative vehicle counts along a roadway at distances of 0 m, 45 m and 70 m.
The state of the cars and counters shown on the left plots is indicated by the vertical dotted
lines in the curve plots at t = 18s, t = 34s, and t = 42s, respectively

the fundamental diagram of traffic. The relationship is typically concave and has been well
observed inmany different traffic flow scenarios [Kühne andGartner, 2011]. As a function it is
assumed to be piece-wise differentiable, non-negative, and defined over an interval [0, 𝜌 jam].
At a critical density, 𝜌c, the maximum flow, qc is observed. See Fig. 2.3 for an example of the
relationship between a fundamental diagram and a space time diagram of traffic flow.

2.2.4 Newell Surfaces

If a family of cumulative curves is generated along a road at every point, and the curves are
then plotted as a surface above a space time diagram, they would form a Newell surface. The
Newell function N (𝑥 , 𝑡) gives the cumulative count value on the surface at location (𝑥 , 𝑡) on
the space-time diagram. See Fig. 2.4 for an example of a Newell surface. Newell surfaces
have some interesting properties. The first partial derivatives of N (𝑥 , 𝑡) are the flow and
density functions given by (2.3) and (2.4) respectively, and the second partial derivatives give
the conservation (2.5). However it should be noted that these derivatives hold everywhere
except possibly along certain curves in the surface known as shocks, that will be introduced
in Section 2.3.1

q(𝑥 , 𝑡) = 𝜕

𝜕𝑡
N (𝑥 , 𝑡) (2.3)

k (𝑥 , 𝑡) = − 𝜕

𝜕𝑥
N (𝑥 , 𝑡) (2.4)

𝜕2

𝜕𝑥𝜕𝑡
N (𝑥 , 𝑡) = 𝜕2

𝜕𝑡𝜕𝑥
N (𝑥 , 𝑡) (2.5)
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Figure 2.3: Relationship between a space-time plot of traffic flow and the fundamental dia-
gram. In each of the numbered regions in the left plot, the flow and density is calculated and
plotted as a numbered point in the right plot, and each corresponds to a valid flow-density
pair on the fundamental diagram.

2.3 Lighthill-Witham-Richards Model

The Lighthill-Witham-Richards model is a macroscopic model that relates traffic flow to a
hydro dynamic flow was first proposed by Lighthill and Witham [Lighthill and Whitham,
1955] and independently by Richards [Richards, 1956], and is often referred to in the literature
as “LWR theory”. The classic kinematic wave equation (2.6) describes a conservation law
between changes in flow and density.

𝜕

𝜕𝑡
k (𝑥 , 𝑡) + 𝜕

𝜕𝑥
q(𝑥 , 𝑡) = 0 (2.6)

With the addition of function relating density, k, and the flow, q given by q(𝑥 , 𝑡) = Q (k (𝑥 , 𝑡),𝑥 , 𝑡),
(2.6) takes the form (2.7), where the relation Q is the fundamental diagram of traffic flow.

𝜕

𝜕𝑡
k (𝑥 , 𝑡) + 𝜕

𝜕𝑥
Q (𝑘 (𝑥 , 𝑡),𝑥 , 𝑡) = 0 (2.7)

Some examples of LWR solutions with different fundamental diagrams are shown in Fig. 2.5.

2.3.1 Shock Waves

LWR theory predicts the existence of shocks travelling as waves through the traffic, both
forwards and backwards, wherever there is a discontinuity in the density. These shock waves
can be clearly seen in on a Newell surface, for example in Fig. 2.6.
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Figure 2.4: (a) An example of a Newell surface formed by the function N (𝑥 , 𝑡), the cumula-
tive vehicle count at position (𝑥 , 𝑡) on a space-time diagram. Horizontal contours represent
vehicle trajectories, and the vertical slices represent the cumulative curves at 𝑥 = 0, 𝑥 = 2,
𝑥 = 3, and 𝑥 = 4, as shown in (b).
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Figure 2.5: Solutions to the LWR equation for different fundamental diagrams. (a)—(d) show
the LWRmodeled traffic flow along a 300m section of roadway with a traffic signal at 𝑥 = 150
m. When the signal is red Q (𝑘 (𝑥 , 𝑡),𝑥 , 𝑡) = 0 at 𝑥 = 150, otherwise Q (𝑘 (𝑥 , 𝑡),𝑥 , 𝑡) is given
by the fundamental diagram to the left of each plot. Each trace represents the path of a
vehicle over time, and the propagation of shockwaves through the traffic is clearly visible.
The numbered labels within the flow correspond to points along the fundamental diagram.
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Figure 2.6: Examples of shock waves emanating from a signalized intersection. The plot
shows a Newell surface for the region of a roadway immediately upstream of the intersection
as it evolves over a period of 360 seconds. The boundary between free flow and congestion
can be clearly seen zig-zagging across the surface, with the shock paths travelling backwards
and forwards along the link.
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Figure 2.7: Triangular fundamental diagram relating density, k, to flow, q. The maximum
capacity flow rate is qc at a density of 𝜌c, and divides the traffic into two regimes: free flow
when the density is lower than 𝜌c, and congested when the density is higher. The slope of
the curve in the free flow region is the forward wave speed, 𝑣 , and in the congested region is
−𝑤 , where𝑤 is the backward wave speed.



§2.4 The Cell Transmission Model (CTM) 13

cell 1

n1, t
in

cell 2

n2, t
y2, t

cell 3

n3, t
y3, t

cell 4

n4, t
y4, t

cell 5

n5, t
y5, t

cell 6

n6, t
outy6, t

Figure 2.8: The Cell Transmission model. A homogeneous section of roadway is modeled
as a chain of cells. At each time step, vehicles are transmitted between cells at flow rates
determined by a trapezoidal function (fundamental diagram) of the cell densities, and the
state of the cells is updated.

2.3.2 Hamilton-Jacobi Equation

Since the Newell function has the property of the conservation law given by (2.5), a spe-
cial form of the LWR equation known as the Hamilton-Jacobi Equation, can be derived by
substituting the partial derivatives of N (𝑥 , 𝑡) for flow and density, (2.3) and (2.4), into the
fundamental relation q(𝑥 , 𝑡) = Q (k (𝑥 , 𝑡)), giving (2.8).

𝜕

𝜕𝑡
N (𝑥 , 𝑡) −Q

(
− 𝜕

𝜕𝑥
N (𝑥 , 𝑡)

)
= 0 (2.8)

The Hamilton-Jacobi form of the LWR equation permits the derivation of several link based
models, that will shown in the following sections.

2.4 The Cell Transmission Model (CTM)

The Cell Transmission Model (CTM) of Daganzo [Daganzo, 1994, 1995] is a discrete time
solution to LWR theory using finite differences to approximate equation (2.7), withQ () given
by a triangular or trapezoidal fundamental diagram (Fig. 2.7). The roadway is divided up into
cells of length equal to the distance traveled in one time step at the free flow speed 𝑣 . A cell is
characterized by a maximum flow rate of𝑄 vehicles per time step, and a maximum occupancy
of 𝑁 vehicles. If consecutive cells are indexed 1, 2, 3 . . ., then the the number of vehicles, 𝑦𝑖 ,𝑡 ,
flowing from cell 𝑖−1 to cell 𝑖 during the interval [𝑡 , 𝑡 + Δ𝑡) is given by (2.9),

𝑦𝑖 ,𝑡 = min
{
𝑄 , 𝑛𝑖−1,𝑡 ,

𝑤

𝑣

(
𝑁 −𝑛𝑖 ,𝑡

)}
(2.9)

where𝑛𝑖 ,𝑡 is the number of vehicles in cell 𝑖 at time 𝑡 , and the ratio 𝑣
𝑤
represents the backwards

wave speed when expressed in units of cell lengths per time step. The state update for cell 𝑖
at the end of interval [𝑡 , 𝑡 + Δ𝑡) is given by (2.10).

𝑛𝑖 ,𝑡+1 = 𝑛𝑖 ,𝑡 +𝑦𝑖 ,𝑡 −𝑦𝑖+1,𝑡 (2.10)

Equations (2.9) and (2.10) define CTM. To see howCTM approximates the LWR equation (2.7),
consider that a trapezoidal fundamental diagram is a concave piece-wise linear function of
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k (𝑥 , 𝑡) defined over the interval [0, 𝜌 jam], given by (2.11),

q(𝑥 , 𝑡) = min
{
qc, 𝑣k (𝑥 , 𝑡), 𝑤 (𝜌 jam − k (𝑥 , 𝑡))

}
(2.11)

With a time step of Δ𝑡 , and the cell length of Δ𝑥 = 𝑣Δ𝑡 , we can derive the flows and densities:

𝜌 jam =
𝑁

Δ𝑥
=

𝑁

𝑣Δ𝑡
(2.12)

k (𝑥 , 𝑡) = 𝑛𝑖 ,𝑡

Δ𝑥
=
𝑛𝑖 ,𝑡

𝑣Δ𝑡
or, k (𝑥 , 𝑡) = 𝑛𝑖−1,𝑡

Δ𝑥
=
𝑛𝑖−1,𝑡

𝑣Δ𝑡
(2.13)

qc =
𝑄

Δ𝑡
(2.14)

q(𝑥 , 𝑡) = 𝑦𝑖 ,𝑡
Δ𝑡

(2.15)

Note that for estimating the density at 𝑥 in (2.13), we can choose either the cell 𝑖 downstream
of 𝑥 or the cell 𝑖−1 upstream. Substituting these into (2.11),

𝑦𝑖 ,𝑡

Δ𝑡
= min

{
𝑄

Δ𝑡
, 𝑣

𝑛𝑖−1,𝑡

𝑣Δ𝑡
, 𝑤

(
𝑁

𝑣Δ𝑡
− 𝑛𝑖 ,𝑡

𝑣Δ𝑡

)}
(2.16)

and normalizing the units of time so that Δ𝑡 = 1 gives the CTM equation for 𝑦𝑖 ,𝑡 , (2.9) and
connects 𝑦𝑖 ,𝑡 to q(𝑥 , 𝑡):

𝑦𝑖 ,𝑡 = min
{
𝑄 , 𝑛𝑖−1,𝑡 ,

𝑤

𝑣
(𝑁 −𝑛𝑖 ,𝑡 )

}
= q(𝑥 , 𝑡) (2.17)

As Δ𝑥 → 0 and Δ𝑡 → 0, 𝜕
𝜕𝑥
𝑞(𝑥 , 𝑡) is approximated by 𝑦𝑖+1,𝑡 −𝑦𝑖 ,𝑡 , and 𝜕

𝜕𝑡
𝑘 (𝑥 , 𝑡) is approxi-

mated by 𝑛𝑖 ,𝑡+1 −𝑛𝑖 ,𝑡 . Substituting into (2.6) and rearranging (2.18) gives (2.19), the CTM state
update equation, (2.10).

(𝑦𝑖+1,𝑡 −𝑦𝑖 ,𝑡 ) + (𝑛𝑖 ,𝑡+1 −𝑛𝑖 ,𝑡 ) = 0 (2.18)
𝑛𝑖 ,𝑡+1 = 𝑛𝑖 ,𝑡 +𝑦𝑖 ,𝑡 −𝑦𝑖+1,𝑡 (2.19)

See Daganzo [Daganzo, 1994] for an alternative derivation of CTM from LWR theory.

With CTM formulated using equation (2.9), the shock waves are subject to spreading
when 𝑤

𝑣
< 1, (typical of real world values). To correct this, Daganzo [Daganzo, 1994] offers

(2.20) as an improvement to correct the spreading for some types of shocks. See Fig. 2.9 for a
comparison showing how this improves shock-wave propagation.

𝑦𝑖 ,𝑡 = min
{
𝑄 , 𝑛𝑖−1,𝑡 , 𝛼

(
𝑁 −𝑛𝑖 ,𝑡

)}
(2.20)

where 𝛼 =

{
1, if 𝑛𝑖−1,𝑡 ≤ 𝑄
𝑤
𝑣

, if 𝑛𝑖−1,𝑡 > 𝑄
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Figure 2.9: Eaxmples of CTM shockwave prediction and spreading. A 500 m section of road-
way with a traffic signal at 𝑥 = 300 m, modeled using 36 cells. (a) A trapezoidal fundamental
diagram with 𝑤

𝑣
= 1. (b) The cell density over time predicted by CTM using the trapezoidal

fundamental diagram, which matches the LWR prediction. (c) A triangular fundamental di-
agram with 𝑤

𝑣
< 1. (d) The correct cell density predicted by LWR theory for the triangular

fundamental diagram. (e) The CTM prediction for the triangular fundamental, exhibiting
shockwave spreading. (f) CTM prediction with shockwave spreading partially corrected us-
ing (2.20) .
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2.5 Newell’s Simplified Kinematic Wave Theory

Newell [Newell, 1993a,b,c] derived LWR theory in terms of cumulative flows, and described
a method for tracking the shock waves along a section of homogeneous roadway, or link, in
terms of the boundary conditions at either end. If it is assumed that Q () in (2.8) is approxi-
mated with a triangular fundamental diagram, then there exists at most a single shock wave
separating the link into two regimes of flow: congested and free flow (see Fig. 2.7). If points
𝑥0 and 𝑥1 represent the upstream and downstream boundaries of the link, then the boundary
conditions of (2.8) at these points are the cumulative arrival and departure curves given by
N (𝑥0, 𝑡) =

∫ 𝑡
0 𝑞(𝑥0,𝜏)𝑑𝜏 and N (𝑥1, 𝑡) =

∫ 𝑡
0 𝑞(𝑥1,𝜏)𝑑𝜏 . Newell then showed that the cumula-

tive function N (𝑥 , 𝑡) at point (𝑥 ,𝑡 ) along a roadway is given by (2.21), where 𝑣 and 𝑤 are the
forward and backward speed of the shock wave, and 𝜌 jam is the jam density of the link.

N (𝑥 , 𝑡) = min
{
N

(
𝑥0, 𝑡 − 𝑥 − 𝑥0

𝑣

)
, N

(
𝑥1, 𝑡 − 𝑥1 − 𝑥

𝑤

)
+ (𝑥1 − 𝑥)𝜌 jam

}
(2.21)

2.6 The Link Transmission Model (LTM)

Yperman presented the Link Transmission Model (LTM) [Yperman et al., 2005], a link based
kinematicwavemodel using the cumulative arrival and departure curves and applyingNewell’s
theory. By evaluating (2.21) at the beginning and end of the link, over a discrete time interval
of Δ𝑡 , the sending and receiving flows, 𝑆 (𝑡) and 𝑅(𝑡), can be determined at time 𝑡 with (2.22)
and (2.23), where 𝑞c is the maximum flow rate of the link.

𝑆 (𝑡) = min
{
𝑞cΔ𝑡 , N

(
𝑥0, 𝑡 + Δ𝑡 − 𝑥1 − 𝑥0

𝑣

)
−N (𝑥1, 𝑡)

}
(2.22)

𝑅(𝑡) = min
{
𝑞cΔ𝑡 , N

(
𝑥1, 𝑡 + Δ𝑡 − 𝑥1 − 𝑥0

𝑤

)
+ (𝑥1 − 𝑥0)𝜌 jam −N (𝑥0, 𝑡)

}
(2.23)

When the shock wave has reached back to the input of the link (spill back), the input of the
link is in the congested state and the inflow is determined by the outflow at time 𝑡 − 𝑥1−𝑥0

𝑤
, the

time the backward wave takes to travel the length of the link. Oppositely, if the shock wave
has reached forward to the output of the link, then the output is in the free flow state and
the outflow is determined by the inflow at time 𝑡 − 𝑥1−𝑥0

𝑣
, the time the forward wave takes to

travel the length of the link. Otherwise the flow is at the maximum rate.
At each time step, the model is used to find the sending and receiving flows based on

the current cumulative counts at each end of the link. Once the sending and receiving flows
have been determined, the actual number of vehicles transmitted to the downstream links is
determined with a merge model, as described in [Yperman et al., 2005].

2.7 Variational Theory (VT)

Daganzo’s Variational Theory (VT) [Daganzo, 2005a,b] extends the solution of Newell for
solving LWR traffic flows along homogeneous roadways to non-homogeneous roadwayswith
stationary and moving bottlenecks.

Given a set of known boundary conditions B along the lines 𝑥 = 0 and 𝑡 = 0, and where:



§2.7 Variational Theory (VT) 17

time (t)

d
is

ta
n

ce
(x

)

P

v
−w

(a)

time (t)

d
is

ta
n

ce
(x

)

A B

(b)

Figure 2.10: (a) An example of a geometric VT network for a triangular fundamental diagram,
showing two of many possible paths from a boundary node (solid dots) to node P. The slope
of the edges corresponds to the wave speeds of the fundamental diagram and represents the
track of the observer traveling at that speed. (b) A lopsided network, where nodes internal to
the links have been trimmed for efficiency, and the addition of a shortcut path representing a
red light signal between nodes A and B.

• N (𝑡 ,𝑥), is the cumulative vehicle count at location (𝑡 ,𝑥)

• PP is the set of all paths from the boundary nodes B ∈ B to P

• V is the set of all valid paths in the network: piece-wise differentiable curves with slopes
corresponding to wave speeds in the fundamental diagram.

• Q (k, 𝑡 ,𝑥) is a concave function relating density k to flow q at location (𝑡 ,𝑥).

Then the solution at location P is given by (2.24) and (2.25),

NP = min {NB + Δ(P)} : ∀P ∈ V∩ PP (2.24)

Δ(P) =
∫ 𝑡P

𝑡B

𝑅(d𝑥 (𝑡)
d𝑡

, 𝑡 ,𝑥)d𝑡 , where 𝑥 (𝑡) is the trajectory of P (2.25)

And the cost function 𝑅(𝑢, 𝑡 ,𝑥) is given by (2.26) and (2.27).

𝑢 =
𝜕

𝜕𝑘
Q (k, 𝑡 ,𝑥) (2.26)

𝑅(𝑢, 𝑡 ,𝑥) = sup
𝑘

{Q (k, 𝑡 ,𝑥) − k𝑢} (2.27)

For the special case of a triangular fundamental diagram, 𝑢 is restricted to the values 𝑣 ,
the forward wave speed, and −𝑤 , the backwards wave speed. Fig. 2.11 shows the relationship
between a triangular fundamental diagram for Q (k,𝑥 , 𝑡) and its cost function 𝑅(𝑢,𝑥 , 𝑡). The
problem of finding N (𝑥 , 𝑡) becomes a shortest path problem on a directed acyclic graph DG
embedded in the (𝑡 ,𝑥) plane (see Fig. 2.10). The edges of DG have a slope of 𝑣 or −𝑤 and the
nodes are located at points (𝑡 ,𝑥), separated by Δ𝑡 and have the value of N (𝑥 , 𝑡). The solution
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for (2.24) then takes the form (2.28),

NP = min {NB +
∑︁

(𝑖 ,𝑗 ) ∈P
𝑐𝑖 𝑗 } : ∀P ∈ DG from B to P,∀B ∈ B (2.28)

𝑐𝑖 𝑗 =
(
𝑡 𝑗 − 𝑡𝑖

)
𝑅(𝑢, 𝑡 ,𝑥) (2.29)

𝑢 =
𝑥 𝑗 − 𝑥𝑖
𝑡 𝑗 − 𝑡𝑖

∈ {𝑣 ,−𝑤} (2.30)

𝑅(𝑢, 𝑡 ,𝑥) =
{

0, when 𝑢 = 𝑣

𝑤𝜌 jam, when 𝑢 = −𝑤
(2.31)

where 𝑐𝑖 𝑗 , given by (2.29), is the cost from node 𝑖 to node 𝑗 , found by integrating 𝑅(𝑢, 𝑡 ,𝑥)
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Figure 2.11: (a) The edge cost function for the triangular fundamental diagram in (b), which
gives the maximum rate at which vehicles will pass an observer travelling at speed 𝑢.

over time along the edge between them, and 𝑢, given by (2.30), is the slope of the edge from
𝑖 to 𝑗 . Additionally, we can add horizontal edges between nodes with 𝑥 corresponding to the
location of a traffic signal, since the relation Q (k, 𝑡 ,𝑥) = 0 for 𝑡 when the signal is red and
no traffic can flow. These are referred to as shortcuts in the theory.

The cost function, 𝑅(𝑢, 𝑡 ,𝑥), gives the “relative capacity” in vehicles along a wave path
and has a physical interpretation is the maximum number of vehicles an observer travelling
at the wave speed could pass. With this insight, we see that a cost of zero for a red light
enforces that the cumulative count of vehicles passing the stop-line, does not increase from
one time step to during the red signal, that is, the relative capacity of a red signal wave path
is 0. Similarly, for a triangular fundamental diagram, the cost of the wave path at the free
flow speed 𝑤 is also zero, as the cumulative counts at each end must be the same (no other
wave travels faster than 𝑣), while for the backwards wave path at the backwards wave speed
𝑤 , the relative capacity is the number of vehicles that fit in the link at the jam density,𝑤𝜌 jam,
since the downstream cumulative count must not exceed this difference with the upstream
count once congestion has spilled back to block input at the upstream end of the link.
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2.8 Traffic Signal Optimization

2.8.1 CTM as a MILP

Lo [Lo, 1998] was the first to cast CTM at a MILP and solve for an optimized signal plan.
In Lo’s formulation, the planning horizon is divided up into T discrete, homogeneous time
intervals, and the state of each cell at every time 𝑡 ∈ {0, 1, 2, 3, . . . ,𝑇 } is represented by two
variables:

• 𝑛𝑖 ,𝑡 ∈ [0,𝑁 ], the number of vehicles occupying cell 𝑖 at time 𝑡 .

• 𝑦𝑖 ,𝑡 ∈ [0,𝑄], the flow from cell 𝑖 − 1 to 𝑖 during the interval [𝑡 , 𝑡 + 1).

Then, as per Deganzo’s CTM formulation, the update for the occupancy of cell 𝑖 at the end of
interval [𝑡 , 𝑡 + 1), (given by (2.10)), is constructed directly with constraint (C1).

𝑛𝑖 ,𝑡+1 = 𝑛𝑖 ,𝑡 +𝑦𝑖 ,𝑡 −𝑦𝑖+1,𝑡 (C1)

To find the flow𝑦𝑖 ,𝑡 , the min {𝑄 , 𝑛𝑖−1,𝑡 , 𝑤
𝑣
(𝑁 −𝑛𝑖 ,𝑡 )} of equation (2.9) needs to be evaluated.

The upper bound on𝑦𝑖 ,𝑡 , is given directly by the upper envelope using constraints (C2) to (C4).

𝑦𝑖 ,𝑡 ≤ 𝑄 (C2)
𝑦𝑖 ,𝑡 ≤ 𝑛𝑖−1,𝑡 (C3)

𝑦𝑖 ,𝑡 ≤
𝑤

𝑣
(𝑁 −𝑛𝑖 ,𝑡 ) (C4)

However,𝑦𝑖 ,𝑡 is still free to take any value between 0 and the upper bound, a condition referred
as traffic withholding since vehicles may not proceed to the next cell even when there is space
for them to do so. To constrain𝑦𝑖 ,𝑡 to the upper bound and prevent withholding, Lo [Lo, 1998]
used two additional binary variables, 𝑧1

𝑖 ,𝑡 ∈ {0, 1} and 𝑧2
𝑖 ,𝑡 ∈ {0, 1} for every cell and time

interval, and constraints (C5) to (C7), whereM is a sufficiently large positive constant.

𝑄 −M𝑧2
𝑖 ,𝑡 ≤ 𝑦𝑖 ,𝑡 (C5)

𝑛𝑖−1,𝑡 −M𝑧1
𝑖 ,𝑡 −M(1 − 𝑧2

𝑖 ,𝑡 ) ≤ 𝑦𝑖 ,𝑡 (C6)
𝑤

𝑣
(𝑁 −𝑛𝑖 ,𝑡 ) −M(1 − 𝑧1

𝑖 ,𝑡 ) −M(1 − 𝑧2
𝑖 ,𝑡 ) ≤ 𝑦𝑖 ,𝑡 (C7)

To model the traffic demand, or inflow to the network, Lo modifies the constraints on the
first two cells on every source link in the network. The first cell in a source link has the
upper bound constraint on 𝑛𝑖 ,𝑡 relaxed, and at 𝑡 = 0 the cell is filled with the the total number
of vehicles to enter the network during the planning horizon, that is 𝑛𝑖 ,0 = 𝑁MAX

𝑖 , where
𝑛𝑖 ,𝑡 ∈ [0,∞] and 𝑁MAX

𝑖 is the maximum number of cars expected to enter during the time 𝑇 .
The constraints on the flow into the second cell, 𝑦𝑖 ,𝑡 , are modified to account for the demand
profile, by replacing constraints (C2) and (C5), with constraints (C8) and (C9), and 𝐼𝑖 ,𝑡 ∈ [0,𝑄]
is the demand or number of vehicles flowing to the network via cell 𝑖 at time 𝑡 .

𝑦𝑖 ,𝑡 ≤ 𝐼𝑖 ,𝑡 (C8)
𝐼𝑖 ,𝑡 −M𝑧2

𝑖 ,𝑡 ≤ 𝑦𝑖 ,𝑡 (C9)
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Figure 2.12: A signal plan over 10 time intervals for an intersection with major and minor
approaches. The plan has 7 intervals separating 6 signal changes, made up of an initial offset
(part cycle), followed by 3 full cycles of the light.

On other words, the first cell acts as a reservoir of vehicles to enter the network, and the
flow rate into the second cell meters the vehicles into the network as per the demand profile.
This approach allows for elasticity in demand should congestion in the network spill back
to the input. Cells at exit points from the network are also modified by having the capacity
constraint relaxed, 𝑛𝑖 ,𝑡 ∈ [0,∞], such that vehicles arriving at the exit cell can flow out
unimpeded.

Traffic signals can be modeled by modulating the maximum flow capacity out of the cell
preceding the traffic light. A binary variable 𝑝ℓ ,𝑡 ∈ {0, 1} is introduced to represent the state
of the signal of traffic light ℓ during time interval [𝑡 , 𝑡 + 1), with 𝑝ℓ ,𝑡 = 1 when the signal
is green and 0 when it is red. Additionally, by limiting intersections to simple crossroads, a
single binary variable can simultaneously control the side street by inverting the signal. If the
flow 𝑦𝑖 ,𝑡 from cell 𝑖 − 1 to 𝑖 is the main approach to light ℓ , and 𝑦 𝑗 ,𝑡 from cell 𝑗 − 1 to 𝑗 is the
side approach to light ℓ , then constraints (C2) and (C5) are replaced with constraints (C10)
and (C11) for the main approach, and constraints (C12) and (C13) for the side approach, for
each time interval 𝑡 .

𝑦𝑖 ,𝑡 ≤ 𝑄𝑝ℓ ,𝑡 (C10)
𝑄𝑝ℓ ,𝑡 −M𝑧2

𝑖 ,𝑡 ≤ 𝑦𝑖 ,𝑡 (C11)
𝑦 𝑗 ,𝑡 ≤ 𝑄 (1 − 𝑝ℓ ,𝑡 ) (C12)

𝑄 (1 − 𝑝ℓ ,𝑡 ) −M𝑧2
𝑗 ,𝑡 ≤ 𝑦 𝑗 ,𝑡 (C13)

Whenever 𝑝ℓ ,𝑡 = 1, 𝑦𝑖 ,𝑡 is free to take on the value determined by (2.9), but when 𝑝ℓ ,𝑡 = 0 the
flow is forced to 0, and inversely for 𝑦 𝑗 ,𝑡 .

A signal plan for a light ℓ represents a series of 𝐾 signal phases and is described by a set
of durations, {𝑑1,ℓ , . . . ,𝑑K,ℓ } (See Fig. 2.12). The initial phase offset is given by 𝑑1,ℓ ∈ [0,Φmax

ℓ ],
and 𝑑𝑘 ,ℓ ∈ [Φmin

ℓ ,Φmax
ℓ ], for 𝑘 >= 2, represents the duration of phase 𝑘 . where Φmin and

Φmax are the minimum and maximum bounds for phase duration. Additionally, minimum
and maximum cycle times (Ψmin

ℓ ,Ψmax
ℓ ) can be applied with constraints (C14) and (C15), for

𝑘 ∈ {2, 4, 6, . . . }.

Ψmin
ℓ ≤ 𝑑𝑘 ,ℓ +𝑑𝑘+1,ℓ (C14)

Ψmax
ℓ ≥ 𝑑𝑘 ,ℓ +𝑑𝑘+1,ℓ (C15)
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An additional binary variable, 𝑢𝑘 ,ℓ ,𝑡 ∈ {0, 1}, is introduced for each phase 𝑘 to indicate if time
𝑡 is within the interval [0, ∑𝑘

𝑗=1 𝑑 𝑗 ,ℓ ], that is 𝑢𝑘 ,ℓ ,𝑡 = 1, if 𝑡 ≤ ∑𝑘
𝑗=1 𝑑 𝑗 ,ℓ . The condition for

𝑢𝑘 ,ℓ ,𝑡 can be encoded with constraints (C16) and (C17), where 𝜀 is a sufficiently small positive
constant.

−M𝑢𝑘 ,ℓ ,𝑡 + 𝜀 ≤ 𝑡 −𝑑𝑘 ,ℓ (C16)
𝑡 −𝑑𝑘 ,ℓ ≤ M(1 −𝑢𝑘 ,ℓ ,𝑡 ) (C17)

Once the time intervals associated with each signal phase have been identified with 𝑢𝑘 ,ℓ ,𝑡 ,
it remains to map the signal variables, 𝑝ℓ ,𝑡 in the correct sequence. Lo omits the details,
but binary logic for the mapping can be encoded using suitable constraints. For example, to
activate the major approach to light ℓ with a green signal during phase 1, a red signal during
phase 2, and so on, we could use constraint (C18).

𝑝ℓ ,𝑡 =
𝐾/2∑︁
𝑘=2

𝑢2𝑘 ,ℓ ,𝑡 −𝑢2𝑘−1,ℓ ,𝑡 (C18)

By making 𝑑𝑘 ,ℓ a variable, it is possible for the solver to find an optimal signal plan subject
to some objective function. Lo proposes minimising total network delay as an objective and
determines that after each time step, any vehicle remaining in a cell (i.e. that did not traverse
the cell at the free flow speed) experiences a delay of one time step. If 𝛿𝑖 ,𝑡 = 𝑛𝑖 ,𝑡 − 𝑦𝑖+1,𝑡 ,
then 𝛿𝑖 ,𝑡 is the number of vehicles remaining in cell 𝑖 at the end of interval [𝑡 , 𝑡 + 1), and
represents a measure of delay in vehicle time steps. Then, the total network delay over the
planing horizon is the sum of 𝛿𝑖 ,𝑡 over all cells and time intervals, and the objective is given
by constraint (O1).

min
∑︁
𝑡

∑︁
𝑖

𝑛𝑖 ,𝑡 −𝑦𝑖+1,𝑡 (O1)

With an objective of (O1), and given a demand profile, the solver will find an optimal signal
plan, subject to the minimum and maximum phase and cycle constraints, that produces the
the minimum total network delay under a CTM modelled traffic flow.

Lin andWang [Lin andWang, 2004] improve upon Lo’s CTMMILP formulation by reduc-
ing the total number of binary variables. Rather than solve exactly themin {𝑄 , 𝑛𝑖−1,𝑡 , 𝑤𝑣 (𝑁 −𝑛𝑖 ,𝑡 )}
of equation (2.9), they replace constraints (C5) to (C7) with a weighted objective term (2.33)
to address the vehicle withholding issue, which removes binary variables 𝑧1

𝑖 ,𝑡 and 𝑧
2
𝑖 ,𝑡 from

the formulation. With a suitably small value of 𝛽 so as not to interfere with the main objec-
tive function, the term (2.33), provides an incentive at every time step for vehicles to flow to
the next cell, with the upper bound still governed by constraints (C2) to (C4). Lin and Wang
dispense with the explicit signal plan of Lo, and instead apply the minimum and maximum
constraints for phase and cycle time directly to the signal variable 𝑝ℓ ,𝑡 , removing the need for
the binary variables 𝑦𝑘 ,ℓ . The moving window summation on the left hand side of equation
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Figure 2.13: Cumulative arrival/departure curves for a network. In (a), the travel time of a
vehicle is the horizontal difference between the arrival and departure curves, and delay is any
additional time beyond the free flow travel time. Vehicle A encounters delay, while vehicle
B does not. The area between the arrival and departure curves is the total travel time for all
vehicles in the network. In (b), if the area above the departure curve is minimized, the curve
is pulled to the left, and delay is minimized.

(2.32) counts the number of transitions between red and green in the interval [𝑡 , 𝑡 + Φmin
ℓ ].

𝑡+Φmin
ℓ∑︁

𝜏=𝑡

|𝑝ℓ ,𝜏 − 𝑝ℓ ,𝜏−1 | ≤ 1 (2.32)

If the minimum phase constraint Φmin is respected, there should be at most one transition
during the interval [𝑡 , 𝑡 + Φmin

ℓ ]. By introducing the dummy variable, 𝑣ℓ ,𝑡 = |𝑝ℓ ,𝜏 − 𝑝ℓ ,𝜏−1 |, to
indicate a transition, (2.32) can be formulated as constraints (C19) to (C21).

𝑝ℓ ,𝑡 − 𝑝ℓ ,𝑡−1 ≤ 𝑣ℓ ,𝑡 (C19)
𝑝ℓ ,𝑡−1 − 𝑝ℓ ,𝑡 ≤ 𝑣ℓ ,𝑡 (C20)
𝑡+Φmin

ℓ∑︁
𝜏=𝑡

𝑣ℓ ,𝜏 ≤ 1 (C21)

𝑡+Φmax
ℓ∑︁

𝜏=𝑡

𝑝ℓ ,𝜏 ≤ Φmax
ℓ (C22)

𝑝ℓ ,𝑡 − 𝑝ℓ ,𝑡+Ψfixed
ℓ

= 0 (C23)

Further, to maintain the maximum phase time, Φmax
ℓ , a similar moving window of duration

[𝑡 , 𝑡 +Φmax
ℓ ] can be used and is formulated as constraint (C22). Lin and Wang do not provide

constraints for minimum and maximum cycle times, but do provide constraint (C23) to set a
fixed cycle time of Ψfixed

ℓ . The constraint (C23) ensures that the signal pattern repeats with
period Ψfixed

ℓ , and allows for an optimal offset to be selected at the start, but also forces a fixed
phase split throughout the planning horizon.

Lin and Wang choose to fix the demand profile, and for cells at the input, constraint (C1)



§2.8 Traffic Signal Optimization 23

i

j

k

g

h

Li

Figure 2.14: An example of an LTM network, with link 𝑖 having two incoming links, 𝑗 and 𝑘 ,
and two outgoing links, 𝑔 and ℎ.

is replaced with constraint (C24), and all cell capacities constraints are kept as 𝑛𝑖 ,𝑡 ∈ [0,𝑁 ].

𝑛𝑖 ,𝑡+1 = 𝑛𝑖 ,𝑡 + 𝐼𝑖 ,𝑡 −𝑦𝑖+1,𝑡 (C24)

For the outflow from the network an additional variable, 𝑦out
𝑖 ,𝑡 is introduced. For cells at the

output of the network, at each time step all traffic in the cell is removed via constraint (C25),
and constraint (C1) is replaced with constraint (C26).

𝑦out
𝑖 ,𝑡 = 𝑛𝑖 ,𝑡 (C25)

𝑛𝑖 ,𝑡+1 = 𝑛𝑖 ,𝑡 +𝑦𝑖 ,𝑡 −𝑦out
𝑖 ,𝑡 (C26)

Lin and Wang formulate a different objective function than Lo to minimize delay. Their
approach is to minimize the total travel time in the network, which is the area between the
cumulative arrival and departure curves (see Fig. 2.13). The products 𝑡𝑦out

𝑖 ,𝑡 are the areas of the
rectangles indicated above the departure curve in Fig. 2.13(b), and their sum forms the area
above the cumulative departure curve. Minimizing this area pulls the departure curve to the
right and delay in the network is minimized. The full objective function, including the term
(2.33) for preventing traffic with-holding, becomes (O2).

𝛽
∑︁
𝑖

∑︁
𝑡

𝑡𝑦𝑖 ,𝑡 (2.33)

min
∑︁
𝑖

∑︁
𝑡

𝑡𝑦out
𝑖 ,𝑡 + 𝛽

∑︁
𝑖

∑︁
𝑡

𝑡𝑦𝑖 ,𝑡 (O2)

2.8.2 LTM as a MILP

The link transmission model was formulated as a MILP by Hajiahmadi et al. [2012]. At each
time step 𝑡 the maximum possible sending and receiving flows between links is determined
and the cumulative counts at the entry and exit of each link are updated. Several exoge-
nous parameters are associated with the physical properties of the link and its fundamental
diagram:

• 𝑐𝑖 = 𝐿𝑖𝜌 jam, where 𝜌 jam is the jam density of link 𝑖 in vehicles per meter and 𝐿𝑖 is its the
length in meters.
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• F𝑖 ,𝑗 is the maximum flow rate of link 𝑖 and 𝑗 in vehicles per time step.

• 𝑣𝑖 is the integer number of time intervals a forward wave takes to propagate the length
of link 𝑖 , such that 𝑣𝑖 − 1 <

𝐿𝑖
𝑣Δ𝑡 ≤ 𝑣𝑖 , where 𝑣 is the forward wave speed.

• 𝑤𝑖 is the integer number of time intervals a backwards wave takes to propagate the
length of link 𝑖 , such that𝑤𝑖 − 1 <

𝐿𝑖
𝑤Δ𝑡 ≤ 𝑤𝑖 , where𝑤 is the backwards wave speed.

The formulation uses the following variables:

• N in
𝑖 ,𝑛 , the cumulative number of vehicles that have entered link 𝑖 by the end of interval

𝑛,

• Nout
𝑖 ,𝑛 , the cumulative number of vehicles that have exited link 𝑖 by the end of interval 𝑛,

• R𝑖 ,𝑛 , the maximum number of vehicles that can be received by link 𝑖 during the interval
𝑛,

• S𝑖 ,𝑛 , the maximum number of vehicles that can be sent by link 𝑖 during the interval 𝑛,

• 𝜁𝑖 ,𝑛 , the transition number vehicles leaving link 𝑖 during interval 𝑛.

The maximum sending and receiving flows for link 𝑖 are found by solving the minimums of
(2.22) and (2.23) which can be formulated as constraints (L1) to (L8), using the binary variables
z in
𝑖 ,𝑛 , z

out
𝑖 ,𝑛 . Further, the sending flow from the link can be modulated by a traffic signal using

the binary phase variable 𝑝𝑖 ,𝑗 ,𝑛 which, during interval 𝑛, is 1 for a green signal and 0 for a
red.

R𝑖 ,𝑛 ≥ Nout
𝑖 ,𝑛−𝑤𝑖

+ 𝑐𝑖 −N in
𝑖 ,𝑛−1 −Mz in

𝑖 ,𝑛 (L1)
R𝑖 ,𝑛 ≤ Nout

𝑖 ,𝑛−𝑤𝑖
+ 𝑐𝑖 −N in

𝑖 ,𝑛−1 (L2)
R𝑖 ,𝑛 ≥ F𝑖 ,𝑗 −M(1 − z in

𝑖 ,𝑛) (L3)
R𝑖 ,𝑛 ≤ F𝑖 ,𝑗 (L4)
S𝑖 ,𝑛 ≥ N in

𝑖 ,𝑛−𝑣𝑖 −Nout
𝑖 ,𝑛−1 −Mzout

𝑖 ,𝑛 (L5)
S𝑖 ,𝑛 ≤ N in

𝑖 ,𝑛−𝑣𝑖 −Nout
𝑖 ,𝑛−1 (L6)

S𝑖 ,𝑛 ≥ 𝑝𝑖 ,𝑗 ,𝑛F𝑖 ,𝑗 −M(1 − zout
𝑖 ,𝑛 ) (L7)

S𝑖 ,𝑛 ≤ 𝑝𝑖 ,𝑗 ,𝑛F𝑖 ,𝑗 (L8)

For junctions with no turning movements, such that all of the output from link 𝑖 flows into
link 𝑗 , the transition flow 𝜁𝑖 ,𝑛 is given as the minimum of 𝑖’s sending flow and 𝑗 ’s receiving
flow. This can be formulated as constraints (L9) to (L12) using the binary variable 𝜉𝑛,𝑖 .

𝜁𝑖 ,𝑛 ≥ S𝑖 ,𝑛 −M𝜉𝑛,𝑖 (L9)
𝜁𝑖 ,𝑛 ≤ S𝑖 ,𝑛 (L10)
𝜁𝑖 ,𝑛 ≥ R𝑗 ,𝑛 −M(1 − 𝜉𝑛,𝑖) (L11)
𝜁𝑖 ,𝑛 ≤ R𝑗 ,𝑛 (L12)
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Finally the transition update functions for the cumulative counts at the link boundaries can
be solved by (L13) and (L14).

Nout
𝑖 ,𝑛 = Nout

𝑖 ,𝑛−1 + 𝜁𝑖 ,𝑛 (L13)
N in
𝑖 ,𝑛 = N in

𝑖 ,𝑛−1 + 𝜁 𝑗 ,𝑛 (L14)

For junctions with turning movements, the transition flow sent from one link must be dis-
tributed among the receiving links. While Hajiahmadi et al. [2012] omits details, we can use
a simple model using turn fractions such that Pr𝑖 ,𝑗 gives the proportion of vehicles leaving
link 𝑖 that enter link 𝑗 , and the sum of all turn fractions from a link is 1. For the case of
one sending link, 𝑖 , into two receiving links, 𝑗 and 𝑘 , the transition flow is the minimization
𝜁𝑖 ,𝑛 = min

{
S𝑖 ,𝑛 , R𝑗 ,𝑛

Pr𝑖 ,𝑗 , R𝑘 ,𝑛
Pr𝑖 ,𝑘

}
, and this is formulated as constraints (L15) to (L20).

𝜁𝑖 ,𝑛 ≥ S𝑖 ,𝑛 −M𝜂𝑛,𝑖 −M𝜉𝑛,𝑖 (L15)
𝜁𝑖 ,𝑛 ≤ S𝑖 ,𝑛 (L16)

𝜁𝑖 ,𝑛 ≥ R𝑗 ,𝑛
1

Pr𝑖 ,𝑗
−M𝜂𝑛,𝑖 −M(1 − 𝜉𝑛,𝑖) (L17)

𝜁𝑖 ,𝑛 ≤ R𝑗 ,𝑛
1

Pr𝑖 ,𝑗
(L18)

𝜁𝑖 ,𝑛 ≥ R𝑘 ,𝑛
1

Pr𝑖 ,𝑘
−M(1 − 𝜂𝑛,𝑖) −M(1 − 𝜉𝑛,𝑖) (L19)

𝜁𝑖 ,𝑛 ≤ R𝑘 ,𝑛
1

Pr𝑖 ,𝑘
(L20)

Such amodel does not support the simultaneousmerging of traffic flows, but this is acceptable
if we consider that all vehicle movements through an intersection are protected by a traffic
signal.

2.8.3 Variational Theory as a MILP

Wada [Wada et al., 2017] was the first to cast Variational Theory as a MILP, and showed how
to find an optimal signal policy by solving a discrete shortest path problem on a lopsided VT
network. Wada formulates the objective of minimizing the total delay in the network with
(2.34). The delay can be seen as the difference between the total cumulative departure curve
and the total cumulative departure curve with no delay. The total cumulative departure curve
with no delay is the total cumulative departures shifted by the free flow travel time.

𝐷 (s) =
∑︁
𝑡

N (𝑡 − 𝑥exit/𝑢, 0)Δ𝑡 −
∑︁
𝑡

N (𝑡 ,𝑥exit)Δ𝑡 (2.34)

𝐷 (s) = 𝑈 −
∑︁
𝑗∈Vexit

N𝑗Δ𝑡 (2.35)
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min𝐷 (s) = min𝑈 −
∑︁
𝑗∈Vexit

N𝑗Δ𝑡 = 𝑈 − max
∑︁
𝑗∈Vexit

N𝑗Δ𝑡 (2.36)

=⇒ max
∑︁
𝑗∈Vexit

N𝑗Δ𝑡 (2.37)

The network consists of nodes and links in space–time, with nodes denoted by the setV . Links
are divided into two sets: ordinary links with a slope of𝑢 or −𝑤 dentoted Lo, and signal links
with slope of 0 denotedLs. Nodes are identified by an index 𝑖 = (𝑡𝑖 ,𝑥𝑖) and links are identified
by their nodes as a pair (𝑖 , 𝑗), where (𝑖 , 𝑗) is the link directed from 𝑖 to 𝑗 . Nodes at the network
exit are denoted by the set Vexit. The cost of link (𝑖 , 𝑗) is represented by 𝑐𝑖 𝑗 and is given by
Variatonal Theory (refer to Fig. 2.11(a)). For ordinary links representing forward waves with
slope 𝑢, 𝑐𝑖 𝑗 = 0, while backwave links with slope −𝑤 , 𝑐𝑖 𝑗 = (𝑡 𝑗 − 𝑡𝑖)𝑤𝜌 jam. Traffic signals
are represented with horizontal shortcut links with 𝑐𝑖 𝑗 = 𝑝𝑖 𝑗 (𝑡 𝑗 − 𝑡𝑖)𝑞C, where 𝑝𝑖 𝑗 ∈ {0, 1} is
the signal state between nodes 𝑖 and 𝑗 . If the signal is green then 𝑐𝑖 𝑗 = (𝑡 𝑗 − 𝑡𝑖)𝑞C and when
the signal is red no traffic can flow and 𝑐𝑖 𝑗 = 0 since Q (𝑘 , 𝑡 ,𝑥) = 0 for 𝑡𝑖 ≤ 𝑡 < 𝑡 𝑗 . To cast
the problem as a single origin, multiple destination shortest path problem, a dummy origin
node 𝑜 is added to V and links from 𝑜 to each node at the boundary, with cost 𝑐𝑜𝑖 = N𝑖 , where
N𝑖 is the known cumulative count at boundary node 𝑖 . To find the value of 𝑁𝑖 for 𝑖 ∈ Vexit
the problem can now be solved using the linear program formulation of the shortest path
problem given by constraints (O3) and (V1).

𝑈 − min
y≥0

∑︁
(𝑖 ,𝑗 ) ∈Lo∪Ls

𝑐𝑖 𝑗𝑦𝑖 𝑗 (O3)

s.t.
∑︁
𝑗

𝑦 𝑗𝑖 −
∑︁
𝑗

𝑦𝑖 𝑗 = 𝛿𝑖𝑑 ∀𝑖 ∈ V \ {𝑜} (V1)

where 𝛿𝑖𝑑 = 1 if 𝑖 = 𝑑 ∈ Vexit, else 0

Note, however, that the constraint (O3) contains the product of 𝑝𝑖 𝑗 and 𝑦𝑖 𝑗 , and if 𝑝𝑖 𝑗 is also
a variable to be solved for the optimal signal policy, then (O3) and (V1) would be a bi-linear
problem. To avoid thisWada proposed using the dual form of the shortest path program given
by constraints (O4) and (V2).

max
N

∑︁
𝑗∈Vexit

N𝑗Δ𝑡 (O4)

s.t. N𝑗Δ𝑡 ≤ N𝑖Δ𝑡 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lo ∪Ls (V2)

Signal Constraint Network

Additionally Wada [Wada et al., 2017] defines a Signal Constraint Network (SCN) to enforce
signal timing constraints and phase sequencing. An SCN for intersection ℓ is a set of nodes,
V ℓ , and links,Lℓ as shown in Fig. 2.15. Further, Lℓ is made up of signal links that represent the
state of a traffic signal over the time interval spanned by the link, and dummy links used to
enforce the timing constraints for minimum green time, lost time and optionally a predefined
fixed cycle time. All links in the SCN have zero cost and an origin node and destination
node, 𝑜 and 𝑑 , are connected to the network with additional dummy links. The signal timing
constraints are satisfied when a unique path is found from 𝑜 to 𝑑 . To find a valid solution on a
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Figure 2.15: A Signal Constraint Network with lost time = 2Δ𝑡 .
(From Figure 3, Wada et al. [2017]).

SCNwe can use a similar method to the primal shortest path problem given in (V1). Each link,
(𝑖 , 𝑗), in the SCN is represented with a binary variable, 𝑧ℓ𝑖 𝑗 and is formulated as constraints
with (V3). ∑︁

𝑗

𝑧ℓ𝑗𝑖 −
∑︁
𝑗

𝑧ℓ𝑖 𝑗 = 𝛿𝑖𝑑 ∀𝑖 ∈ V ℓ \ {𝑜} (V3)

where 𝛿𝑖𝑑 = 1 if 𝑖 = 𝑑 ∈ V ℓ , else 0

For all nodes that are not 𝑜 or 𝑑 , constraint (V3) enforces either no flow through the node, or
exactly one in-flowing link and one out-flowing link, while nodes 𝑜 and 𝑑 must have exactly
one out-flowing and in-flowing link respectively. There is a linear mapping between the SCN
variables 𝑧ℓ𝑖 𝑗 and VT signal variables 𝑝𝑖 𝑗 , given by a transform matrix T. The SCN signal
variables are arranged into is a vector ®𝑧ℓ , which is split into sub-vectors of signal links, ®𝑧ℓs ,
and dummy links, ®𝑧ℓd. Similarly the signal variables are arranged into a vector ®𝑝ℓ split into
subvectors for each phase of intersection ℓ . The transform is given by constraint (2.38), where
T =

[
I Bℓ

]
, and Bℓ is the mapping between dummy links in ®𝑧ℓd representing minimum green

time and signal variables in ®𝑝ℓ .

[
®𝑝ℓ
𝑘

®𝑝ℓ
𝑘+1

]
=

[
I Bℓ

] [
®𝑧ℓs
®𝑧ℓd

]
(2.38)

The transform (2.38) results in a set of constraints given by (V4).

𝑝𝑖 𝑗 = 𝑧
ℓ
𝑖 𝑗 +

∑︁
(𝑖′ ,𝑗 ′ ) ∈Bℓ

𝑧ℓ𝑖′ 𝑗 ′ (V4)
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2.8.4 LKWM as a MILP

Han [Han et al., 2012, 2016a,b] formulated the LKWM as a MILP. Similar to Lo’s CTM formu-
lation, the planing horizon𝑇 is divided up into 𝑁 homogeneous intervals each of Δ𝑡 duration.
Han models the road network as a series of links connected at signal controlled intersections.
Turning probabilities are introduced to model the weighting of divergent flows out of a link
and into at most 2 downstream links. For simplicity the formulation assumes that only one
link will flow into a junction at a time, and this is enforced by the signal phase sequencing.
Each link 𝑖 then has the following properties:

• 𝑄𝑖 = 𝜌 jam𝐿𝑖 : the maximum number of vehicles that can fit within link 𝑖 of length 𝐿𝑖 at
the jam density 𝜌 jam

• 𝐹𝑖 : the maximum capacity flow rate of link 𝑖

• 𝑃𝑟𝑖 ,𝑗 : the turn probability from link 𝑖 to 𝑗

• 𝑇 p
𝑖
=
𝐿𝑖
𝑣
: the time for forward wave to propagate the length of link 𝑖 at speed 𝑣

• 𝑇w
𝑖 =

𝐿𝑖
𝑤
: the time for backwards wave to propagate the length of link 𝑖 at speed𝑤

• Δ
p
𝑖
=

[
𝑇

p
𝑖

Δ𝑡

]
: the number of time intervals for the forward wave to propagate link 𝑖 ,

rounded to the nearest integer

• Δw
𝑖 =

[
𝑇w
𝑖

Δ𝑡

]
: the number of time intervals for the backwards wave to propagate link 𝑖 ,

rounded to the nearest integer

And associated with each link is a set of variables:

• 𝑞in
𝑖 ,𝑛 ∈ [0, 𝐹𝑖]: the flow rate of vehicles into link 𝑖 during interval 𝑛.

• 𝑞out
𝑖 ,𝑛 ∈ [0, 𝐹𝑖]: the flow rate of vehicles out of link 𝑖 during interval 𝑛.

• 𝑓 in
𝑖 ,𝑛 ∈ [0, 𝐹𝑖]: the maximum flow rate of vehicles into link 𝑖 during interval 𝑛.

• 𝑓 out
𝑖 ,𝑛 ∈ [0, 𝐹𝑖], the maximum flow rate of vehicles out of link 𝑖 during interval 𝑛.

• 𝑟 in
𝑖 ,𝑛 ∈ {0, 1}: the traffic flow state at the input of link 𝑖 during interval 𝑛.

• 𝑟out
𝑖 ,𝑛 ∈ {0, 1}: the traffic flow state at the output of link 𝑖 during interval 𝑛.

• 𝑝𝑖 ,𝑛 ∈ {0, 1}: the state of the traffic signal controlling link 𝑖 during interval 𝑛.

The flow state variables 𝑟 in
𝑖 ,𝑛 and 𝑟our

𝑖 ,𝑛 indicate where the input and output, respectively, are
congested:

𝑟 in
𝑖 ,𝑛 =

{
1, if Δ𝑡 ∑𝑛−Δw

𝑖

𝑘=1 𝑞out
𝑖 ,𝑘 +𝑄𝑖 ≤ Δ𝑡

∑𝑛
𝑘=1 𝑞

in
𝑖 ,𝑘

0, otherwise
(2.39)

𝑟out
𝑖 ,𝑛 =


0, if Δ𝑡 ∑𝑛−Δp

𝑖

𝑘=1 𝑞in
𝑖 ,𝑘 ≤ Δ𝑡

∑𝑛
𝑘=1 𝑞

out
𝑖 ,𝑘

1, otherwise
(2.40)
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In the equations (2.39) and (2.39), the states of 𝑟 in
𝑖 ,𝑛 and 𝑟

out
𝑖 ,𝑛 are determined from the cumulative

arrival and departure curves using Newell’s theory of link based kinematic waves (2.21), and
this is translated to constraints (H1) to (H4).

Δ𝑡
𝑛−Δw

𝑖∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 − Δ𝑡

𝑛∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 +𝑄𝑖 ≤ M(1 − 𝑟 in

𝑖 ,𝑛) + 𝜀 (H1)

Δ𝑡
𝑛−Δw

𝑖∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 − Δ𝑡

𝑛∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 +𝑄𝑖 ≥ −M𝑟 in

𝑖 ,𝑛 + 𝜀 (H2)

Δ𝑡
𝑛−Δp

𝑖∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 − Δ𝑡

𝑛∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤ M𝑟out

𝑖 ,𝑛 + 𝜀 (H3)

Δ𝑡
𝑛−Δp

𝑖∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 − Δ𝑡

𝑛∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≥ M(𝑟out

𝑖 ,𝑛 − 1) + 𝜀 (H4)

Next, the upper bounds on the input and output flow rates, 𝑓 in
𝑖 ,𝑛 and 𝑓

out
𝑖 ,𝑛 , are determined from

flow states, 𝑟 in
𝑖 ,𝑛 and 𝑟

out
𝑖 ,𝑛 , using equations (2.41) and (2.42).

𝑓 in
𝑖 ,𝑛 =

{
𝐹𝑖 , if 𝑟 in

𝑖 ,𝑛 = 0

𝑞out
𝑖 ,𝑛−Δw

𝑖

, if 𝑟 in
𝑖 ,𝑛 = 1

(2.41)

𝑓 out
𝑖 ,𝑛 =


𝐹𝑖 , if 𝑟out

𝑖 ,𝑛 = 1

𝑞in
𝑖 ,𝑛−Δp

𝑖

, if 𝑟out
𝑖 ,𝑛 = 0

(2.42)

Which can be cast as constraints (H6) to (H8).

𝐹𝑖 +M(𝑟out
𝑖 ,𝑛 − 1) ≤ 𝑓 out

𝑖 ,𝑛 ≤ 𝐹𝑖 (H5)
𝑞in
𝑖 ,𝑛−Δp

𝑖

−M𝑟out
𝑖 ,𝑛 ≤ 𝑓 out

𝑖 ,𝑛 ≤ 𝑞in
𝑖 ,𝑛−Δp

𝑖

+M𝑟out
𝑖 ,𝑛 (H6)

𝐹𝑖 +M𝑟 in
𝑖 ,𝑛 ≤ 𝑓 in

𝑖 ,𝑛 ≤ 𝐹𝑖 (H7)
𝑞out
𝑖 ,𝑛−Δw

𝑖
+M(𝑟 in

𝑖 ,𝑛 − 1) ≤ 𝑓 in
𝑖 ,𝑛 ≤ 𝑞out

𝑖 ,𝑛−Δw
𝑖
−M(𝑟 in

𝑖 ,𝑛 − 1) (H8)

The input and output flows 𝑞in
𝑖 ,𝑛 , 𝑞

out
𝑖 ,𝑛 , during interval 𝑛, can now be determined from 𝑓 in

𝑖 ,𝑛 and
𝑓 out
𝑖 ,𝑛 . Firstly, the output flow 𝑞out

𝑖 ,𝑛 is the minimum flow of equation (2.43), weighted by the
traffic signal state.

𝑞out
𝑖 ,𝑛 = 𝑝𝑖 ,𝑛 min

{
𝑓 out
𝑖 ,𝑛 ,

𝑓 in
𝑗 ,𝑛

Pr𝑖 ,𝑗
,

𝑓 in
𝑘 ,𝑛

Pr𝑖 ,𝑘

}
(2.43)
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By introducing helper variable 𝜉𝑖 ,𝑛 and binary variables 𝑧1
𝑖 ,𝑛 ∈ {0, 1} and 𝑧2

𝑖 ,𝑛 ∈ {0, 1}, equation
(2.43) can be cast as constraints (H9) to (H13).

𝑓 out
𝑖 ,𝑛 −M𝑧2

𝑖 ,𝑡 ≤ 𝜉𝑖 ,𝑛 ≤ 𝑓 out
𝑖 ,𝑛 (H9)

𝑓 in
𝑗 ,𝑛

Pr𝑖 ,𝑗
−M𝑧1

𝑖 ,𝑛 −M(1 − 𝑧2
𝑖 ,𝑛) ≤ 𝜉𝑖 ,𝑛 ≤

𝑓 in
𝑗 ,𝑛

Pr𝑖 ,𝑗
(H10)

𝑓 in
𝑘 ,𝑛

Pr𝑖 ,𝑘
−M(1 − 𝑧1

𝑖 ,𝑛) −M(1 − 𝑧2
𝑖 ,𝑛) ≤ 𝜉𝑖 ,𝑛 ≤

𝑓 in
𝑘 ,𝑛

Pr𝑖 ,𝑘
(H11)

0 ≤ 𝑞out
𝑖 ,𝑛 ≤ M𝑝𝑖 ,𝑛 (H12)

𝜉𝑖 ,𝑛 +M(𝑝𝑖 ,𝑛 − 1) ≤ 𝑞out
𝑖 ,𝑛 ≤ 𝜉𝑖 ,𝑛 (H13)

Finally, 𝑞in
𝑖 ,𝑛 is the sum of the output flows of the links 𝑗 and 𝑘 , flowing into 𝑖 , weighted by the

turn probabilities, Pr𝑘 ,𝑖 and Pr𝑘 ,𝑖 , and is given in constraint (H14).

𝑞in
𝑖 ,𝑛 = Pr𝑗 ,𝑖𝑞out

𝑗 ,𝑛 + Pr𝑘 ,𝑖𝑞
out
𝑘 ,𝑛 (H14)

To ensure that only one signal phase is active at a time in any intersection, constraint (H15)
is introduced, where 𝑖 and 𝑗 are the two approaches to the intersection. Constraint (H15)
ensures that the is only one inflow at a time to an intersection, avoiding the need to model
merging flows

𝑝𝑖 ,𝑛 + 𝑝 𝑗 ,𝑛 = 1 (H15)

Han makes no attempt to constrain the phase or cycle durations for the signals, pointing out
that this results in the most flexible phase splits and cycle durations, although this ignores
practical considerations such as a minimum green time needed for cross walk signals, and
unbounded waits with no upper bound on red signal duration.

As an objective function Han proposed to maximise flow as the inverse of delay, using
objective (O5).

max
𝑁∑︁
𝑛=1

1
𝑛 + 1

∑︁
𝑖∈I

𝑞out
𝑖 ,𝑛 (O5)

Here, I is the set of links prioritized in the solution, and the weighting 1
𝑛+1 is an incentive for

solutions to maximize traffic flow as early as possible within the planning horizon.

2.9 Summary

In this chapter we looked at basic traffic flow theory, before deriving the Hamilton Jacobi
form of the LWR equation using the fundamental relation of flow and density.

CTM was the first formulation to offer a stable method of solving the LWR equation and
simulating traffic flow in roadways with the modeling of shock wave phenomena. Newell
observed that the boundary conditions of a homogeneous link can be used to find the function
N (𝑥 , 𝑡), from the constraints relating the cumulative arrival and departures curves. And later
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Yperman extend Newell’s theory with the LTM formulation to model LWR traffic flows on
networks of homogeneous links, using a triangular fundamental diagram. Finally Deganzo
showed that varational theory can be used to solve the Hamilton Jacobi form of the LWR
equation, by solving a shortest path problem on lattice of wave paths embedded in a space-
time diagram.

CTM was first cast as a MILP for traffic signal optimization by Lo along with an objective
function for minimizing delay, and was later extended by Lin and Wang. LTM was cast as
a MILP by Hajiahmadi for a ramp metering application, but received little further interest.
Wada first formulated varational theory as a MILP using the dual form of the shortest path
LP, and gave an extension for stochastic arrivals.

There are several useful things to consider with these formulations:

1. Link based approaches use fewer variables for the same number of time steps, than
CTM.

2. Lin and Wang’s trick of using a withholding term in the objective function to avoid
direct evaluation of minimizations, saves the use of additional binary variables.

3. The VT formulation of Wada does not support turning movements

We will make use of these observations in the following chapters.
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3.1 Overview

In this chapter, we build on the body of work in mixed integer linear programming (MILP)
approaches that attempt to jointly optimize traffic signal control over an entire traffic net-
work (rather than focus on arterial routes) and specifically on improving the scalability of
these methods for large urban traffic networks. In our investigation of existing approaches in
this vein, namely exemplar methods in the spirit of [Lo, 1998; Lin andWang, 2004] that use a
(modified) cell transmission model (CTM) [Daganzo, 1994, 1995] for their underlying predic-
tion of traffic flows, we remark that a major drawback is the CTM-imposed requirement to
choose a predetermined homogeneous (and often necessarily small) time step for reasonable
modeling fidelity. This need to model a large number of CTM cells with a small time step
leads to MILPs that are exceedingly large and often intractable to solve.

Our primary insight in this work stems from the fact that MILP-based approaches to traf-
fic control used in a receding horizon control manner (that replan at fixed time intervals)
need to compute high fidelity control policies only for the early stages of the signal plan;
therefore, coarser time steps can be employed to “see” over a long horizon to preemptively
adapt to distant platoons and other predicted long-term changes in traffic flows. This need for
non-homogeneous control in turn spawns the need for an additional innovation: we require
a traffic flowmodel that permits non-homogeneous time steps and properly models the travel
time delay between lights. To this end, we might consider CTM extensions such as the vari-
able cell length CTM [Xiaojian et al., 2010], stochastic CTM [Sumalee et al., 2011; Jabari and
Liu, 2012], CTM extensions for better modeling freeway-urban interactions [Huang, 2011] in-
cluding CTM hybrids with link-based models [Muralidharan et al., 2009], assymmetric CTMs
for better handling flow imbalances in merging roads [Gomes and Horowitz, 2006], the sit-
uational CTM for better modeling of boundary conditions [Kim, 2002], and the lagged CTM
for improved modeling of the flow density relation [Lu et al., 2011]. However, despite the
widespread varieties of the CTM and usage for a range of applications [Alecsandru et al.,
2011], there seems to be no extension that permits non-homogeneous time steps as proposed
in our novel MILP-based control approach.

For this reason, as a major contribution of this work to enable our non-homogeneous time
MILP-based model of joint intersection control, we contribute the queue transmission model
(QTM) that blends elements of cell-based and link-based modeling approaches as illustrated
and summarized in Figure 3.1. The QTM offers the following key benefits:

• Unlike previous CTM-based joint intersection signal optimization [Lo, 1998; Lin and
Wang, 2004; Islam et al., 2020], the QTM is intended for non-homogeneous time steps
that can be used for control over large horizons.

• Any length of roadway without merges or diverges can be modeled as a single queue
leading to compact QTM MILP encodings of large traffic networks (i.e., large numbers
of cells and their associated MILP variables are not required between intersections).
Further, the free flow travel time of a link can be modeled exactly, independent of the
discritizaiton time step, while CTM requires a further increased discretization to ap-
proach the same resolution.

• The QTM accurately models fixed travel time delays critical to greenwave coordination
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Figure 3.1: (a) Example of a real traffic network modeled using the QTM. (b) A preview of
different QTMmodel parameters as a function of non-homogeneous discretized time intervals
indexed by 𝑛. For each 𝑛, we show the following parameters: the elapsed time 𝑡 , the non-
homogeneous time step length Δ𝑡 , the cumulative duration 𝑑 of two different light phases for
𝑙6, the phase 𝑝 of light 𝑙6, and the traffic volume of different queues 𝑞 linearly interpolated
between time points. There is technically a binary 𝑝 for each phase, but we abuse notation
and simply show the current active phase: NS for north-south green and EW for east-west
green assuming the top of the map is north. Here we see that traffic progresses from 𝑞1 to
𝑞7 to 𝑞9 according to light phases and traffic propagation delay with non-homogeneous time
steps only at required changepoints. We refer to the QTM model section for precise notation
and technical definitions.

as in [Gartner et al., 1974; Gartner and Stamatiadis, 2002; He et al., 2011] through the
use of a non-first order Markovian update model and further combines this with fully
joint intersection signal optimization in the spirit of [Lo, 1998; Lin and Wang, 2004;
Han et al., 2012].

In the remainder of this chapter, we first formalize our novel QTM model of traffic flow
with non-homogeneous time steps and show how to encode it as a linear program for com-
puting traffic flows. Next we proceed to allow the traffic signals to become discrete phase
variables that are optimized subject to a delay minimizing objective and standard minimum
and maximum time constraints for cycles and phases; this results in our final MILP formula-
tion of traffic signal control. We then experiment with this novel QTM-based MILP control
in a range of traffic networks and demonstrate that the non-homogeneous MILP formulation
achieves (i) substantially lower delay solutions, (ii) improved per-vehicle delay distributions,
and (iii) more optimal travel times over a longer horizon in comparison to the homogeneous
MILP formulation with the same number of binary and continuous variables.

3.2 The Queue Transmission Model (QTM)

A Queue Transmission Model (QTM) is the tuple (Q,L, ®Δ𝑡 , I), where Q and L are, respec-
tively, the set of queues and lights; ®Δ𝑡 is a vector of size N representing the homogeneous, or
non-homogeneous, discretization of the problem horizon [0, T] and the duration in seconds
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of the 𝑛-th time interval is denoted as Δ𝑡𝑛 ; and I is a matrix |Q| × T in which 𝐼𝑖 ,𝑛 represents
the flow of vehicles requesting to enter queue 𝑖 from the outside of the network at time 𝑛.

A traffic light ℓ ∈ L is defined as the tuple (Ψmin
ℓ , Ψmax

ℓ ,Pℓ , ®Φmin
ℓ , ®Φmax

ℓ ), where:

• Pℓ is the set of phases of ℓ ;

• Ψmin
ℓ (Ψmax

ℓ ) is the minimum (maximum) allowed cycle time for ℓ ; and

• ®Φmin
ℓ (®Φmax

ℓ ) is a vector of size |Pℓ | and Φmin
ℓ ,𝑘 (Φmax

ℓ ,𝑘 ) is the minimum (maximum) allowed
time for phase 𝑘 ∈ Pℓ .

A queue 𝑖 ∈ Q represents a segment of road that vehicles traverse at free flow speed;
once traversed, the vehicles are vertically stacked in a stop line queue. Formally, a queue 𝑖 is
defined by the tuple (Q𝑖 , Tp

𝑖
, Fout
𝑖 , ®𝐹𝑖 , ®𝑃𝑟 𝑖 ,QP

𝑖 ) where:

• Q𝑖 is the maximum capacity of 𝑖;

• Tp
𝑖
is the time required to traverse 𝑖 and reach the stop line;

• Fout
𝑖 represents the maximum traffic flow from 𝑖 to the outside of the modeled network;

• ®𝐹𝑖 and ®𝑃𝑟 𝑖 are vectors of size |Q| and their 𝑗-th entry (i.e., F𝑖 ,𝑗 and Pr𝑖 ,𝑗 ) represent
the maximum flow from queue 𝑖 to 𝑗 and the turn probability from 𝑖 to 𝑗 (where∑
𝑗∈Q Pr𝑖 ,𝑗 = 1), respectively; and

• QP
𝑖 is the set of traffic light phases controlling the outflow of queue 𝑖 , where the pair,

(ℓ ,𝑘) ∈ QP
𝑖 , denotes phase 𝑘 of light ℓ .

Differently than the CTM [Daganzo, 1994; Lin andWang, 2004], the QTMdoes not assume
that Δ𝑡𝑛 = Tp

𝑖
for all 𝑛, that is, the QTM can represent non-homogeneous time intervals

(Section 3.1). The only requirement over Δ𝑡𝑛 is that no traffic light maximum phase time
is smaller than any Δ𝑡𝑛 since phase changes occur only between time intervals; formally,
Δ𝑡𝑛 ≤ minℓ∈L,𝑘∈Pℓ

Φmax
ℓ ,𝑘 for all 𝑛 ∈ {1, . . . , N}.

3.2.1 Computing Traffic Flows with QTM

In this section, we present how to compute traffic flows using QTM and non-homogeneous
time intervals Δ𝑡 . We assume for the remainder of this section that a valid control plan for
all traffic lights is fixed and given as parameter; formally, for all ℓ ∈ L, 𝑘 ∈ Pℓ , and interval
𝑛 ∈ {1, . . . , N}, the binary variable 𝑝ℓ ,𝑘 ,𝑛 is known a priori and indicates if phase 𝑘 of light ℓ is
active (i.e., 𝑝ℓ ,𝑘 ,𝑛 = 1) or not on interval 𝑛. Each phase 𝑘 ∈ Pℓ can control the flow from more
than one queue, allowing arbitrary intersection topologies to be modelled, including “all red”
phases as a switching penalty and modeling lost time from amber lights.

We represent the problem of finding the maximal flow between capacity-constrained
queues as a Linear Program (LP) over the following variables defined for all intervals 𝑛 ∈
{1, . . . , N} and queues 𝑖 and 𝑗 :
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• 𝑞𝑖 ,𝑛 ∈ [0, Q𝑖]: traffic volume waiting in the stop line of queue 𝑖 at the beginning of
interval 𝑛;

• 𝑓 in
𝑖 ,𝑛 ∈ [0, 𝐼𝑖 ,𝑛]: inflow to the network via queue 𝑖 during interval 𝑛;

• 𝑓 out
𝑖 ,𝑛 ∈ [0, Fout

𝑖 ]: outflow from the network via queue 𝑖 during interval 𝑛; and

• 𝑓𝑖 ,𝑗 ,𝑛 ∈ [0, F𝑖 ,𝑗 ]: flow from queue 𝑖 into queue 𝑗 during interval 𝑛.

Themaximum traffic flow fromqueue 𝑖 to queue 𝑗 is enforced by constraints (Q1) and (Q2).
(Q1) ensures that only the fraction Pr𝑖 ,𝑗 of the total internal outflow of 𝑖 goes to 𝑗 , and since
each 𝑓𝑖 ,𝑗 ,𝑛 appears on both sides of (Q1), the upstream queue 𝑖 will block if any downstream
queue 𝑗 is full. (Q2) forces the flow from 𝑖 to 𝑗 to be zero if all phases controlling 𝑖 are
inactive (i.e., 𝑝ℓ ,𝑘 ,𝑛 = 0 for all (ℓ ,𝑘) ∈ QP

𝑖 ). If more than one phase 𝑝ℓ ,𝑘 ,𝑛 is active, then (Q2)
is subsumed by the domain upper bound of 𝑓𝑖 ,𝑗 ,𝑛 .

𝑓𝑖 ,𝑗 ,𝑛 = Pr𝑖 ,𝑗
|Q |∑︁
𝑘=1

𝑓𝑖 ,𝑘 ,𝑛 (Q1)

𝑓𝑖 ,𝑗 ,𝑛 ≤ F𝑖 ,𝑗
∑︁

(ℓ ,𝑘 ) ∈QP
𝑖

𝑝ℓ ,𝑘 ,𝑛 (Q2)

To simplify the presentation of the remainder of the LP, we define the helper variables
𝑞in
𝑖 ,𝑛 (Q3), 𝑞out

𝑖 ,𝑛 (Q4), and 𝑡𝑛 (3.1) to represent the volume of traffic to enter and leave queue 𝑖
during interval 𝑛, and the time elapsed since the beginning of the problem until the end of
interval Δ𝑡𝑛 , respectively.

𝑞in
𝑖 ,𝑛 = Δ𝑡𝑛 (𝑓 in

𝑖 ,𝑛 +
|Q |∑︁
𝑗=1

𝑓𝑗 ,𝑖 ,𝑛) (Q3)

𝑞out
𝑖 ,𝑛 = Δ𝑡𝑛 (𝑓 out

𝑖 ,𝑛 +
|Q |∑︁
𝑗=1

𝑓𝑖 ,𝑗 ,𝑛) (Q4)

𝑡𝑛 =
𝑛∑︁
𝑥=1

Δ𝑡𝑥 (3.1)

In order to account for the misalignment of the different Δ𝑡 and Tp
𝑖
, we need to find the

volume of traffic that entered queue 𝑖 between two arbitrary points in time 𝑥 and𝑦 (𝑥 ∈ [0, T],
𝑦 ∈ [0, T], and 𝑥 < 𝑦), i.e., 𝑥 and 𝑦 might not coincide with any 𝑡𝑛 for 𝑛 ∈ {1, . . . ,𝑁 }.

This volume of traffic, denoted as 𝑉𝑖 (𝑥 ,𝑦), is obtained by integrating 𝑞in
𝑖 ,𝑛 over [𝑥 ,𝑦] and

is defined in (3.2) where 𝑚 and 𝑤 are the index of the time intervals s.t. 𝑡𝑚 ≤ 𝑥 < 𝑡𝑚+1
and 𝑡𝑤 ≤ 𝑦 < 𝑡𝑤+1. Because the QTM dynamics are piecewise linear, 𝑞in

𝑖 ,𝑛 is a step function
w.r.t. time and this integral reduces to the sum of 𝑞in

𝑖 ,𝑛 over the intervals contained in [𝑥 ,𝑦]
and the appropriate fraction of 𝑞in

𝑖 ,𝑚 and 𝑞in
𝑖 ,𝑤 representing the misaligned beginning and end

of [𝑥 ,𝑦].

𝑉𝑖 (𝑥 ,𝑦) = (𝑡𝑚+1 − 𝑥)
𝑞in
𝑖 ,𝑚

Δ𝑡𝑚
+

(
𝑤−1∑︁
𝑘=𝑚+1

𝑞in
𝑖 ,𝑘

)
+ (𝑦 − 𝑡𝑤)

𝑞in
𝑖 ,𝑤

Δ𝑡𝑤
(3.2)
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Figure 3.2: An example of using𝑉𝑖 (𝑥 ,𝑦) for a queue 𝑖 , to find the volume of traffic arriving at
the stop line during interval 6, and the total volume of traffic within the link.

Using these helper variables, (Q5) represents the flow conservation principle for queue 𝑖
where 𝑉𝑖 (𝑡𝑛−1 − Tp

𝑖
, 𝑡𝑛 − Tp

𝑖
) is the volume of vehicles that reached the stop line during Δ𝑡𝑛 .

Since ®Δ𝑡 and Tp
𝑖
for all queues are known a priori, the indexes𝑚 and𝑤 used by𝑉𝑖 can be pre-

computed in order to encode (3.2); moreover, (Q5) represents a non-first order Markovian
update because the update considers the previous 𝑤 −𝑚 time steps. To ensure that the total
volume of traffic traversing 𝑖 (i.e.,𝑉𝑖 (𝑡𝑛 − Tp

𝑖
, 𝑡𝑛)) and waiting at the stop line does not exceed

the capacity of the queue, we apply (Q6). When queue 𝑖 is full, 𝑞in
𝑖 ,𝑛 = 0 by (Q6), which forces

𝑓𝑗 ,𝑖 ,𝑛 to 0 in (Q3) and (Q4). This in turn allows the queue in 𝑖 to spill back into the upstream
queue 𝑗 . See Fig. 3.2 for an example of the volume functions.

𝑞𝑖 ,𝑛 = 𝑞𝑖 ,𝑛−1 − 𝑞out
𝑖 ,𝑛−1 +𝑉𝑖 (𝑡𝑛−1 − Tp

𝑖
, 𝑡𝑛 − Tp

𝑖
) (Q5)

𝑞𝑖 ,𝑛 ≤ Q𝑖 −𝑉𝑖 (𝑡𝑛 − Tp
𝑖
, 𝑡𝑛) (Q6)

QTM uses the objective function (O6) to minimize total delay in the network. By maxi-
mizing each flow, 𝑓 out

𝑖 ,𝑛 , 𝑓 in
𝑖 ,𝑛 and 𝑓𝑖 ,𝑗 ,𝑛 against its upper bound, weighted by the time remaining

until the end of the problem horizon T, the optimizer is forced to allow as much traffic vol-
ume as possible into the network and move traffic to the outside of the network as soon as
possible.

max
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

(T − 𝑡𝑛)Δ𝑡𝑛 𝑓 out
𝑖 ,𝑛 +

N∑︁
𝑛=1

|Q |∑︁
𝑖=1

(T − 𝑡𝑛)Δ𝑡𝑛 𝑓 in
𝑖 ,𝑛

+𝛽
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

(T − 𝑡𝑛)
|Q |∑︁
𝑗=1

Δ𝑡𝑛 𝑓𝑖 ,𝑗 ,𝑛 (O6)

The first term of objective (O6) corresponds to minimizing delay. To see this, consider
the objective transformation max 𝐽 = −min−𝐽 and, after expanding, we have the equivalent
minimization (3.3). Without loss of generality, if we consider the case where all traffic clears
the network, then the sum ∑

𝑛

∑
𝑖 𝑇Δ𝑡𝑛 𝑓

out
𝑖 ,𝑛 is a constant and (3.3) can be reduced to (3.4).
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Figure 3.3: Example of a total cumulative departure curve for a network. Total delay in vehicle
seconds is represented by the hatched region between the departure curve and its upper
bound, the departure curve with no delay. The first term of the objective function (O6) seeks
to maximize the area under the departure curve. This is equivalent to minimizing the area
above the departure curve (shaded region) and therefore (O6) minimizes delay.

Since Δ𝑡𝑛 is implicitly 1 in CTM, (3.4) is equal to the objective function given in [Lin and
Wang, 2004], which was shown to be the minimization of total delay.

Fig. 3.3 provides a graphical interpretation of (3.3) as the difference of areas, where the
first term of (O6) is the area below the cumulative departure curve for the network, the sum∑
𝑛

∑
𝑖 𝑇Δ𝑡𝑛 𝑓

out
𝑖 ,𝑛 is the area of the dotted rectangle enclosing the curve, and the shaded area

above the curve is given by (3.4).

−min
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

𝑡𝑛Δ𝑡𝑛 𝑓
out
𝑖 ,𝑛 −

N∑︁
𝑛=1

|Q |∑︁
𝑖=1

𝑇Δ𝑡𝑛 𝑓
out
𝑖 ,𝑛 (3.3)

min
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

𝑡𝑛Δ𝑡𝑛 𝑓
out
𝑖 ,𝑛 (3.4)

The second term of (O6) maximizes the inflow at the rate given by I, but allows for elas-
ticity in the case of any queue spill back that blocks an input.

The third term of (O6) ensures that the optimizer always moves vehicles from 𝑖 to 𝑗 when
the associated traffic phase is active and 𝑗 is not full. As described in [Lin and Wang, 2004],
the value of 𝛽 should be sufficiently small to avoid interfering with the main objective by
giving too much priority to the internal flows.

To illustrate the representation tradeoff offered by non-homogeneous time intervals, we
computed flows and queue volumes for a fixed signal control plan derived for homogeneous
Δ𝑡𝑛 = 1s (ground truth) using different discretizations. Fig. 3.4(a) shows the approximation
of the ground truth using homogeneous Δ𝑡 = 2.5 and Δ𝑡 = 5.0, and Fig. 3.4(b) using non-
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Figure 3.4: Approximations of a queue volume obtained using homogeneous ®Δ𝑡 =

{1.0, . . . , 1.0} using: (a) homogeneous ®Δ𝑡 = {2.5, . . . , 2.5} and ®Δ𝑡 = {5.0, . . . , 5.0}; and (b)
non-homogeneous ®Δ𝑡 = {1.0, 1.05, 1.1, 1.16, . . . , 2.29, 2.41, 2.5} where Δ𝑡𝑛 ≈ 0.0956𝑛 + 0.9044
for 𝑛 ∈ {1, . . . , 17}. Here we see that (b) achieves accuracy in the near-term that somewhat
degrades over the long-term, where accuracy will be less critical for receding horizon control.
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homogeneous time intervals that linearly increases from 1s to 2.5s, i.e., Δ𝑡𝑛 ≈ 0.0956𝑛 + 0.9044
for 𝑛 ∈ {1, . . . , 17}. As Fig. 3.4(a) shows, large time steps can be rough approximations of the
ground truth. Non-homogeneous discretization (Fig. 3.4(b)) exploit this fact to provide a good
approximation in the initial time steps and progressively decrease precision for points far in
the future.

3.3 Traffic Control with QTM encoded as a MILP

In this section, we remove the assumption that a valid control plan for all traffic lights is given
and extend the LP (O6, Q1–Q6) to an Mixed-Integer LP (MILP) that also computes the optimal
control plan. Formally, for all ℓ ∈ L, 𝑘 ∈ Pℓ , and interval 𝑛 ∈ {1, . . . ,𝑁 }, the phase activation
parameter 𝑝ℓ ,𝑘 ,𝑛 ∈ {0, 1} becomes a free variable to be optimized. In order to obtain a valid
control plan, we enforce that one phase of traffic light ℓ is always active at any interval 𝑛 (Q7),
and ensure cyclic phase polices where phase changes follow a fixed ordered sequence (Q8),
i.e., if phase 𝑘 was active during interval 𝑛 − 1 and has become inactive in interval 𝑛, then
phase 𝑘 + 1 must be active in interval 𝑛. (Q8) assumes that 𝑘 + 1 equals 1 if 𝑘 = |Pℓ |.

|Pℓ |∑︁
𝑘=1

𝑝ℓ ,𝑘 ,𝑛 = 1 (Q7)

𝑝ℓ ,𝑘 ,𝑛−1 ≤ 𝑝ℓ ,𝑘 ,𝑛 + 𝑝ℓ ,𝑘+1,𝑛 (Q8)

Next, we enforce the minimum and maximum phase durations (i.e., Φmin
ℓ ,𝑘 and Φmax

ℓ ,𝑘 ) for
each phase 𝑘 ∈ Pℓ of traffic light ℓ . To encode these constraints, we use the helper variable
𝑑ℓ ,𝑘 ,𝑛 ∈ [0, Φmax

ℓ ,𝑘 ], defined by constraints (Q9–Q13), that: (i) holds the elapsed time since the
start of phase 𝑘 when 𝑝ℓ ,𝑘 ,𝑛 is active (Q9,Q10); (ii) is constant and holds the duration of the
last phase until the next activation when 𝑝ℓ ,𝑘 ,𝑛 is inactive (Q11,Q12); and (iii) is restarted
when phase 𝑘 changes from inactive to active (Q13). Notice that (Q9–Q13) employs the big-
M method to turn the cases that should not be active into subsumed constraints based on
the value of 𝑝ℓ ,𝑘 ,𝑛 . We use Φmax

ℓ ,𝑘 as our large constant since 𝑑ℓ ,𝑘 ,𝑛 ≤ Φmax
ℓ ,𝑘 and Δ𝑡𝑛 ≤ Φmax

ℓ ,𝑘 .
Similarly, constraint (Q14) ensures the minimum phase time of 𝑘 and is not enforced while
𝑘 is still active. Figs. 3.5(a) to 3.5(c) present an example of how (Q9–Q14) work together as a
function of the time 𝑛 for 𝑑ℓ ,𝑘 ,𝑛 ; the domain constraint 0 ≤ 𝑑ℓ ,𝑘 ,𝑛 ≤ Φmax

ℓ ,𝑘 for all 𝑛 ∈ {1, . . . , N}
is omitted for clarity.

𝑑ℓ ,𝑘 ,𝑛 ≤ 𝑑ℓ ,𝑘 ,𝑛−1 + Δ𝑡𝑛−1𝑝ℓ ,𝑘 ,𝑛−1 + Φmax
ℓ ,𝑘 (1 − 𝑝ℓ ,𝑘 ,𝑛−1) (Q9)

𝑑ℓ ,𝑘 ,𝑛 ≥ 𝑑ℓ ,𝑘 ,𝑛−1 + Δ𝑡𝑛−1𝑝ℓ ,𝑘 ,𝑛−1 − Φmax
ℓ ,𝑘 (1 − 𝑝ℓ ,𝑘 ,𝑛−1) (Q10)

𝑑ℓ ,𝑘 ,𝑛 ≤ 𝑑ℓ ,𝑘 ,𝑛−1 + Φmax
ℓ ,𝑘 𝑝ℓ ,𝑘 ,𝑛−1 (Q11)

𝑑ℓ ,𝑘 ,𝑛 ≥ 𝑑ℓ ,𝑘 ,𝑛−1 − Φmax
ℓ ,𝑘 𝑝ℓ ,𝑘 ,𝑛 (Q12)

𝑑ℓ ,𝑘 ,𝑛 ≤ Φmax
ℓ ,𝑘 (1 − 𝑝ℓ ,𝑘 ,𝑛 + 𝑝ℓ ,𝑘 ,𝑛−1) (Q13)

𝑑ℓ ,𝑘 ,𝑛 ≥ Φmin
ℓ ,𝑘 (1 − 𝑝ℓ ,𝑘 ,𝑛) (Q14)

Lastly, we constrain the sum of all the phase durations for light ℓ to be within the cycle
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Figure 3.5: Visualization of constraints (Q9–Q16) for a traffic light ℓ as a function of time.
(a–c) present, pairwise, the constraints (Q9–Q14) for phase 𝑘 (𝑑ℓ ,𝑘 ,𝑛 as the black line) and the
activation variable 𝑝ℓ ,𝑘 ,𝑛 in the small plot. (d) presents the constraints for the cycle time of ℓ
(Q15 and Q16), where T.C.T. is the total cycle time and is the left hand side of both constraints.
For this example, Φmin

ℓ ,𝑘 = 1, Φmax
ℓ ,𝑘 = 3, Ψmin

ℓ = 7, and Ψmax
ℓ = 8.
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time limits Ψmin
ℓ (Q15) and Ψmax

ℓ (Q16). In both (Q15) and (Q16), we use the duration of phase
1 of ℓ from the previous interval 𝑛 − 1 instead of the current interval 𝑛 because (Q13) forces
𝑑ℓ ,1,𝑛 to be 0 at the beginning of each cycle; however, from the previous end of phase 1 until
𝑛 − 1, 𝑑ℓ ,1,𝑛−1 holds the correct elapse time of phase 1. Additionally, (Q15) is enforced right
after the end of the each cycle, i.e., when its first phase is changed from inactive to active.
The value (Q15) and (Q16) over time for a traffic light ℓ is illustrated in Fig. 3.5(d).

𝑑ℓ ,1,𝑛−1 +
|Pℓ |∑︁
𝑘=2

𝑑ℓ ,𝑘 ,𝑛 ≥ Ψmin
ℓ (𝑝ℓ ,1,𝑛 − 𝑝ℓ ,1,𝑛−1) (Q15)

𝑑ℓ ,1,𝑛−1 +
|Pℓ |∑︁
𝑘=2

𝑑ℓ ,𝑘 ,𝑛 ≤ Ψmax
ℓ (Q16)

The MILP that encodes the problem of finding the optimal traffic control plan in a QTM
network is defined by (O6, Q1–Q16).

3.4 Empirical Evaluation

In this section we compare the solutions for traffic networks modeled as a QTM using ho-
mogeneous and non-homogeneous time intervals with respect to two evaluation criteria: the
quality of the solution and convergence to the optimal solution vs. the number of time steps.
Specifically, we compare the quality of solutions based on the total travel time and we also
consider the third quartile and maximum of the observed delay distribution. The hypotheses
we wish to evaluate in this paper are: (i) the quality of the non-homogeneous solutions is at
least as good as the homogeneous ones when the number of time intervals N is fixed; and (ii)
the non-homogeneous approach requires less time intervals (i.e., smaller N) than the homo-
geneous approach to converge to the optimal solution. In the remainder of this section, we
present the traffic networks considered in the experiments, our methodology, and the results.

3.4.1 Networks

We consider three networks of increasing complexity (Fig. 3.6): an avenue crossed by three
side streets; a 2-by-3 grid; and a 3-by-3 grid with a diagonal avenue. The queues receiving
vehicles from outside of the network are marked in Fig. 3.6 and we refer to them as input
queues. The maximum queue capacity (Q𝑖 ) is 60 vehicles for non-input queues and infinity
for input queues to prevent interruption of the input demand due to spill back from the stop
line. The traversal time of each queue 𝑖 (Tp

𝑖
) is set at 9s (a distance of 125m with a free flow

speed of 50km/h). For each street, flows are defined from the head of each queue 𝑖 into the
tail of the next queue 𝑗 ; there is no turning traffic (Pr𝑖 ,𝑗 = 1), and the maximum flow rate
between queues, F𝑖 ,𝑗 , is set at 5 vehicles/s. All traffic lights have two phases, north-south and
east-west, and lights 2, 4 and 6 of network 3 have the additional northeast-southwest phase
to control the diagonal avenue. For networks 1 and 2, Φmin

ℓ ,𝑘 is 1s, Φmax
ℓ ,𝑘 is 3s, Ψmin

ℓ is 2s, and
Ψmax
ℓ is 6s, for all traffic light ℓ and phase 𝑘 . For network 3, Φmin

ℓ ,𝑘 is 1s and Φmax
ℓ ,𝑘 is 6s for all ℓ

and 𝑘 ; and Ψmin
ℓ is 2s and Ψmax

ℓ is 12s for all lights ℓ except for lights 2, 4 and 6 (i.e., lights also
used by the diagonal avenue) in which Ψmin

ℓ is 3s and Ψmax
ℓ is 18s.
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Figure 3.6: (a–c) Networks used to evaluate the QTM performance. (d) Demand profile of the
queues marked as ♦, ♣, and ♠ for our experiments.



§3.4 Empirical Evaluation 45

(a)

0 5 10 15 20 25 30 35 40

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

∆
t

Non-homogeneous ~∆t1

Non-homogeneous ~∆t2

(b)

Figure 3.7: (a) Receding horizon control. In this example, the problem horizon T is 40s. The
major frames forMILP optimization are discretized in 12 time intervals (N = 12) and they span
15s and 30s for homogeneous and non-homogeneous discretizations, respectively. The minor
frames represent the prefix of the major frame MILP optimization that is executed. The hori-
zon recedes by the minor frame duration after each execution. (b) The two non-homogeneous
discretizations used in the experiments, shown here with a major frame duration of 40s. From
the end of the minor frame time, Δ𝑡 is linearly interpolated over 10s, from 0.25 to 0.5 for Non-
homogeneous ®Δ𝑡1, and 0.25 to 1.0 for Non-homogeneous ®Δ𝑡2. Δ𝑡 is then held constant to the
end of the major frame time. The number of intervals in ®Δ𝑡1 is N = 80, and in ®Δ𝑡2 is N = 68.

3.4.2 Experimental Methodology

For each network, a constant background level traffic is injected in the network in the first
55s to allow the solver to settle on a stable policy. Then a spike in demand is introduced in the
queues marked as ♠ (Fig. 3.6) from time 55s to 70s to trigger a policy change. From time 70s
to 85s, the demand is returned to the background level, and then reduced to zero for all input
queues. We extend the problem horizon T until all vehicles have left the network. By clearing
the network, we can easily measure the total travel time for all the traffic as the area between
the cumulative arrival and departure curves measured at the boundaries of the network. The
background level for the input queues are 1, 4 and 2 vehicles/s for queues marked as ♦, ♣
and ♠ (Fig. 3.6(d)), respectively; and during the high demand period, the queues ♠ receive 4
vehicles/s.

For both homogeneous and non-homogeneous intervals, we use the MILP QTM formu-
lation in a receding horizon manner: a control plan is computed for a pre-defined horizon
(smaller than T) and only a prefix of this plan is executed before generating a new control
plan. Fig. 3.7(a) depicts our receding horizon approach and we refer to the planning horizon
as a major frame and its executable prefix as a minor frame. Notice that, while the plan for a
minor frame is being executed, we can start computing the solution for the next major frame
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based on a forecast model.
To perform a fair comparison between the homogeneous and non-homogeneous dis-

cretizations, we fix the size of all minor frames to 10s and force it to be discretized in ho-
mogeneous intervals of 0.25s. For the homogeneous experiments, Δ𝑡 is kept at 0.25s through-
out the major frame; therefore, given N, the major frame size equals N/4 seconds for the
homogeneous approach. For the non-homogeneous experiments, we increase Δ𝑡 linearly
from the end of the minor frame for 10s and then hold it constant to the end of the major
frame. We use two discretizations as shown in Fig. 3.7(b): Non-homogeneous ®Δ𝑡1 from 0.25
to 0.5, and Non-homogeneous ®Δ𝑡2 from 0.25 to 1.0. For a given N > 40, the major frame
size used by this non-homogeneous approach is 10.375 + 1.25(N − 40) seconds for ®Δ𝑡1, and
10.375 + 0.625(N − 40) seconds for ®Δ𝑡2. Once we have generated a series of minor frames,
we concatenate them into a single plan and compute the flow through the network using the
QTM LP formulation with a fixed (homogeneous) Δ𝑡 of 0.25s. We also compare both receding
horizon approaches against the optimal solution obtained by computing a single control plan
for the entire control horizon (i.e., [0, T]) using a fixed Δ𝑡 of 0.25s.

For all our experiments, we used GurobiTM as theMILP solver with 12 threads on a 3.1GHz
AMD OpteronTM 4334 processor with 12 cores. We limit the MIP gap accuracy to 0.1% and
the time cutoff for solving a major frame to 3000s for the receding horizon approaches and
unbounded in order to determine the optimal minimum travel time solution to which all other
solutions are compared. All our results are averaged over five runs to account for Gurobi’s
stochastic strategies.

3.4.3 Results

Figs. 3.8(a), 3.8(c) and 3.8(e) show, for each network, the increase in the total travel time
w.r.t. the optimal solution as a function of N. As we hypothesized, the non-homogeneous
discretizations requires less time intervals (i.e., smaller N) to obtain a solution with the same
total travel time, and ®Δ𝑡2 converges before ®Δ𝑡1. This is important because the size of the
MILP, including the number of binary variables, scales linearly with N; therefore, the non-
homogeneous approach can scale up better than the homogeneous one (e.g., Fig. 3.8(e)). Also,
for homogeneous and non-homogeneous discretizations, finding the optimal solution of ma-
jor frames with large N might require more time than our imposed 3000s time cutoff and, in
this case, Gurobi returns a feasible control plan that is far from optimal. The effect in the total
travel time of these poor solutions can be seen in Fig. 3.8(e) for N > 120.

The distribution of the total delay observed by each vehicle while traversing the network
is shown in Figs. 3.8(b), 3.8(d) and 3.8(f). Each group of box plots represents a different value
of N: when the non-homogeneous ®Δ𝑡2 first converges; when the homogeneous Δ𝑡 first con-
verges; and the final solution itself. In all networks, the quality of the solutions obtained
using both of the ®Δ𝑡1 and ®Δ𝑡2 and is better or equal than using homogeneous Δ𝑡 for fixed N
in both the total travel time and fairness, i.e., smaller third quartile and maximum delay.

To further illustrate the differences between homogeneous and non-homogeneous dis-
cretizations, Fig. 3.9 shows the cumulative arrival and departure curves and the how delay
evolves over time for 𝑞1 of network 2 (Fig. 3.6(b)). In Fig. 3.9(a), the comparison is done when
non-homogeneous ®Δ𝑡2 first converges (i.e., point I in Fig. 3.8(c)) and for this value of N, the
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Figure 3.8: Increase in the total travel time w.r.t. the optimal solution as a function of N (a,c,e)
and distribution of the total delay of each car for different values of N (b,d,f). For each row,
the Roman numeral on top of the box plots corresponds to points on the travel time plot
marked with the same numeral. The mean of the total delay is presented as a red square in
the box plots. Plots in the 𝑖-th row correspond to the results for the 𝑖-th network in Fig. 3.6.
Non-homogeneous (NH) achieves much better solutions at smaller N than Homogeneous (H).
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Figure 3.9: Cumulative arrival and departure curves and delay for queue 1 in the 2-by-3 net-
work (Fig. 3.6(b)). The labels on top of each plot match the labels in Figs. 3.8(c) and 3.8(d).
(c) presents the same curves for the optimal solution. Non-homogeneous (NH ®Δ𝑡2) provides
near-optimal signal plans over a longer time horizon than Homogeneous (H) when the num-
ber of time intervals N is small.

major frame size in seconds of the non-homogeneous approach is 19.125s longer than the
homogeneous one. This allows the MILP solver to “see” 19s further in the future when us-
ing non-homogeneous discretization and find a coordinated signal policy along the avenue
to dissipate the extra traffic that arrives at time 55s. The shorter major frame of the homo-
geneous discretization does not allow the solver to adapt this far in advance and its delay
observed after 55s is much larger than the non-homogeneous one. Once the homogeneous
Δ𝑡 has converged (Fig. 3.9(b)), it is also able to anticipate the increased demand and adapt
well in advance and both approaches generate solutions close to optimum (Fig. 3.9(c)).

3.5 Summary

In this chapter, we showed how to formulate a novel queue transmissionmodel (QTM) of traf-
fic flow with non-homogeneous time steps as a linear program. We then proceeded to allow
the traffic signals to become discrete variables subject to a delay minimizing optimization ob-
jective and standard traffic signal constraints leading to a final MILP formulation of traffic sig-
nal control with non-homogeneous time steps. We experimented with this novel QTM-based
MILP control in a range of traffic networks and demonstrated that the non-homogeneous
MILP formulation achieved (i) substantially lower delay solutions, (ii) improved per-vehicle
delay distributions, and (iii) more optimal travel times over a longer horizon in comparison
to the homogeneous MILP formulation with the same number of binary and continuous vari-
ables. Altogether, this work represents a major step forward in the scalability of MILP-based
jointly optimized traffic signal control via the use of a non-homogeneous time traffic models
and thus helps pave the way for fully optimized joint urban traffic signal controllers as an
improved successor technology to existing signal control methods.
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4.1 Overview

Many cities are increasingly looking to public transit options such as light rail that are less ex-
pensive and often more reliable than heavy rail in order to reduce the number of conventional
traffic commuters [Thompson, 2003]. Since light rail often operates at street-level with ex-
clusive right-of-way and requires coordination with conventional traffic networks and signal
control, a major concern in light rail installation is whether enough commuters will switch
to it to offset the additional constraints it places on traffic signal control.

Unfortunately, many large cities still use some degree of fixed-time control [El-Tantawy
et al., 2013] even if they also use actuated or adaptive control methods such as SCATS [Sims
and Dobinson, 1980] or SCOOT [Hunt et al., 1981]; while these methods may support signal
pre-emption for light rail crossing, they are unable to autonomously adapt the signal plan to
the light rail schedule, hence posing problems for their effective integrationwith conventional
traffic signal control. A more recent trend in the traffic signal control literature proposes
the use of optimized controllers (that incorporate elements of both adaptive and actuated
control) as evidenced in a variety of approaches including mixed integer linear programming
(MILPs) [Lo, 1998; Gartner et al., 1974; Gartner and Stamatiadis, 2002; Lin andWang, 2004; He
et al., 2011; Han et al., 2012, 2016a; Guilliard et al., 2016;Wada et al., 2017], heuristic search [Lo
et al., 1999; He et al., 2010], queuing delay optimization [Varaiya, 2013; Li and Zhang, 2014],
scheduling-driven control [Xie et al., 2012; Smith et al., 2013], and reinforcement learning [El-
Tantawy et al., 2013]. While these approaches hold out the promise of more highly optimized
traffic controlmethods, to date, none have studied the optimal integration of light rail schedule
constraints with their respective methods nor the impact that such integration would have
on traffic delay.

Nonetheless, the sub-optimal integration of traffic signal optimization and light rail sched-
ules has been done before, such as in [Stevanovic et al., 2008], which uses a genetic algorithm
coupled with a microsimulator to optimize a subset of traffic signal and transit priority re-
quest parameters. Due to the usage of a genetic algorithm, this approach does not necessarily
find the global optimum. Another example of signal plan optimization taking into account
a schedule of transit priority requests is [He et al., 2014] which represents this problem as a
MILP that minimizes a multi-modal delay objective. Additionally, this approach incorporates
virtual priority requests to represent vehicle platoon arrivals in order to improve coordina-
tion between intersections. This approach is also not globally optimal since each intersection
is solved separately. Moreover, while the model includes queuing delay and clearance times,
it does not consider start up lost time. Another non-optimal MILP-based approach is intro-
duced in [Christofa et al., 2016] and their MILP represents platoon-based flows to optimize
traffic signals with transit priority requests, but not the signal preemption associated with
rail transit. The obtained MILP is then solved progressively on pairs of intersections along
an arterial route and does not necessarily find the global optimum.

To address the deficiencies of these sub-optimal approaches, we introduce a MILP-based
algorithm for optimizing traffic signals constrained by light rail schedules in which it is com-
putationally feasible to find the optimal solution. To the best of our knowledge, this is the
first algorithm capable of finding the optimal integration of light rail schedule constraints.
In order to do so, we leverage the Queue Transmission Model (QTM) from Chapter 3, a MILP
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model of traffic signal optimization where expected traffic queues and flows are continuous
variables, traffic signals are discrete variables, and the overall optimization objective is to
minimize delay. Among alternative MILP-based control methods cited previously, the advan-
tages of QTM are improved scalability through the use of non-homogeneous time steps as
demonstrated in Chapter 3, and a focus on the accurate modeling of travel delay between
intersections critical for prioritizing light rail arrivals.

Our approach to modelling light rail schedules also allow us to compute optimal fixed-
time control policies with light rail constraints and is capable of finding the optimal splits,
offsets and cycle time. This is an improvement on previous approaches to this problem (e.g.,
[Lo, 1998; Lin and Wang, 2004; Wada et al., 2017]) which require the cycle time to be fixed
exogenously (i.e., a parameter of the algorithm) and are only able to optimize the splits and
offsets. Computing the optimal cycle times has a impact beyond fixed-time control since
adaptive controllers (e.g., [Sims and Dobinson, 1980]) also require cycle times to be known a
priori and our method can be directly used there.

We make the follow key contributions:

1. The first method to globally optimize traffic signals integrated with light rail schedule
constraints.

2. We provide a novel fixed-time controller to optimize cycle times, phase splits and off-
sets. The fixed-time control schedules can include light rail schedule constraints and
common cycle length constraints, and can be incorporated immediately into existing
fixed-time traffic controller infrastructure.

3. We provide a novel way to model lost time directly as a signal timing constraint and
we show that it is critical to finding optimized signal plans.

4. We run a comprehensive suit of experiments using a microsimulator to validate the
effectiveness of these contributions, both quantitatively and through visual inspection
of the simulation results. Gaining insights into the optimal solution’s properties can
also help to further improve existing control strategies and provides a benchmark.

Our experiments show that optimal adaptive control can reduce traffic delay by up to
58.7% over optimal fixed-time control when light rail is introduced, and virtually nullifies
its impact when compared to using fixed-time control before the introduction of light rail.
Ultimately, these results demonstrate a win-win situation where both vehicle traffic and light
rail commuters benefit through the application of MILP-based optimization to jointly manage
both light rail schedule priority and traffic networks.

4.2 QTM Extensions

To investigate the impact of light rail schedules on conventional traffic networks we need a
model of both traffic flow and light rail constraints. As a model of traffic flow, we leverage
the Queue Transmission Model and the MILP (O6, Q1–Q16) which encodes the problem of
finding the optimized adaptive traffic control plan in a QTM network without light rail.
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Figure 4.1: Signal timing for a crossroad intersectionwith two phases𝜙NS and𝜙EW controlling
the north-south and east-west approaches respectively. The intersection is modeled using
a QTM light ℓ , with four consecutive phases: Pℓ = {𝑝ℓ ,1,𝑝ℓ ,2,𝑝ℓ ,3,𝑝ℓ ,4} with QP

NS = {𝑝ℓ ,2},
QP

EW = {𝑝ℓ ,4} and 𝑝ℓ ,1,𝑝ℓ ,3 are the lost time phases of fixed duration 𝑇 𝐿ℓ . The active states
of 𝑝ℓ ,2 and 𝑝ℓ ,4 represent the effective green time of their corresponding approaches, where
traffic flows at the free flow speed. The lost time is represented by the active states of 𝑝ℓ ,1 and
𝑝ℓ ,3, which inhibit all traffic flow, forcing the solver to clear the intersection between each
signal change and incur lost time delay.

4.2.1 Lost Time

An additional delay experienced by traffic within a signalized network is the time lost during
signal changes. This lost time is made up of several components:

• Start up lost time: the time require for a driver waiting at the stop line to react to a
green signal and accelerate up to the free flow speed.

• Yellow lost time: the remaing time of a yellow signal where drivers react and come
to a stop.

• All red time: the time preceding the start of every green signal where all approaches
are held red to allow vehicles from the previous phase to clear the intersection.

As with other MILP formulations, the active states of QTM phase variables represent the
effective green time of the associated traffic signal phases, i.e, the time during which vehicles
are flowing at the free flow speed, but switch instantaneously between phases in the cycle,
without consideration for the lost time associated with the signal change [Webster, 1958;
Wolshon and Pande, 2016]. We extend QTM to model lost time by inserting additional fixed
duration phase variables into the cycle at each signal change that inhibit the flow of traffic
when active. If the lost time per signal change for light ℓ is 𝑇 𝐿ℓ , then we fix the duration of
lost time phase 𝑘 with Φmin

ℓ ,𝑘 = Φmax
ℓ ,𝑘 = 𝑇 𝐿ℓ , and the solver cannot transition from one signal

state to the next without first incurring a delay of𝑇 𝐿ℓ . In general, a total of 𝑛 additional phase
variables are needed per cycle, where 𝑛 is the number of signal phases in the cycle.

To obtain a signal plan using only the original 𝑛 phases, the solution of a QTM with lost
time network is post-processed by removing the lost time phases and adjusting the start (end)
of each green time by the start up (yellow) lost time, leaving an all red time between signal
changes. Fig. 4.1 shows a signal plan for a crossroad with two phases 𝜙𝑁𝑆 and 𝜙𝐸𝑊 , modeled
using a QTM light ℓ with four phases. The durations of 𝑝ℓ ,2 and 𝑝ℓ ,4 represent the effective
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green time of signal phases 𝜙𝑁𝑆 and 𝜙𝐸𝑊 , and are optimized by the solver. The durations of
𝑝ℓ ,1 and 𝑝ℓ ,3 are fixed and represent the lost time associated with the signal changes.

4.2.2 QTM as a Fixed-Time Controller

We can further extend QTM to compute an optimized control plan with fixed phase dura-
tions. For all ℓ ∈ L, 𝑘 ∈ Pℓ , we introduce the new variable 𝜙fixed

ℓ ,𝑘 ∈ [Φmin
ℓ ,𝑘 , Φmax

ℓ ,𝑘 ] and replace
the bounds constraints on 𝑑ℓ ,𝑘 ,𝑛 (that is, 𝑑ℓ ,𝑘 ,𝑛 ≤ Φmax

ℓ ,𝑘 and Q14) with fixed the duration con-
straints (Q17) and (Q18).

𝑑ℓ ,𝑘 ,𝑛 ≤ 𝜙fixed
ℓ ,𝑘 (Q17)

𝑑ℓ ,𝑘 ,𝑛 ≥ 𝜙fixed
ℓ ,𝑘 − Φmax

ℓ ,𝑘 𝑝ℓ ,𝑘 ,𝑛 (Q18)

Similarly to the variable phase duration constraints, the big-M method is employed in (Q17)
and (Q18), using Φmax

ℓ ,𝑘 as the constant, to enforce𝑑ℓ ,𝑘 ,𝑛 = 𝜙fixed
ℓ ,𝑘 onlywhile the phase is inactive.

The constraints (Q9–Q13, Q15, Q16, Q17, Q18), allow the fixed-time controller to optimize
the phase splits, cycle length and offset for each light ℓ .

A further utility to aid coordination between intersections, is to enforce a common cycle
length among a set of lights. To force a common cycle length optimized byQTM,we introduce
the new variable𝜓fixed ∈ [maxℓ {Ψmin

ℓ }, minℓ {Ψmax
ℓ }]. We can then replace (Q15) and (Q16)

with the new constraints (Q19) and (Q20).

𝑑ℓ ,1,𝑛−1+
|Pℓ |∑︁
𝑘=2

𝑑ℓ ,𝑘 ,𝑛 ≤ 𝜓fixed (Q19)

𝑑ℓ ,1,𝑛−1+
|Pℓ |∑︁
𝑘=2

𝑑ℓ ,𝑘 ,𝑛 ≥ 𝜓fixed −M(1 − 𝑝ℓ ,1,𝑛 + 𝑝ℓ ,1,𝑛−1) (Q20)

(Q19) and (Q20) constrain the sum of all phase durations for light ℓ to equal 𝜓fixed. Similar
to (Q15), constraint (Q20) is enforced right at the end of each cycle using the big-M method,
where M = maxℓ {Ψmax

ℓ }. We consider here a single global 𝜓fixed for all ℓ ∈ L, however
it would be trivial to have disjoint subsets of L corresponding to different regions of the
network, each with its own localized𝜓fixed.

With the addition of constraints (Q17) to (Q20), We now have four different controllers
available to us:

1. MILP (O6, Q1–Q16), a fully optimized adaptive controller.

2. MILP (O6, Q1–Q13, Q15–Q18), a fixed-time controller able to optimize the phase splits,
cycle length and offset for each light ℓ .

3. MILP (O6, Q1–Q13, Q17–Q20), a fixed-time controller, but with the additional con-
straint of a common cycle length between lights.

4. MILP (O6, Q1–Q14, Q19, Q20) an optimized adaptive controller but also with a fixed,
common cycle length.
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Figure 4.2: Flow-density samples from an IDM microsimulation of Network 2 along 𝑞5, to 𝑞8,,
showing how QTM parameters F𝑖 ,𝑗 = 0.5 and Q𝑖 = 60 are calibrated to the simulation.

4.2.3 Light Rail Constraints

As a novel extension of the QTM to incorporate a fixed-schedule light rail, we add constraints
to the MILP model to fix the free variable 𝑝ℓ ,𝑘 ,𝑛 for all 𝑛 s.t. the light rail uses phase 𝑘 of ℓ
at time 𝑛. Formally, given a schedule as a function 𝑆ℓ (𝑘 ,𝑛) ∈ {0, 1} where 1 represents that
the light rail uses phase 𝑘 of ℓ at time 𝑛, we replace (Q13) and (Q14) by (Q21) and (Q22)
when ∑

𝑘∈Pℓ
𝑆ℓ (𝑘 ,𝑛) > 0.

𝑝ℓ ,𝑘 ,𝑛 = 𝑆ℓ (𝑘 ,𝑛) (Q21)
𝑑ℓ ,𝑘 ,𝑛 = 𝑑ℓ ,𝑘 ,𝑛−1 (Q22)

(Q21) enforces that the correct phase 𝑘 is active when the light rail reaches the traffic light
ℓ , and (Q22) ensures that the light rail can pass through ℓ even if more than the maximum
phase time Φmax

ℓ ,𝑘 is necessary.

4.3 Empirical Evaluation

In this section we compare the solutions for traffic networks modeled using QTM with lost
time before and after the introduction of a light rail. We consider both fixed-time control,
i.e., a non-adaptive control plan, and optimized adaptive control obtained by solving the
MILP (O6, Q1–Q16, Q21, Q22) for the optimized controller, and the MILP (O6, Q1–Q13, Q15–
Q18, Q21, Q22) for the fixed controller. For comparison, we also use the optimized adaptive
controller with common cycle time constraints, MILP (O6, Q1–Q14, Q19–Q22), and the fixed
controller with common cycle time constraints, MILP (O6, Q1–Q13, Q17–Q22).

All the computed controllers are simulated using an Intellegent DriverModel (IDM) based
microsimulator Treiber et al. [2000]. As a car following model, IDMwill maintain a given safe
time headway between vehicles, while also trying to achieve the given desired velocity. Ve-
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hicles encountering red signals or stationary vehicles will decelerate and stop. Upon a signal
change from green to yellow, the simulator will apply a given braking deceleration to any
vehicles estimated not to cross the stopline within the time before the red signal, if continu-
ing at their current speed. The simulated total travel time and observed delay distribution of
each controller are used as comparisonmetrics. Our hypothesis is that our optimized adaptive
approach is able to mitigate the impact of introducing light rail w.r.t. both metrics.

Microsimulation Parameters: We choose IDM parameters similar to those suggested
in Treiber et al. [2000], that give realistic values for urban traffic with a flow capacity of 0.5
vehicles/s and a jam density of 0.15 vehicles/m. To simulate the average conditions, we give
all vehicles the same parameter values: length 𝑙 = 4.67 m, desired velocity 𝑣0 = 15 m/s, safe
time headway 𝑇 = 1 s, maximum acceleration 𝑎 = 2 m/s2, desired deceleration 𝑏 = 3 m/s2,
acceleration exponent 𝛿 = 4, and jam distances 𝑠0 = 𝑠1 = 2 m. Fig. 4.2 shows flow-density
samples from an IDM microsimulation with these values, and how the QTM flow parameters
used in the experiments are calibrated.

Network Parameters: We consider two networks of differing complexity: an arterial
crossed by four side streets (Fig. 4.3(a)) and a 3-by-3 grid (Fig. 4.3(b)). The queues receiving
vehicles from outside of the network are marked in Fig. 4.3 and we refer to them as input
queues. The maximum queue capacity (Q𝑖 ) is 60 vehicles for non-input queues and infinity
for input queues to prevent interruption of the input demand due to spill back from the stop
line. The free flow speed 𝑣 𝑓 = 13.2 m/s and the traversal time of each queue 𝑖 (Tp

𝑖
) is set at

30s, except for the output queues on Network 1 where the traversal time is 10s. For each
street, flows are defined from the head of each queue 𝑖 into the tail of the next queue 𝑗 ; there
is no turning traffic (Pr𝑖 ,𝑗 = 1), and the maximum flow rate between queues, F𝑖 ,𝑗 , is set at 0.5
vehicles/s. All traffic lights have two phases, north-south and east-west, and for each traffic
light ℓ and phase 𝑘 , Φmin

ℓ ,𝑘 is 10s, Φmax
ℓ ,𝑘 is 60s, Ψmin

ℓ is 40s, and Ψmax
ℓ is 140s. Whenever lost time

is considered, we use 𝑇 𝐿ℓ = 10s for all ℓ ∈ L, made up of 6s of startup lost time, 2s of yellow
lost time and 2s of all red.

Demand Profiles: Each network is evaluated at increasing demand levels up to the point
where 𝑓 in

𝑖 ,𝑛 becomes saturated. To simulate the effect of random arrivals, we use demand
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Figure 4.3: (a) Network 1, an arterial road with parallel light rail. (b) Network 2, an urban grid
with crisscrossing streets and light rail.



§4.3 Empirical Evaluation 57

profiles with flow rates that vary randomly every 100s for a total duration of 600s:

𝐼𝑖 ,𝑛 =
1
Δ𝑡𝑛

max(𝜉Ω𝑖w𝑖 (𝑡𝑛), Ω𝑖)

𝑤𝑖 (𝑡𝑛) =
{
®r𝑘 if 100(𝑘 − 1) ≤ 𝑡𝑛 < 100𝑘 and 1 ≤ 𝑘 ≤ 6
0 if 𝑡𝑛 ≥ 600

®r = 1
2
+ 1

4
®𝑋 where ®𝑋 ∼ multinominal

(
v𝑖 ,

1
6

16

)

v𝑖 =



5 if 𝑖 is labeled A

9 if 𝑖 is labeled B

7 if 𝑖 is labeled C

3 if 𝑖 is labeled D

5 if 𝑖 is labeled E

where:

• w𝑖 (𝑡𝑛) is the weight function for queue 𝑖 at time 𝑡𝑛

• Ω𝑖 is the maximum inflow rate in vehicles per Δ𝑡𝑛 , as annotated at the start of queue 𝑖
in Fig. 4.3

• 𝜉 ∈ (0, 2] is the scaling factor for the demand level being evaluated

• vi is a constant for queue 𝑖 corresponding to the letter label of 𝑖 in Fig. 4.3

• multinominal
(
v𝑖 , ®𝑝𝑛

)
returns a vector of 𝑛 random integers that sum to v𝑖 and are

drawn from the multinominal distribution with v𝑖 trials with uniform probability vec-
tor ®𝑝𝑛 . Using a random vector that sums to v𝑖 ensures that across all experiments, the
total number of vehicles entering 𝑖 will be the same.

An example of two different demand profiles is shown in Fig. 4.4.
Light Rail Parameters: we use two different light rail schedules: a slow light rail with a

crossing duration of 50s, a period of 200s, and a travel time of 100s between lights (Fig. 4.6(a));
and a fast light rail with a crossing duration of 20s, period of 160s, and travel time of 80s
between lights (Fig. 4.6(b)). On Network 2, the North-South schedule is offset by 100s for the
slow light rail and 80s for the fast light rail to avoid a collision at 𝑙5.

Evaluation: We evaluate each network in two scenarios: before the introduction of light
rail and after, and in each scenario using both a fixed-time controller and an optimized adap-
tive controller. For each experiment, we perform one or more runs where a run consists of:
(i) generate a random demand profile 𝑃 from a multinominal distribution as described above;
(ii) compute the signal plan using QTM configured as either an optimized adaptive controller
or a fixed-time controller for the demand profile 𝑃 ; and (iii) evaluate the obtained signal plan
by microsimulation on the demand profile 𝑃 using IDM. We use a problem horizon T large
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Figure 4.5: Example of two different demand profiles (inflow rates) applied to the Network 1
inputs corresponding to the letter labels A–E in each plot, where Ω is the maximum inflow
rate as annotated on each input in vehicles per Δ𝑡 .
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Figure 4.6: Light rails schedules: (a) slow (long and infrequent) light rail; and (b) fast (short
and frequent) light rail. The schedules shown are of 𝑆1(1,𝑛) for the 𝑟1 crossing during phase
1 at 𝑙1 in Network 1, and of 𝑆4(1,𝑛) for the 𝑟1 crossing during phase 1 at 𝑙4 in Network 2, and
𝑆2(2,𝑛) for the 𝑟2 crossing during phase 2 at 𝑙2 in Network 2. The schedules will be offset by
80s at each subsequent crossing for the fast light rail, and 100s for the slow light rail.
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enough, typically in the range 1000s – 1500s, to allow all traffic to clear the network, that lets
us measure the incurred delay in all the vehicles.

For the experiment on Network 1, we perform 10 runs and report their average delay, and
we concatenate the observed delays and number of stops of all the 10 runs for the reported
boxplots and cumulative distributions. For Network 2, we report 2 different experiments: the
first done in a single run (i.e., using a single random demand profile for both the controller
and microsimulation), and the second using a single run in which the signal plan is further
evaluated bymicrosimulatingwith 9 additional random profiles. The latter experiment allows
us to evaluate the robustness of the controllers w.r.t. changes to the assumed input levels since
the microsimulation will be performed using demand profiles that the controllers were not
optimized for.

For lost time comparison, we use two different configurations of each controller: one with
QTM incurring lost time delay and the other without. Before microsimulation, we adjust the
green time of the signal plan from the lost time controller to account for the start up and
yellow lost time, as illustrated in Fig. 4.1.

MILP Solver Parameters: For all experiments, we used Gurobi as the MILP solver with
a MIP gap accuracy of 0.01% and 𝛽 = 0.0001 in constraint (O6). If the solver execution time
reaches 144 h then the solver is halted and the best solution found so far is used. Solution times
range from typically real time (less than 200s) for optimized adaptive solutions of Network
1, to over 100 h for fixed-time plans of Network 2; however, once the fixed-time solution is
found, it can be deployed indefinitely.

What is the impact of modelling lost time delay? Fig. 4.7(a) shows, for Network 1
without light rail, the average delay per vehicle as a function of demand level under optimized
adaptive control. The QTM predicted delay for the controller without lost time is consider-
ably lower, but the policies found with QTM incurring lost time show improved performance
under microsimulation and closely match the prediction. Figs. 4.7(b) and 4.7(c) show the mi-
crosimulation time-distance plots at demand level II for several links along the arterial of
Network 1. The y-axis of these plot shows the distance along the street, and the x-axis shows
the evolution over time. Each black trace represents the journey of a vehicle along the street.
Traffic signals at fixed distances down the street appear as red horizontal dashed lines, where
a solid bar represents that the phase is inactive (i.e., the light is red) and traffic cannot pass;
otherwise the phase is active. The time-distance plots capture the queueing behaviour of the
traffic as each vehicle decelerates when approaching congested traffic, or red or yellow light
ahead. When a vehicle is stationary, its trace becomes horizontal. Green represents QTM
traffic flow prediction, where darker shades represent regions of higher density. Fig. 4.7(b)
shows the controller with QTM incurring lost time delay, and the prediction closely matches
the microsimulation. However, in Fig. 4.7(c) the QTM policy without lost time is unrealizable
and the microsimulation quickly diverges.

What is the impact of a common cycle time on the controller? Fig. 4.8 shows, for
Network 1, with and without light rail, the average delay per vehicle as a function of demand
for each of the four controllers. With no light rail (Fig. 4.8(a)) both the optimized adaptive
controllers have very similar average delay, while the fixed controllers have the same average
delay. An inspection of the fixed signal plans shows them to be identical. With the introduc-
tion of the fast light rail (Fig. 4.8(b)) the controllers without common cycle length constraints



60 QTM Extensions and Microsimulation Validation

2000 2500 3000 3500 4000
Network traffic demand (vehicles/h)

0

20

40

60

80

Av
er

ag
e 

de
la

y 
pe

r v
eh

cle
 (s

)

I II III

Lost Time:
IDM ( Sim.)
QTM

No Lost Time:
IDM ( Sim.)
QTM

QT
M

ID
M

QT
M

ID
M

0

100

200

300

400

de
la

y 
(s

)

L.T. No
L.T.

I
QT

M

ID
M

QT
M

ID
M

L.T. No
L.T.

II

QT
M

ID
M

QT
M

ID
M

L.T. No
L.T.

III

(a)

0 100 200 300 400 500 600 700 800
time (s)

0

100

200

300

400

500

600

di
st

an
ce

 (m
) l1

IDM
QTM

(b)

0 100 200 300 400 500 600 700 800
time (s)

0

100

200

300

400

500

600

di
st

an
ce

 (m
) l1

IDM
QTM

(c)

Figure 4.7: Lost time delay. (a) Upper plot shows QTM average delay, with and without lost
time, compared to microsimulation of Network 1 (no light rail) at increasing demand lev-
els. Lower plot: Box plots representing distribution of delay at three different demand levels.
Policies found with QTM incurring lost time show improved performance under microsim-
ulation. (b,c) Time-distance plots at demand level II, from 𝑞2 to 𝑞4. (b) QTM incurring lost
time delay closely predicts microsimulation, but in (c) QTM policies without lost time are
unrealizable and the microsimulation quickly diverges.
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Figure 4.8: Comparison of the four controllers running on Network 1. (a) With no light rail:
The optimized controllers are very close in performance, while both the fixed controllers
find the same solution (b) With the fast light rail: The controllers without common cycle
constraints are able to further reduce delay by using different cycle lengths along the arterial.

are able to reduce delay further by utilizing different cycle lengths along the arterial. The
same outcome was observed on Network 2 without light rail, however with the introduction
of the light rail, the controllers with common cycle length constraints were unable to find a
feasible solution that also satisfied the light rail schedule.

Considering the lower plots that show the distribution of delay and give an indication of
the quality of the solutions, we can see that at demand level II in Fig. 4.8(a) and Fig. 4.8(b), both
the optimized controllers find policies with similar average delay. But the box plots show that
the optimized controller with common cycle length trades a lower median and upper quartile
for a higher maximum delay.

These results corroborate with methods already employed by traffic engineers Wolshon
and Pande [2016], that for regular traffic networks, using a common cycle lengths between
adjacent intersections is a useful aid for achieving good coordination, especially with fixed-
time control. However, when the network is not regular, or has addition constraints such as
lightrail, improved solutions may be found with mixed cycle lengths.

Is it possible to mitigate the impact of light rail on delay? Figs. 4.9(a) and 4.9(b)
show, for each network, the average delay per vehicle as a function of demand for both fixed-
time and optimized adaptive control approaches in three scenarios: before the light rail and
after the installation of light rail using the slow and the fast schedules. In all cases the con-
troller models lost time. As we hypothesized, optimized adaptive control is able to mitigate
the impact of the introduction of light rail and it marginally increases the average delay when
compared with the average delay produced by the fixed-time controller before the light rail.
Moreover, as shown in Figs. 4.9(c) and 4.9(d), the optimized adaptive controller also produces
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Figure 4.9: Microsimulation average delay by network demand for the Network 1 (a) and
Network 2 (b). (c,d): Box plots representing the observed distribution of delay for 3 different
values of demand for each network, comparing delay distribution without the light rail with
the impact of the fast and slow schedules. Optimized adaptive control is able to mitigate the
impact of light rail on average delay, while also producing better signal plans (lower median,
third quartile and maximum delay).
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Figure 4.10: Microsimulation average delay for Network 2, averaged over 10 different demand
profiles, where the arrival rates differ from the profile used by each controller. Comparing
these results (unexpected arrivals) against Figs. 4.9(b) and 4.9(d) (arrivals as expected), we can
see that the obtained policies are robust.
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Figure 4.11: Impact on average delay for the Network 1 (first column) and Network 2 (second
column) for both light rail schedules (rows) in different scenarios (curves) of traffic control
system before and after installation of light rail. The x-axis is the percentage of vehicles
switching to the public transportation and the y-axis is the % reduction in delay after the
light rail is installed. Negative % represents an increase in average delay. The vehicle demand
for (a-d) are marked as ♣ and ♠ in their respective plots in Fig. 4.9.
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Figure 4.12: (a-b) Micro-simulation time-distance plots from Network 1 with the fast light
rail schedule, along the links from 𝑞2 to 𝑞13. Both controllers find well coordinated solutions
where the timing of green signals along the link is offset at each intersection to maintain a
continuous flow of traffic at the free flow speed, a solution well known to traffic engineers.
However, the optimized controller is able to dynamically adjust the “width” of the bands to
match the traffic volume along the link, allowingmore green time to be allocated to cross traf-
fic. (c-d): Microsimulation time-distance plots of side street 𝑞5 to 𝑞6. While both controllers
can find coordinated policies along the arterial, the optimized adaptive controller is able to
clear out the queues (horizontal flow lines) in the side streets following the transit of the light
rail.
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Figure 4.13: Impact of controller on number of stops as a cumulative distribution. Top row is
for the slow light rail schedule. Bottom row is for the fast light rail schedule. In all cases the
optimized controller does better with less stops at higher frequencies.

Light Rail Fixed Opt. Adapt. Improv.

Arterial (♣) @
3900 Veh/h

None 66.8 s 62.9 s 5.7%
Fast 96.3 s 74.5 s 22.7%
Slow 194.2 s 80.6 s 58.7%

Grid (♠) @
4800 Veh/h

None 87.3 s 81.5 s 6.7%
Fast 117.4 s 93.4 s 20.4%
Slow 192.9 s 105.1 s 45.5%

Table 4.1: Average delay computed via microsimulation in seconds and improvement of op-
timized adaptive controller over fixed-time controller for both networks and the three light
rail scenarios. The demand level is fixed and correspond to the points ♣ and ♠ in Figs. 4.9(a)
and 4.9(b), respectively. The improvement obtained by our optimized adaptive approach
when a light rail is introduced, ranges from 20.4% to 57.8% w.r.t. the fixed-time approach.

better signal plans than the fixed-time controller, i.e., plans with smaller median, third quar-
tile, and maximum delay.

Table 4.1 shows the average delay in seconds of the optimized adaptive and fixed-time
controllers for both networks. In the scenarios with a light rail, the improvement obtained by
the optimized adaptive approach ranges from 20.4% to 58.7% w.r.t. the fixed-time approach.
We can see that the optimized adaptive controller successfully nullifies the impact of adding
a light rail to the networks since the average delay obtained by it is approximately the same
as the average delay for the fixed-time controller with no light rail, with the average delay
increased by at most 17.8 s.

What is the impact of unexpected arrivals on the controller? Fig. 4.10 shows the
average delay per vehicle averaged over 10 demand profiles for Network 2, where the arrival
rates in the simulation differ over time from the profile used to generate the signal plan.
The overall conclusion is still the same: the optimized controller outperforms the fixed-time
controller. Compared to the results in Fig. 4.9(b), the optimized controller shows a slight
increase in the average delay at lower demand levels and almost no change at higher demand
levels while, for the fixed controller, the policy is more robust to the unexpected arrivals
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and there is minimal change across all demand levels. The fixed controller is more robust to
unexpected arrivals because its policy is optimize for the average arrival rate as opposed to
an exact demand profile, thus any demand profile with the same or similar average arrival
rate will have little impact in the average delay. Since the optimized controller attempts to
coordinate signal timings with expected changes in inflow rate to form platoons, the changes
in the simulated demand profile have an impact the average delay. The impact of unexpected
arrivals at lower demand levels is small because some vehicles may need to wait an additional
cycle before joining a platoon coordinated by the policy, while at higher demand levels, the
residual queue build up at the inputs buffers any mismatch resulting in a negligible impact in
the average delay. In all cases, the box plots show the solution quality for each controller is
not impacted by the unexpected arrivals.

How many drivers must switch to using light rail to maintain the same average
delay? This is a question that will be asked by planners evaluating the impact of adding a
light-rail to a traffic network, along with an upgrade to the signal control system. Fig. 4.11
shows the percentage reduction in average delay as a function of the percentage of vehicles
who’s drivers are switching to traveling on the light rail. In these plots, the demand level is
fixed and higher values are better (i.e., there is a larger decrease in the average delay) and
zero means that there is no change after installing light rail. For the three combinations of
before and after policies presented, we can see that, while keeping the fixed-time controller
requires from 14.2% to 47% of the drivers to switch to light rail in order to obtain the same
average delay as before its installation, the optimized adaptive approach requires only from
5.8% to 13.1% of the drivers to switch when already using optimized adaptive control before
the light rail. When compared to fixed-time before the light rail and optimized adaptive after,
the gains are even greater with only 3% to 9.6% of the drivers required to switch to the light
rail.

How does the quality of optimized adaptive policies compare with fixed policies?
To answer this we show in Figs. 4.12(a) to 4.12(d) the microsimulation time-distance plots for
several streets in Network 1. Figs. 4.12(a) and 4.12(b) show that both controllers balance
between establishing coordinated “green corridors” along the arterial, and servicing the side
streets, where the combined density at times exceeds that of the arterial. However, the fixed
controller is forced to find a single repeating policy sized for the average traffic density in the
network. As a byproduct, the side street (Fig. 4.12(c)) under the fixed-time controller suffers
from accumulative queue build-up following each transit of the light rail. In Figs. 4.12(b)
and 4.12(d), we see that the optimized adaptive controller is able to clear out the queue build
up in the side street by increasing the phase time of the side street for a cycle after the transit
has passed through, and then returns to a schedule that prioritizes the arterial depending on
the changes in traffic density. When the traffic density in the arterial is higher than the side
streets, the optimized adaptive controller will coordinate “green corridors” along the arterial.

Fig. 4.13 provides more details on the behavior of the signal plans for demand level
II (Figs. 4.9(a) and 4.9(b)) by showing the cumulative number of vehicles by number of ob-
served stops. In all cases for Network 1 and 2 the optimized controller does better with less
stops at higher frequencies. For Network 1, we see that both controllers choose to prioritize
the side streets over the arterial, with less stops at higher frequencies in the side streets. But
in the case of the slow light rail with the optimized controller, 94% of the vehicles experi-
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ence three or less stops along the arterial while for the fixed controller 100% of the vehicles
experience three stops or more.

4.4 Conclusion

In this chapter, we introduced a new method to generate an adaptive controller that opti-
mizes traffic signals integrated with light rail schedule constraints. The obtained adaptive
controllers are guaranteed to be globally optimal and, to the best of our knowledge, this is
the first globally optimal algorithm capable of handling light rail schedule constraints. Our
approach is based on the Queue Transmission Model of traffic signal control which we ex-
tended to incorporate light rail schedule constraints. We also provided a novel way to model
lost time directly as a signal timing constraint and show that it is critical to finding optimized
signal plans.

We also introduced a novel approach to compute fixed-time controller plans that optimize
cycle times, phase splits and offsets. The obtained fixed-time controllers are also guaranteed
to be globally optimal and they can handle both light rail schedule constraints and common
cycle length constraints. The computed fixed-time control schedules can be incorporated im-
mediately into existing fixed-time traffic controller infrastructure, yielding important benefits
for those municipalities that prefer not to migrate to a fully adaptive control.

Lastly, we have compared our optimal adaptive and fixed-time controllers in a compre-
hensive suit of experiments using microsimulation as a realistic, finer-grained, nonlinear
model of traffic flow. Our results show that the optimal adaptive controller is able to min-
imize the impact of introducing light rail on conventional traffic networks on the average
delay with respect to fixed-time signal control. The experiments also show that the adaptive
controllers finds better quality solutions, i.e., solutions with substantially lower third quartile
and maximum observed delay. Our key results demonstrate for the first time the potential of
MILP-based QTM traffic signal control approaches to virtually nullify the impact of installing
light rail on conventional traffic — our model can reduce traffic delay by up to 58.7% over op-
timal fixed-time control when light rail is introduced. Consequently, the use of MILP-based
optimized adaptive controllers like QTM could remove the critical public concern of increased
traffic delay resulting from light rail installation, and thus positively impact the environment,
urban productivity, and commute time reductions for all commuters.

For future work, a key question to resolve is how large we can scale the traffic and light
rail network before we need to investigate decomposition-based approaches to scaling the
solution (e.g., MILP-based methods like dual decomposition or region-based traffic network
partitioning schemes). Future work should also examine the (online) learnability of QTM pa-
rameters from different traffic sensor data, for instance, conventional inductive (double) loop
counters, radar, and video feeds. Finally, noting that the nonlinear microsimulation model
offers a higher-fidelity model of traffic behavior, future work should consider expanding the
QTM to model nonlinear traffic flows Lu et al. [2011]; Muralidharan et al. [2009]; Kim [2002];
Huang [2011] and investigating the benefits of nonlinear optimization relative to the existing
QTM.
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5.1 Overview

The models CTM, LTM and VT presented in Chapter 2 are all derived from LWR theory,
while QTM presented in Chapter 3 is based on a simple point queue model,. Yet, the micro-
simulation results in Chapter 4 suggest that QTM is modelling the fundamental dynamics of
traffic flow along links and through signalised intersections, with reasonable fidelity. In this
chapter we will investigate why, and use the surprising results to develop further extensions
of QTM.

First we establish a theoretical framework to show equivalences between the models and
their objective functions. We then use this result to show that the problem of vehicle with-
holding is an artefact of the solution method and has no impact on solution optimality. We
then extend QTMwith higher fidelity modeling of LWR traffic flows, and in turn, use QTM to
extend VT with turning traffic and show that it is a stochastic shortest path problem, equiva-
lent to finding the optimal value function of a Markov Decision Problem. Finally, we present
a novel reformulation of QTM as a continuous time solver that can find exact solutions to
LWR theory.

5.2 Objective Function Equivalence

Vehicle delay in a traffic link is the area between the cumulative departure curve for the
link and the cumulative arrival curve projected forward by the link free flow travel time
(Fig. 5.1(a)). TheMILP formulations of QTM, CTM [Lin andWang, 2004], and VT [Wada et al.,
2017], seek to minimize this delay through the objective function. Lin and Wang [Lin and
Wang, 2004] minimize the total travel time of all vehicles in the network with the term (2.33).
Since 𝑦out

𝑖 ,𝑡 , the number of vehicles leaving destination cell 𝑖 during interval 𝑡 , is equivalent to
𝑞out
𝑖 ,𝑛 = Δ𝑡𝑛 𝑓

out
𝑖 ,𝑛 , the number of vehicles departing the network from 𝑖 during interval 𝑛, we

can formulate (2.33) in QTM terms with (5.1).

min
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

𝑡𝑛𝑞
out
𝑖 ,𝑛 (5.1)

The objective (5.1) minimizes the area above the cumulative departure curves (Fig. 5.1(b)). We
can convert this into a maximization by noting that the area below the cumulative departure
curve is equal to the total rectangular area enveloping the curve, less the area above, which
is formulated with (5.2).

𝑁∑︁
𝑛=1

T𝑞out
𝑖 ,𝑛 −

N∑︁
𝑛=1

𝑡𝑛𝑞
out
𝑖 ,𝑛 =

N∑︁
𝑛=1

(T − 𝑡𝑛) 𝑞out
𝑖 ,𝑛 (5.2)

Thus by maximizing the area below the departure curve (Fig. 5.1(c)), we minimize the area
above and themaximization objective (5.3) of QTM is equivalent to theminimization objective
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Figure 5.1: Cumulative curve objective functions. (a) Vehicle delay is the area between the
cumulative departure curve and the cumulative arrival curve projected forward by the travel
time. (b) Lin and Wang minimize delay by minimizing the sum of the horizontal rectangles
above the departure curve. (c) QTMminimizes delay by maximizing the sum of the horizontal
rectangles below the departure curve. (d) Wada et al. minimize delay by maximizing the sum
of the vertical rectangles below the departure curve.
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of Lin and Wang (5.1) and (2.33).

max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(T − 𝑡𝑛) Δ𝑡𝑛 𝑓 out
𝑖 ,𝑛 (5.3)

[Wada et al., 2017] also minimize delay by maximizing the area under the cumulative de-
parture curve (Fig. 5.1(d)) using the objective function (5.4), where N𝑖 ,𝑛 is the value of the
departure curve for 𝑖 at the end of interval 𝑛.

max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

Δ𝑡𝑛Nout
𝑖 ,𝑛 (5.4)

This is equivalent to the QTM objective (5.3), and, given 𝑡𝑛 =
∑𝑛
𝑘=1 Δ𝑡𝑘 , and the that value of

the departure curve for 𝑖 at the end of interval 𝑛 is given by Nout
𝑖 ,𝑛 =

∑𝑛
𝑘=1 𝑞

out
𝑖 ,𝑘 . (5.4) can be

derived directly from (5.3) using equation (5.5).

max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(T − 𝑡𝑛) Δ𝑡𝑛 𝑓 out
𝑖 ,𝑛 = max

|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(
T −

𝑛∑︁
𝑘=1

Δ𝑡𝑘

)
Δ𝑡𝑛 𝑓

out
𝑖 ,𝑛

= max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(
N∑︁
𝑘=𝑛

Δ𝑡𝑘

)
Δ𝑡𝑛 𝑓

out
𝑖 ,𝑛

= max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

𝑛∑︁
𝑘=1

Δ𝑡𝑛
(
Δ𝑡𝑘 𝑓

out
𝑖 ,𝑘

)
(since

N∑
𝑛=1

N∑
𝑘=𝑛

𝑎(𝑛,𝑘) =
N∑
𝑛=1

𝑛∑
𝑘=1

𝑎(𝑘 ,𝑛))

= max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

Δ𝑡𝑛Nout
𝑖 ,𝑛 (5.5)

Thus, we see that the QTM, CTM and VT formulations all equivalently minimize the total
travel time in the network through their respective objective functions.

5.3 VT Equivalence

In Section 2.7 a method to solve the LWR equation using Variational Theory was presented.
When evaluated with discrete time steps, VT takes the form of a constrained shortest path
problem on the boundary conditions of the traffic network, which can be solved using the
MILP (O4, V2). This result suggests a framework for demonstrating whether a given traffic
MILP finds solutions to LWR theory, by constructing an equivalence to the VT constraints
(O4, V2).

5.3.1 QTM Equivalence

If we restrict ourselves to traffic flows without turns and homogeneous time steps, then an
equivalence can be derived between QTM and VT. To show that QTM has an embedded VT
constrained shortest path problem, we need to connect QTM constraints to nodes on a VT
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network with forward, backward and horizontal wave paths (an extension for multiple waves
is given in Section 5.5). If 𝑥 in

𝑖 and 𝑥out
𝑖 are the distances to the input and exit of queue 𝑖 , and

𝑡𝑛 =
∑𝑛−1
𝑘=1 Δ𝑡𝑘 , then MILP (5.6) – (5.9) represents a VT constrained shortest path problem,

expressed in QTM constants Tp
𝑖
, Q𝑖 and F𝑖 ,𝑗 .

max
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

N (𝑥out
𝑖 , 𝑡𝑛) (5.6)

subject to: N (𝑥out
𝑖 , 𝑡𝑛) ≤ N (𝑥 in

𝑖 , 𝑡𝑛 − Tp
𝑖
) (5.7)

N (𝑥 in
𝑖 , 𝑡𝑛−1) ≤ N (𝑥out

𝑖 , 𝑡𝑛) + Q𝑖 (5.8)
N (𝑥out

𝑖 , 𝑡𝑛) ≤ N (𝑥out
𝑖 , 𝑡𝑛−1) + Δ𝑡𝑛−1F𝑖 ,𝑗𝑝𝑖 ,𝑗 ,𝑛−1 (5.9)

Without loss of generality we assume for all 𝑖 , 𝑞𝑖 ,1 = 0, such that there is an epoch at 𝑡1 where
the network is free of traffic. Since the original Variational Theory described by Deganzo
in [Daganzo, 2005a] does not include turning traffic, we will restrict the derivation to traffic
networks where all the outflow from a queue 𝑖 flows into queue 𝑗 , giving𝑞out

𝑖 ,𝑛 = 𝑞in
𝑗 ,𝑛 = Δ𝑡𝑛 𝑓𝑖 ,𝑗 ,𝑛

from constraints (Q3) and (Q4). For simplicity, and similar to [Wada et al., 2017], we will also
assume that there is a single binary phase, 𝑝𝑖 ,𝑗 ,𝑛 , controlling each queue. To ensure that the VT
network is fully connected, Δ𝑡𝑛 must be homogeneous and there must be a positive integer
𝑚 = Tp

𝑖/Δ𝑡𝑛 ∈ Z+, such that 𝑡𝑛−𝑚 = 𝑡𝑛 − Tp
𝑖
. Then we can rewrite QTM constraints (Q5)

and (Q6) in terms of𝑚 as (5.10) and (5.11), and the cumulative vehicle counts at the exit of
queue 𝑖 at time 𝑡𝑛 , and input of queue 𝑖 at time 𝑡𝑛+1 and 𝑡𝑛 − Tp

𝑖
as (5.12) – (5.14).

𝑞𝑖 ,𝑛 = 𝑞𝑖 ,𝑛−1 − 𝑞out
𝑖 ,𝑛−1 + 𝑞in

𝑖 ,𝑛−𝑚−1 (5.10)

𝑞𝑖 ,𝑛 ≤ Q𝑖 −
𝑛∑︁

𝑘=𝑛−𝑚
𝑞in
𝑖 ,𝑘 (5.11)

N (𝑥out
𝑖 , 𝑡𝑛) =

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.12)

N (𝑥 in
𝑖 , 𝑡𝑛+1) =

𝑛∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.13)

N (𝑥 in
𝑖 , 𝑡𝑛 − Tp

𝑖
) =
𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.14)

To construct a forward wave path constraint, we first rearrange (5.10) and take the cumu-
lative sum of both sides from 𝑡1 to get (5.15). Then expanding and simplifying the left hand



74 QTM Equivalence

side of (5.15) gives (5.17).

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 =

𝑛−1∑︁
𝑘=1

(
𝑞𝑖 ,𝑘 − 𝑞𝑖 ,𝑘+1 + 𝑞in

𝑖 ,𝑘−𝑚

)
(5.15)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 = 𝑞𝑖 ,1 − 𝑞𝑖 ,𝑛 +

𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.16)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 = −𝑞𝑖 ,𝑛 +

𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (since 𝑞𝑖 ,1 = 0) (5.17)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤

𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (since 𝑞𝑖 ,𝑛 ≥ 0) (5.18)

Since 𝑞𝑖 ,𝑛 ≥ 0 we can relax the equality in (5.17) to get (5.18) and it is easy to see that this is
the forward wave path constraint (5.7), which replaces the QTM constraints (Q2) – (Q5).

For the horizontal wave paths we start with the cumulative sum over 𝑞out
𝑖 ,𝑛 in (5.19). Since

𝑞out
𝑖 ,𝑛−1 ≤ Δ𝑡𝑛−1F𝑖 ,𝑗𝑝𝑖 ,𝑗 ,𝑛−1, we can then relax the equality in (5.19) to get (5.20), which is the
horizon wave path constraint (5.9).

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 = 𝑞out

𝑖 ,𝑛−1 +
𝑛−2∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.19)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤ Δ𝑡𝑛−1F𝑖 ,𝑗𝑝𝑖 ,𝑗 ,𝑛−1 +

𝑛−2∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (since 𝑞out

𝑖 ,𝑛−1 ≤ Δ𝑡𝑛−1F𝑖 ,𝑗𝑝𝑖 ,𝑗 ,𝑛−1) (5.20)

(5.21)

To construct the backwards wave path, we rearrange (5.10) and take the cumulative sum
of both sides to get (5.22). Expanding and simplifying gives (5.24), and substituting in con-
straint (Q6), we get (5.25). Finally we can see that (5.26) is the backwards wave path constraint
(5.8).

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘−𝑚 =

𝑛−1∑︁
𝑘=1

(
𝑞𝑖 ,𝑘+1 − 𝑞𝑖 ,𝑘 + 𝑞out

𝑖 ,𝑘

)
(5.22)

𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 = 𝑞𝑖 ,𝑛 − 𝑞𝑖 ,1 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.23)

𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 = 𝑞𝑖 ,𝑛 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (since 𝑞𝑖 ,1 = 0) (5.24)

𝑛−𝑚−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 ≤ Q𝑖 −

𝑛∑︁
𝑘=𝑛−𝑚

𝑞in
𝑖 ,𝑘 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (since 𝑞𝑖 ,𝑛 ≤ Q𝑖 −

𝑛∑︁
𝑘=𝑛−𝑚

𝑞in
𝑖 ,𝑘 ) (5.25)

𝑛∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 ≤ Q𝑖 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.26)

Finally, to show that the QTM objective function is equivalent, we need to derive (5.6) from
(O6). From QTM constraint (Q4) we can see that 𝑞out

𝑖 ,𝑛 = 𝑓 out
𝑖 ,𝑛 + 𝑓𝑖 ,𝑗 ,𝑛 , and that the left hand side
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of (5.27) is equivalent to (O6) with 𝛽 = 1.

max
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

(T − 𝑡𝑛) 𝑞out
𝑖 ,𝑛 = max

|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(
T −

𝑛−1∑︁
𝑘=1

Δ𝑡𝑘

)
𝑞out
𝑖 ,𝑛 (5.27)

= max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(
N−1∑︁
𝑘=𝑛

Δ𝑡𝑘

)
𝑞out
𝑖 ,𝑛 (since T =

N−1∑︁
𝑘=1

Δ𝑡𝑘 )

= max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

𝑛−1∑︁
𝑘=1

Δ𝑡𝑛𝑞
out
𝑖 ,𝑘 (since

N∑︁
𝑛=1

N∑︁
𝑘=𝑛

𝑎(𝑛,𝑘) =
N∑︁
𝑛=1

𝑛∑︁
𝑘=1

𝑎(𝑘 ,𝑛))

(5.28)

Since Δ𝑡𝑛 is homogeneous and constant, it can be dropped from (5.28) and we can see that
(5.28) is equivalent to (5.6). Then we can use the QTM constraints (O6, Q1–Q6) and the
relationships 𝑞𝑖 ,𝑛 ≥ 0, 𝑞𝑖 ,𝑛 ≤ Q𝑖 , and 𝑞out

𝑖 ,𝑛 ≤ Δ𝑡F𝑖𝑝ℓ ,𝑛 , to derive constraints (5.30) to (5.32),
where𝑚 is the index such that 𝑡𝑛−𝑚 = 𝑡𝑛 − Tp

𝑖
.

max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(T − 𝑡𝑛) Δ𝑡𝑛 𝑓 out
𝑖 ,𝑛 (5.29)

subject to:
𝑛∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤

𝑛−𝑚∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.30)

𝑛∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤ Δ𝑡F𝑖𝑝ℓ ,𝑛 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.31)

𝑛∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 ≤ Q𝑖 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.32)

The MILP given by constraints (5.29) to (5.32) demonstrates that QTM with homogeneous
time steps and no turning traffic is solving a constrained shortest path problem. This result
also shows that QTM is modeling an LWR traffic flow with a trapezoidal fundamental dia-
gram, where the forward wave speed is given by 𝑣 =

𝐿𝑖

Tp
𝑖

and the backwards wave speed is

given by𝑤 =
𝐿𝑖
Δ𝑡𝑛

, where 𝐿𝑖 is the length of link 𝑖 .

5.3.2 CTM Equivalence

Using a similar method, we can derive a VT equivalence for CTM. First we need to connect
CTM constraints to nodes on a VT network connected with forward and horizontal and back-
wards wave paths. If 𝑥𝑖 and 𝑥out

𝑖 are the distances to the input and exit of cell 𝑖 , then (5.33) –
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(5.34) represents a VT shortest path problem.

max
∑︁
𝑛

∑︁
𝑖∈exit

N (𝑥out
𝑖 , 𝑡𝑛) (5.33)

subject to: N (𝑥𝑖+1, 𝑡 + 1) ≤ N (𝑥𝑖 , 𝑡) (5.34)
N (𝑥𝑖 , 𝑡 + 1) ≤ N (𝑥𝑖 , 𝑡) + Q (5.35)
N (𝑥𝑖 , 𝑡 + 1) ≤ N (𝑥𝑖+1, 𝑡) + N (5.36)

With out loss of generality, we assume for the initial conditions that N (𝑥𝑖 , 0) = 0, and
𝑛𝑖 ,0 = 0, which is to say that there is an epoch where all the cells are empty. Then consider
the following:

N (𝑥𝑖 , 𝑡) =
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 (5.37)

N (𝑥out
𝑖 , 𝑡) =

𝑡−1∑︁
𝑘=0

𝑦out
𝑖 ,𝑘 (5.38)

𝑛𝑖 ,𝑡+1 = 𝑛𝑖 ,𝑡 +𝑦𝑖 ,𝑡 −𝑦𝑖+1,𝑡 (5.39)
𝑦𝑖+1,𝑡 = 𝑛𝑖 ,𝑡 −𝑛𝑖 ,𝑡+1 +𝑦𝑖 ,𝑡 (5.40)
𝑦𝑖 ,𝑡 = 𝑦𝑖+1,𝑡 −𝑛𝑖 ,𝑡 +𝑛𝑖 ,𝑡+1 (5.41)

𝑦𝑖 ,𝑡 = min
{
𝑛𝑖−1,𝑡 , Q,

𝑤

𝑣

(
N −𝑛𝑖 ,𝑡

)}
(5.42)

From (5.42) we know that,

𝑦𝑖+1,𝑡 ≤ 𝑛𝑖 ,𝑡 (5.43)

since all these vehicles must flow through the cell to be counted. For the forward wave we
have,

𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 =
𝑡−1∑︁
𝑘=0

(
𝑛𝑖 ,𝑘 −𝑛𝑖 ,𝑘+1 +𝑦𝑖 ,𝑘

)
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 = 𝑛𝑖 ,0 −𝑛𝑖 ,𝑡 +
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘

𝑛𝑖 ,𝑡 +
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 = 𝑛𝑖 ,0 +
𝑡−1∑︁
𝑘=1

𝑦𝑖 ,𝑘

𝑦𝑖+1,𝑡 +
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 ≤
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 (since 𝑦𝑖+1,𝑡 ≤ 𝑛𝑖 ,𝑡 and 𝑛𝑖 ,0 = 0)

𝑡∑︁
𝑘=0

𝑦𝑖+1,𝑘 ≤
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 (5.44)

=⇒ N (𝑥𝑖+1, 𝑡 + 1) ≤ N (𝑥𝑖 , 𝑡)
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And for the signal wave, we have:

𝑡∑︁
𝑘=0

𝑦𝑖 ,𝑘 = 𝑦𝑖 ,𝑡 +
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘

𝑡∑︁
𝑘=0

𝑦𝑖 ,𝑘 ≤ Q +
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 (since 𝑦𝑖 ,𝑡 ≤ Q)

=⇒ N (𝑥𝑖 , 𝑡 + 1) ≤ N (𝑥𝑖 , 𝑡) + Q (5.45)

We can derive the backwards wave constraint for the case 𝑤
𝑣
= 1. Equivalence for back-

wards wave does not hold for the case 𝑤
𝑣
≠ 1.

𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 =
𝑡−1∑︁
𝑘=0

(
𝑦𝑖+1,𝑘 −𝑛𝑖 ,𝑘 +𝑛𝑖 ,𝑘+1

)
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 = 𝑛𝑖 ,𝑡 −𝑛𝑖 ,0 +
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘

𝑦𝑖 ,𝑡 +
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 = 𝑦𝑖 ,𝑡 +𝑛𝑖 ,𝑡 +
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘

𝑡∑︁
𝑘=0

𝑦𝑖 ,𝑘 ≤ 𝑤

𝑣

(
N −𝑛𝑖 ,𝑡

)
+𝑛𝑖 ,𝑡 +

𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 (since 𝑦𝑖 ,𝑡 ≤ 𝑤
𝑣

(
N −𝑛𝑖 ,𝑡

)
)

𝑡∑︁
𝑘=0

𝑦𝑖 ,𝑘 ≤ N +
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 (since 𝑛𝑖 ,𝑡 ≤ N)

=⇒ N (𝑥𝑖 , 𝑡 + 1) ≤ N (𝑥𝑖+1, 𝑡) + N (5.46)

We can then derive an equivalent constrained shortest path MILP using CTM constraints
(O2, C1–C4, C8, C10, C12, C24, C26), as the MILP given by constraints (5.47) to (5.50).

max
∑︁
𝑖∈exit

∑︁
𝑡

(T − 𝑡) 𝑦out
𝑖 ,𝑡 (5.47)

subject to:
𝑡∑︁
𝑘=0

𝑦𝑖+1,𝑘 ≤
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 (5.48)

𝑡∑︁
𝑘=0

𝑦𝑖 ,𝑘 ≤ 𝑝ℓ ,𝑡Q +
𝑡−1∑︁
𝑘=0

𝑦𝑖 ,𝑘 (5.49)

𝑡∑︁
𝑘=0

𝑦𝑖 ,𝑘 ≤ N +
𝑡−1∑︁
𝑘=0

𝑦𝑖+1,𝑘 (5.50)

5.3.3 LTM Equivalence

To derive an equivalence for LTM, first we restrict the traffic flows to be without turns. In
which case we have all the sending flow from link 𝑗 received by link 𝑖 and R𝑖 ,𝑛 = S𝑗 ,𝑛 . There-
fore N in

𝑖 ,𝑛 = Nout
𝑗 ,𝑛 = N (𝑥𝑖 , 𝑡), and we get S𝑖 ,𝑛 = Nout

𝑖 ,𝑛 − Nout
𝑖 ,𝑛−1 and R𝑖 ,𝑛 = N in

𝑖 ,𝑛 − N in
𝑖 ,𝑛−1 from

constraints (L9) to (L14). Then by substituting and rearranging, we get the forward wave
path constraint (5.52) from (L6), the signal wave path constraint (5.53) from (L8), and the
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backwards wave path constraint (5.54) from (L2).

max
∑︁
𝑖∈exit

∑︁
𝑛

Nout
𝑖 ,𝑛 (5.51)

subject to: Nout
𝑖 ,𝑛 ≤ N in

𝑖 ,𝑛−𝑣𝑖 (5.52)
Nout
𝑖 ,𝑛 ≤ Nout

𝑖 ,𝑛−1 + 𝑝𝑖 ,𝑗 ,𝑛F𝑖 ,𝑗 (5.53)
N in
𝑖 ,𝑛 ≤ Nout

𝑖 ,𝑛−𝑤𝑖
+ 𝑐𝑖 (5.54)

The MILP given by constraints (5.51) to (5.54) solves LTM as a constrained shortest path
problem. It is interesting to note that in an LTM solution, the states of z in

𝑖 ,𝑛 and zout
𝑖 ,𝑛 will then

indicate the shortest path wave choice at each node. If link 𝑖 is upstream of link 𝑗 , z in
𝑗 ,𝑛 = 0 for

backwards waves, zout
𝑖 ,𝑛 = 0 for forward waves, and zout

𝑖 ,𝑛 = 1 for signal waves.

5.4 Traffic Withholding

Traffic withholding is a consequence of the relaxed lower bounds in QTM constraints (Q1)
and (Q2) and on CTM constraints (C2) to (C4), such that traffic may not move downstream,
even if it is clear to do so. To address this, Lin and Wang [Lin and Wang, 2004] add an
additional term to the objective function with a small weight to hold the cell outflow against
the upper bound. Similarly, QTM also uses a weighted term in the objective function to
address any possible withholding of the queue outflow.

However, equations (5.1), (5.2), (5.3) and (5.5) show us that the objective functions of
QTM and CTM, without the withholding terms, are maximizing the values of the cumulative
vehicle counts at the exit. And we know from the VT equivalences in the previous section,
that the QTM and CTM MILPS are also determining the values by finding the shortest path
from initial–boundary nodes to each exit nodes. An important observation here is that to
optimize the signal plan, the solver needs only to find the correct values of the flows along
the shortest paths to the exit nodes of the network. If the withholding term has been removed
from the QTM and CTM objective functions (O6) and (O2), then withholding can only occur
at those nodes in the equivalent VT lattice that are not on a shortest path to an exit node, and
therefore do not impact on the optimality of the solution.

Figure 5.2 gives an example of a traffic flow with vehicle withholding. Figure 5.2(a) shows
that the flow between 80 s and 120 s withholds during the green phase at the first traffic signal,
and again between 210 s and 220 s, and 540 s and 560 s. The withholding flow is shown in red
and the correct flow is shown in green. The VT network and solution for the flow is shown
in Fig. 5.2(b), with all possible shortest paths between the origin node and all the exit nodes
are enumerated. Those nodes at the first traffic signal on a shortest path are circled green in
both Fig. 5.2(a) and Fig. 5.2(b). We can see that the regions in Fig. 5.2(a) where withholding
occurs, are restricted to the nodes that are not on any possible shortest path, and therefore
do not contribute to the objective value.
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Figure 5.2: An example of vehicle withholding on a traffic network. (a) shows the flow regions
with vehicle withholding in red and the correct flow in green. (b) shows the VT network enu-
merated with all the possible shortest paths in the solution. Nodes along the first intersection
through which a shortest path passes are circled green in both (a) and (b). It is clear that the
withholding only occurs on nodes not on any shortest path, which do not contribute to the
objective value.
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Figure 5.3: Example of a QTMW flow with multiple shockwaves. (a) Left plot shows the
density of the flow. Forwards and backwards shockwaves are clearly visible. Right plot shows
the contours of the Newell surface for the solution, which represent the vehicle trajectories
predicted by the LWR model. Overlaid are the trajectories of an IDM microsimulation of the
policy which align very well with the QTM prediction. (b) Left plot shows the fundamental
diagram used for the QTM solver with 9 piecewise linear segments approximating the IDM
fundamental diagram. Right plot shows the values of Q𝜔

𝑖
, corresponding to each wave 𝑢𝜔 .

The wave number 𝜔 is enumerated on both plots.
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5.5 QTM with Multiple Waves

The results in Sections 5.2 and 5.3 suggest an extension to QTM to model LWR traffic flows
with multiple shock-waves. MILP formulations of CTM, LTM and VT such as [Lin andWang,
2004; Hajiahmadi et al., 2012; Wada et al., 2017] are limited to two wave speeds, and the waves
speeds are limited to the slopes of edges within a homogeneous wave lattice. However, we
can make use of QTM’s non-homogeneous property to model multiple waves with arbitrary
speed.

First consider the wave speeds of a fundamental diagram, Q (𝑘). If Q (𝑘) is concave and
piece-wise linear, then the slope of each segment ℎ has an associated wave speed 𝑢ℎ and
𝑢ℎ ≥ 𝑢ℎ+1. Let Ω be the set of wave index’s for ℎ. We define a set of new variables 𝑞𝜔

𝑖 ,𝑛 for
each 𝜔 ∈ Ω, and each queue 𝑖 . Associated with each 𝜔 is the constant T𝜔

𝑖
which defines

the propagation time for wave 𝜔 at speed 𝑢𝜔 along the length of 𝑖 . Additionally, there is a
constant Q𝜔

𝑖
associated with each 𝑢𝜔 which gives a bound on the range of 𝑞𝜔

𝑖 ,𝑛 , such that for
forward waves, where 𝑢ℎ > 0), 𝑞𝜔

𝑖 ,𝑛 ∈ [−Q𝜔
𝑖

, Q𝑖], and for backward waves, where 𝑢ℎ < 0),
𝑞𝜔
𝑖 ,𝑛 ∈ [0, Q𝜔

𝑖
], where Q𝜔

𝑖
= T𝜔

𝑖
max𝑘 (Q (𝑘) − 𝑘𝑢𝜔 ). We may ignore any segments where

𝑢𝜔 = 0, since such segments represent the capacity flow max𝑘 Q (𝑘) = F𝑖 ,𝑗 and are modelled
by constraint (Q2). Note that for the first segment in Ω, 𝑢1 = 𝑣 , the free flow velocity of the
traffic flow, and so T1

𝑖 = TP, and for the final segment in Ω, Q𝜔
𝑖
= Q𝑖 , respectively the queue

propagation constant and queue capacity constant of QTM.
To update each 𝑞𝜔

𝑖 ,𝑛 , at each time interval, we replace constraints (Q5) and (Q6) with (Q23)
for forward travelling waves, and (Q24) for backward travelling waves.

𝑞𝜔𝑖 ,𝑛 = 𝑞𝜔𝑖 ,𝑛−1 +𝑉𝑖 (𝑡𝑛−1 − T𝜔𝑖 , 𝑡𝑛 − T𝜔𝑖 ) − 𝑞out
𝑖 ,𝑛−1 for 𝑢𝜔 > 0 (Q23)

𝑞𝜔𝑖 ,𝑛 = 𝑞𝜔𝑖 ,𝑛−1 + 𝑞in
𝑖 ,𝑛−1 −𝑉 out

𝑖 (𝑡𝑛−1 − T𝜔𝑖 , 𝑡𝑛 − T𝜔𝑖 ) for 𝑢𝜔 < 0 (Q24)

The function 𝑉 out in (Q24) is defined in (5.55), and similar to (3.2), represents the volume of
traffic exiting 𝑖 during the time period 𝑥 to 𝑦.

𝑉 out
𝑖 (𝑥 ,𝑦) = (𝑡𝑚+1 − 𝑥)

𝑞out
𝑖 ,𝑚

Δ𝑡𝑚
+

(
𝑤−1∑︁
𝑘=𝑚+1

𝑞out
𝑖 ,𝑘

)
+ (𝑦 − 𝑡𝑤)

𝑞out
𝑖 ,𝑤

Δ𝑡𝑤
(5.55)

We refer to the MILP (O6, Q1–Q4, Q23, Q24) as the Queue Transmission Model with Waves,
(QTMW).

Figure 5.3 shows an example of a solution found using QTMW. An approximation of the
IDM fundamental diagram was made using 9 piece-wise linear segments, which in turn were
used to generate the values of Q𝜔

𝑖
for the solver (lower left and right plots). After solving, the

Newell surface was generated using the solutions cumulative arrival and departure curves
for each link. The density of the solution was found by taking the partial derivative in the
negative 𝑥 direction and this is plotted in the upper left plot. Backwards and forwards travel-
ling shock-waves can be clearly seen as changes in density. Also visible is the spreading out
of the traffic flow along the link. The contours of the Newell surface are plotted in the upper
right plot, with a contour interval of 1. Each curve represents a vehicle trajectory predicted
by the LWR model. Overlaid are the vehicle trajectories of an IDM micro-simulation of the



82 QTM Equivalence

same signal control policy, after adjustment for lost time. The micro-simulation aligns very
well with the QTM solutions prediction.

QTMW as a Constrained Shortest Path Problem

To show that QTMW is a VT shortest path problem, we need to connect the QTMW con-
straints (Q23) and (Q24) to the VT constraints (5.57) and (5.58), and constraint (Q2) to (5.59).

max
N∑︁
𝑛=1

|Q |∑︁
𝑖=1

N (𝑥out
𝑖 , 𝑡𝑛) (5.56)

subject to: N (𝑥out
𝑖 , 𝑡𝑛) ≤ N (𝑥 in

𝑖 , 𝑡𝑛 − T𝜔𝑖 ) + Q𝜔𝑖 for 𝑢𝜔 > 0 (5.57)
N (𝑥 in

𝑖 , 𝑡𝑛) ≤ N (𝑥out
𝑖 , 𝑡𝑛 − T𝜔𝑖 ) + Q𝜔𝑖 for 𝑢𝜔 < 0 (5.58)

N (𝑥out
𝑖 , 𝑡𝑛) ≤ N (𝑥out

𝑖 , 𝑡𝑛−1) + Δ𝑡𝑛−1F𝑖 ,𝑗𝑝𝑖 ,𝑗 ,𝑛−1 (5.59)

Without loss of generality we assume there is an epoch at 𝑡1 where for all 𝑖 , 𝑞𝜔
𝑖 ,1 = 0. To

ensure that the VT network is fully connected, Δ𝑡𝑛 must be homogeneous and there must
be a positive integer 𝑤 = T𝜔

𝑖 /Δ𝑡𝑛 ∈ Z+ such that 𝑡𝑛−𝑤 = 𝑡𝑛 − T𝜔
𝑖
. We can use 𝑤 to rewrite

QTMW constraints (Q23) and (Q24) as (5.60) (5.61), and connect the cumulative counts at
nodes (𝑥out

𝑖 , 𝑡𝑛 − T𝜔
𝑖
) and (𝑥out

𝑖 , 𝑡𝑛) to the output of queue 𝑖 with (5.62) and (5.63), and the
cumulative counts at nodes (𝑥 in

𝑖 , 𝑡𝑛 − T𝜔
𝑖
) and (𝑥 in

𝑖 , 𝑡𝑛) to the input of queue 𝑖 with (5.64) and
(5.65).

𝑞𝜔𝑖 ,𝑛 = 𝑞𝜔𝑖 ,𝑛−1 + 𝑞in
𝑖 ,𝑛−𝑤−1 − 𝑞out

𝑖 ,𝑛−1 for 𝑢𝜔 > 0 (5.60)
𝑞𝜔𝑖 ,𝑛 = 𝑞𝜔𝑖 ,𝑛−1 + 𝑞in

𝑖 ,𝑛−1 − 𝑞out
𝑖 ,𝑛−𝑤−1 for 𝑢𝜔 < 0 (5.61)

N (𝑥out
𝑖 , 𝑡𝑛 − T𝜔𝑖 ) =

𝑛−𝑤−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.62)

N (𝑥out
𝑖 , 𝑡𝑛) =

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.63)

N (𝑥 in
𝑖 , 𝑡𝑛 − T𝜔𝑖 ) =

𝑛−𝑤−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.64)

N (𝑥 in
𝑖 , 𝑡𝑛) =

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.65)

To derive the forwards wave constraint, we rearrange (5.60), and take the cumulative
summation over both sides from 𝑡1, to get (5.66). Expanding and simplifying (5.66), we get
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(5.68).

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 =

𝑛−1∑︁
𝑘=1

(
𝑞𝜔
𝑖 ,𝑘 − 𝑞

𝜔
𝑖 ,𝑘+1 + 𝑞

in
𝑖 ,𝑘−𝑤

)
(5.66)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 = 𝑞𝜔𝑖 ,1 − 𝑞𝜔𝑖 ,𝑛 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.67)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 = −𝑞𝜔𝑖 ,𝑛 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (since 𝑞𝜔𝑖 ,1 = 0) (5.68)

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤ Q𝜔𝑖 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (since −𝑞𝜔𝑖 ,𝑛 ≤ Q𝜔𝑖 when 𝑢𝜔 > 0) (5.69)

Since −𝑞𝜔
𝑖 ,𝑛 ≤ Q𝑖 , we can relax the equality in (5.68) to get (5.69), which we can see by sub-

stituting (5.65) and (5.62) is equivalent to the forwards wave path constraint (5.57). To derive
the backwards wave constraint, we rearrange (5.61), and take the cumulative summation over
both sides from 𝑡1, to get (5.70). Expanding and simplifying (5.70), we get (5.72).

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 =

𝑛−1∑︁
𝑘=1

(
𝑞𝜔
𝑖 ,𝑘+1 − 𝑞

𝜔
𝑖 ,𝑘 + 𝑞

out
𝑖 ,𝑘−𝑤

)
(5.70)

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 = 𝑞𝜔𝑖 ,𝑛 − 𝑞𝜔𝑖 ,1 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.71)

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 = 𝑞𝜔𝑖 ,𝑛 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (since 𝑞𝜔𝑖 ,1 = 0) (5.72)

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 ≤ Q𝜔𝑖 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (since 𝑞𝜔𝑖 ,𝑛 ≤ Q𝜔𝑖 when 𝑢𝜔 < 0) (5.73)

Since 𝑞𝜔
𝑖 ,𝑛 ≤ Q𝑖 , we can relax the equality in (5.72) to get (5.73) which we can see by substitut-

ing (5.65) and (5.62) is equivalent to the backwards wave path constraint (5.58). Finally we can
use the QTMW constraints (O6, Q1–Q4, Q23, Q24) and the relationships −𝑞𝜔

𝑖 ,𝑛 ≤ Q𝜔
𝑖
when

𝑢𝜔 > 0, 𝑞𝜔
𝑖 ,𝑛 ≤ Q𝜔

𝑖
when 𝑢𝜔 < 0, and 𝑞out

𝑖 ,𝑛 ≤ Δ𝑡F𝑖𝑝ℓ ,𝑛 , to derive constraints (5.30) to (5.32),
where𝑚 is the index such that 𝑡𝑛−𝑚 = 𝑡𝑛 − Tp

𝑖
.

max
|Q |∑︁
𝑖=1

N∑︁
𝑛=1

(T − 𝑡𝑛) Δ𝑡𝑛 𝑓 out
𝑖 ,𝑛 (5.74)

subject to:
𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤ Q𝜔𝑖 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 (5.75)

𝑛−1∑︁
𝑘=1

𝑞in
𝑖 ,𝑘 ≤ Q𝜔𝑖 +

𝑛−𝑤−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.76)

𝑛∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 ≤ Δ𝑡F𝑖𝑝ℓ ,𝑛 +

𝑛−1∑︁
𝑘=1

𝑞out
𝑖 ,𝑘 (5.77)

The MILP given by constraints (5.74) to (5.77) demonstrates that QTMW with homogeneous
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time steps and no turning traffic is solving a constrained shortest path problem.

5.6 Extending VT with turns

In Section 5.3, QTM, QTMW, CTM and LTM were shown to be a equivalent to VT as a con-
strained shortest path problem on a acyclic directed graph of wave paths, but with the limita-
tion imposed by the VT formulation that the traffic flow be free of turning movements. This
suggests a framework to extend VT Theory to traffic networks with turning movements, us-
ing QTM.

5.6.1 Adding turns with QTM

We can extend VT theory to include turns by splitting the VT graph into complete sub-graphs
for each link. Each link can then be solved as a QTM LP and the input and output flows used
to connect the sub-graphs. To do so, we add input nodes along the input boundary of each
link, along with connecting signal paths. We bind the input nodes to the output nodes of
the upstream links, via the sending and receiving flows weighted by the turn probabilities.
The input and output flows during each time interval are derived by taking the difference in
cumulative counts across the signal paths.

max
∑︁
𝑗∈Vexit

Nout
𝑗 (5.78)

s.t. Nout
𝑗 ≤ 𝑁 in

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lv ∪Ld

N in
𝑗 ≤ Nout

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lw

Nout
𝑗 ≤ Nout

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Ls

N in
𝑗 ≤ N in

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Ls

𝑞in
𝑖 =

∑︁
𝑘

Pr𝑘𝑖𝑞out
𝑘

∀𝑖 ∈ V

𝑞out
𝑗 = 𝑁 out

𝑗 −Nout
𝑖 ∀(𝑖 , 𝑗) ∈ Ls

𝑞in
𝑗 = 𝑁 in

𝑗 −N in
𝑖 ∀(𝑖 , 𝑗) ∈ Ls

No = 0



§5.6 Extending VT with turns 85

Where:

𝑖 node at location (𝑡𝑖 ,𝑥𝑖) along a link
N in
𝑖 cumulative vehicle count at link input node 𝑖

Nout
𝑖 cumulative vehicle count at link output node 𝑖

No virtual dummy node
V set of all nodes, including 𝑁o

L set of wave paths, (𝑖 , 𝑗), the path from 𝑖 to 𝑗
Lv subset of forward wave paths with slope 𝑣
Lw subset of backward wave paths with slope −𝑤
Ls subset of signal wave paths with slope 0
Ld subset of dummy node wave paths, (o, 𝑖)
𝑞out
𝑖 is the link input flow past 𝑖 during interval (𝑖 , 𝑗) ∈ Ls

𝑞in
𝑖 is the link output flow past 𝑖 during interval (𝑖 , 𝑗) ∈ Ls

Pr𝑖 𝑗 turn probability from 𝑖 to 𝑗
𝑐𝑖 𝑗 cost from 𝑖 to 𝑗

5.6.2 Stochastic Shortest Path LP

We can simplify the LP (5.78) further by eliminating the input and output flow variables, and
directly connecting the sub-graphs for each link. Define N in

𝑖 and Nout
𝑖 as sums over 𝑞in

𝑖 and
𝑞out
𝑖 :

N in
𝑗 = 𝑁 in

𝑖 + 𝑞in
𝑖 ∀(𝑖 , 𝑗) ∈ Ls (5.79)

Nout
𝑗 = 𝑁 out

𝑖 + 𝑞out
𝑖 ∀(𝑖 , 𝑗) ∈ Ls

=⇒ Nout
𝑗 =

∑︁
𝑛

𝑞out
𝑛 and N in

𝑗 =
∑︁
𝑛

𝑞in
𝑛 ∀(𝑛, 𝑖) ∈ Ls s.t. 𝑡𝑖 < 𝑡 𝑗 and𝑥𝑖 = 𝑥 𝑗

Then, using the fact that 𝑞in
𝑖 =

∑
𝑘 Pr𝑘𝑖𝑞out

𝑘
, we can eliminate 𝑞in

𝑖 and 𝑞out
𝑖 ,

N in
𝑖 =

∑︁
𝑛

𝑞in
𝑛 (5.80)

=
∑︁
𝑛

∑︁
𝑘

Pr𝑘𝑖𝑞out
𝑘

=
∑︁
𝑘

Pr𝑘𝑖
∑︁
𝑛

𝑞out
𝑛

=
∑︁
𝑘

Pr𝑘𝑖Nout
𝑘
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This gives the stochastic shortest path LP:

max
∑︁
𝑗∈Vexit

𝑁 out
𝑗 (5.81)

s.t. 𝑁 out
𝑗 ≤ 𝑁 in

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lv ∪Ld

𝑁 in
𝑗 ≤ 𝑁 out

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lw

𝑁 out
𝑗 ≤ 𝑁 out

𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Ls

𝑁 in
𝑖 =

∑︁
𝑘

Pr𝑘𝑖𝑁 out
𝑘

∀𝑖 ∈ V

𝑁o = 0

The LP (5.81), shows that solving a QTM traffic flow with turns is equivalent to solving a
stochastic shortest path problem.

5.6.3 VT with turns as an Markov Decision Problem value function

Since 𝑁 in
𝑗 =

∑
𝑘 𝑝𝑘𝑖𝑁

out
𝑘

, we can remove the input nodes and connect the wave path directly
to the output nodes at each end. We locate nodes at the exit of each link, just before traffic
turns to the downstream links.

max
∑︁
𝑗∈Vexit

𝑁 𝑗 (5.82)

s.t. 𝑁 𝑗 ≤ 𝑁𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Ls ∪Ld

𝑁 𝑗 ≤
∑︁
𝑘

Pr𝑘𝑖𝑁𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lv∑︁
𝑘

Pr𝑘 𝑗𝑁 𝑗 ≤ 𝑁𝑖 + 𝑐𝑖 𝑗 ∀(𝑖 , 𝑗) ∈ Lw

𝑁o = 0
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Where:

𝑖 node at location (𝑡𝑖 ,𝑥𝑖) along a link
𝑁𝑖 cumulative vehicle count at node 𝑖
𝑁o virtual dummy node
V set of all nodes, including 𝑁o

L set of wave paths, (𝑖 , 𝑗), the path from 𝑖 to 𝑗
Lv subset of forward wave paths with slope 𝑣
Lw subset of backward wave paths with slope −𝑤
Ls subset of signal wave paths with slope 0
Ld subset of dummy node wave paths, (o, 𝑖)
Pr𝑖 𝑗 turn probability from 𝑖 to 𝑗
𝑐𝑖 𝑗 cost from 𝑖 to 𝑗

The LP (5.82) shows that finding a traffic flowwith turningmovements on an extended VT
network, is equivalent to finding the optimum value function of a Markov Decision Problem
(MDP) [Littman et al., 2013]. By introducing the binary variable 𝑝𝑖 𝑗 to represent the signal
state of signal path (𝑖 , 𝑗) ∈ Ls and substituting 𝑝𝑖 𝑗𝑐𝑖 𝑗 as the cost for signal path (𝑖 , 𝑗), (5.82)
becomes a MILP for optimizing signal plans for traffic networks with turn probabilities.

5.7 QTM Continuous Time Solver

The Queue Transmission Model presented in Chapter 3 has the interesting property of piece-
wise linear dynamics, such that time steps can be non-homogeneous and are only required at
change points. This suggests the possibility of an alternate QTM formulation where the time
discretization is dynamic and chosen optimally by the solver. Compared to an exogenously
defined time discretization, a solution may require significantly less time steps for the same
planning horizon, while generating continuous time signal schedules of higher fidelity. This
section presents such a continuous time QTM solver.

Given a set of queues Q defining a traffic network, and a planning horizon T, we choose
a number of time intervals N𝑖 for each queue 𝑖 ∈ Q and define a vector ®𝛿𝑡𝑖 , of N𝑖 time
step variables, with each 𝛿𝑡𝑖 ,𝑛 ∈ [0,𝑇 ] and 𝑛 ∈ N𝑖 . The vector ®𝛿𝑡𝑖 then defines a dynamic
schedule of time intervals for each queue starting from time 0, with the input schedule given
by constraints (W1) and (W2), and the output schedule offset from the input by the travel time
TP
𝑖 with constraint (W3). The solver is free to place each (𝑡 in

𝑖 ,𝑛 , 𝑡out
𝑖 ,𝑛 ) pair exactly as needed to

define changes points in the queue dynamics.

𝑡 in
𝑖 ,1 = 0 (W1)

𝑡 in
𝑖 ,𝑛+1 = 𝑡

in
𝑖 ,𝑛 + 𝛿𝑡𝑖 ,𝑛 (W2)

𝑡out
𝑖 ,𝑛 = 𝑡 in

𝑖 ,𝑛 + TP
𝑖 (W3)
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Since each queue has a unique time discretization, in order to move vehicles between queues
we need to find a mapping from upstream to downstream time intervals. If 𝑗 flows into 𝑖 , we
define a 0–1 incidence matrix Ui that maps time intervals in 𝑗 to 𝑖 . Ui is an N𝑖 × M𝑗 matrix,
where M𝑗 is the number of time intervals in 𝑗 . A one in entry (𝑛,𝑚) of Ui indicates that
interval 𝛿𝑡𝑖 ,𝑛 is within interval 𝛿𝑡 𝑗 ,𝑚 . In order to find the overlap between 𝛿𝑡𝑖 ,𝑛 and 𝛿𝑡 𝑗 ,𝑚 , we
use two binary variables 𝑣𝑖 ,𝑛,𝑚 and 𝑧𝑖 ,𝑛,𝑚 , and a method similar to [Lo, 1998] and [Beard and
Ziliaskopoulos, 2006] with constraints (W4) to (W7) and M and 𝜖 as sufficiently large and
small constants respectively. If 𝑡 in

𝑗 ,𝑛 ≥ 𝑡out
𝑗 ,𝑛 then 𝑣𝑖 ,𝑛,𝑚 = 1 else 0, and if 𝑡 in

𝑗 ,𝑛 ≤ 𝑡out
𝑗 ,𝑛 then 𝑧𝑖 ,𝑛,𝑚 = 1

else 0. Then if 𝑣𝑖 ,𝑛,𝑚 = 1 and 𝑧𝑖 ,𝑛+1,𝑚+1 = 1 then the interval 𝛿𝑡𝑖 ,𝑛 must lie within 𝛿𝑡 𝑗 ,𝑚 and this
is enforced with constraint (W8) where 𝑢𝑖 ,𝑛,𝑙 is the (𝑛,𝑚) entry in U𝑖 .

M𝑣𝑖 ,𝑛,𝑚 − 𝜖 ≥ 𝑡 in
𝑖 ,𝑛 − 𝑡out

𝑗 ,𝑚 (W4)

−M(1 − 𝑣𝑖 ,𝑛,𝑚) ≤ 𝑡 in
𝑖 ,𝑛 − 𝑡out

𝑗 ,𝑚 (W5)

M𝑧𝑖 ,𝑛,𝑚 − 𝜖 ≥ 𝑡out
𝑗 ,𝑚 − 𝑡 in

𝑖 ,𝑛 (W6)

−M(1 − 𝑧𝑖 ,𝑛,𝑚) ≥ 𝑡out
𝑗 ,𝑚 − 𝑡 in

𝑖 ,𝑛 (W7)

𝑢𝑖 ,𝑛,𝑚 = 𝑣𝑖 ,𝑛,𝑚 + 𝑧𝑖 ,𝑛+1,𝑚+1 − 1 (W8)

However, we do not require that all intervals in 𝑖 map to intervals in 𝑗 – only those intervals
carrying traffic flow are needed, and further, depending on the rate of flow, multiple intervals
in 𝑖 can be mapped to an interval in 𝑗 . Our only constraint is that when there is a mapping,
the total duration of the intervals in 𝑖 should be exactly equal to the duration of the interval
they map to in 𝑗 . We can enforce these requirements by placing constraints on the entries
of U𝑖 . Firstly, to detect when there is non zero flow during 𝛿𝑡 𝑗 ,𝑚 , we use constraints (W9)
and (W10) to set a binary variable 𝑟 in

𝑖 ,𝑚 = 1 for each interval in 𝑗 , only if 𝑞out
𝑗 ,𝑚 is strictly greater

than 0 during interval𝑚, otherwise 0. If 𝑟 in
𝑖 ,𝑚 = 1 then we must map interval𝑚 in 𝑗 to at least

one interval in 𝑖 which is represented with at least one element in column𝑚 of U𝑖 set to 1.
The condition can be met by summing column𝑚 of U𝑖 to be 1 with constraint (W11).

M(1 − 𝑟 in
𝑖 ,𝑚) ≥ −𝑞out

𝑗 ,𝑚 + 𝜖 (W9)

M𝑟 in
𝑖 ,𝑚 ≥ 𝑞out

𝑗 ,𝑚 − 𝜖 (W10)∑︁
𝑛

𝑢𝑖 ,𝑛,𝑚 ≥ 𝑟 in
𝑖 ,𝑚 (W11)

Further, if the outflow from 𝑗 during interval𝑚 is at the maximum rate F𝑗 , then we are free
to map several intervals in 𝑖 to𝑚, since the number of vehicles entering during each mapped
interval in 𝑖 can be determined simply by F𝑗𝛿𝑡𝑖 ,𝑛 . This condition can be guaranteed only when
the value 𝑞 𝑗 ,𝑚 is strictly greater than zero, since by definition the QTM discharges queues at
the maximum rate when there is no downstream restriction. To detect when 𝑞𝑖 ,𝑛 is strictly
greater than zero, we use constraints (W12) and (W13) to set 𝑤out

𝑖 ,𝑛 = 1 when 𝑞𝑖 ,𝑛 = 0, and to
zero otherwise. Then we can set 𝑟out

𝑖 ,𝑛 = 0 when 𝑞𝑖 ,𝑛 > 0 and the traffic light is green during 𝑛
as indicated by 𝑝𝑖 ,𝑛 , using constraints (W14) to (W16). Finally we can set the upper bound on
the number of intervals in 𝑖 mapped to interval𝑚 in 𝑗 , with constraint (W17), which reduces
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to at most one element in column𝑚 of Ui when the outflow from 𝑗 is less than F𝑗 .

M(1 −𝑤out
𝑖 ,𝑛 ) ≥ −𝑞𝑖 ,𝑛 + 𝜖 (W12)

M𝑤out
𝑖 ,𝑛 ≥ 𝑞𝑖 ,𝑛 − 𝜖 (W13)

1 − 𝑝𝑖 ,𝑛 +𝑤out
𝑖 ,𝑛 ≥ 𝑟out

𝑖 ,𝑛 (W14)
1 − 𝑝𝑖 ,𝑛 ≤ 𝑟out

𝑖 ,𝑛 (W15)
𝑤out
𝑖 ,𝑛 ≤ 𝑟out

𝑖 ,𝑛 (W16)∑︁
𝑛

𝑢𝑖 ,𝑛,𝑚 ≤ 1 +M𝑟out
𝑗 ,𝑚 (W17)

If the flow rate is less than F𝑗 then the number of vehicles arriving during interval 𝑛 depends
on the ratio of 𝛿𝑡𝑖 ,𝑛 to 𝛿𝑡 𝑗 ,𝑚 which cannot be determined using linear constraints. In which
case we must map 𝛿𝑡𝑖 ,𝑛 = 𝛿𝑡 𝑗 ,𝑚 . Likewise, if the flow rate is F𝑗 then the total duration of
intervals in 𝑖 mapped to interval𝑚 by U𝑖 must sum to 𝛿𝑡 𝑗 ,𝑚 , as given by equation (5.83).

𝛿𝑡 𝑗 ,𝑚 =
∑︁
𝑛

𝛿𝑡𝑖 ,𝑛𝑢𝑖 ,𝑛,𝑚 (5.83)

To encode the relationship in (5.83) as constraints, first we construct a helper matrix A𝑖 using
constraints (W18) to (W20) where 𝑎𝑖 ,𝑛,𝑚 is element (𝑛,𝑚) of A𝑖 , such that 𝑎𝑖 ,𝑛,𝑚 = 𝛿𝑡𝑖 ,𝑛𝑢𝑖 ,𝑛,𝑚 .
Then the of summation of column𝑚 in A𝑖 can be equated with 𝛿𝑡 𝑗 ,𝑚 using constraints (W21)
and (W22).

𝑎𝑖 ,𝑛,𝑚 ≤ 𝛿𝑡𝑖 ,𝑛 +M(1 −𝑢𝑖 ,𝑛,𝑚) (W18)
𝑎𝑖 ,𝑛,𝑚 ≥ 𝛿𝑡𝑖 ,𝑛 −M(1 −𝑢𝑖 ,𝑛,𝑚) (W19)
𝑎𝑖 ,𝑛,𝑚 ≤ M𝑢𝑖 ,𝑛,𝑚 (W20)
𝛿𝑡 𝑗 ,𝑚 ≤

∑︁
𝑛

𝑎𝑖 ,𝑛,𝑚 +M(1 − 𝑟 in
𝑖 ,𝑚) (W21)

𝛿𝑡 𝑗 ,𝑚 ≥
∑︁
𝑛

𝑎𝑖 ,𝑛,𝑚 −M(1 − 𝑟 in
𝑖 ,𝑚) (W22)

Next we need to find the volume of traffic 𝑞in
𝑖 ,𝑛 flowing from queue 𝑗 into queue 𝑖 during each

interval 𝑛. We use a set of intermediate variables 𝑓 in
𝑖 ,𝑛,𝑚 to hold the values as determined by

𝑢𝑖 ,𝑛,𝑚 and 𝑟out
𝑗 ,𝑚 . If 𝑢𝑖 ,𝑛,𝑚 = 0 then 𝑓 in

𝑖 ,𝑛,𝑚 = 0 using constraint (W23). If 𝑢𝑖 ,𝑛,𝑚 = 1 and 𝑟out
𝑗 ,𝑚 = 1

then the output of 𝑗 during interval𝑚 is not flowing at the maximum rate F𝑗 , 𝛿𝑡𝑖 ,𝑛 = 𝛿𝑡 𝑗 ,𝑚 , and
all the outflow from 𝑞out

𝑗 ,𝑚 is transferred to 𝑓 in
𝑖 ,𝑛,𝑚 by constraints (W24) and (W25). Otherwise,

if 𝑢𝑖 ,𝑛,𝑚 = 1 and 𝑟out
𝑗 ,𝑚 = 0 then 𝛿𝑡𝑖 ,𝑛 ≤ 𝛿𝑡 𝑗 ,𝑚 , the output of 𝑗 during interval𝑚 is at the constant

rate F𝑗 , and F𝑗𝛿𝑡𝑖 ,𝑛 ≤ 𝑞out
𝑗 ,𝑚 vehicles are transferred during interval 𝑛 using constraints (W26)

and (W27). Finally the value of 𝑞in
𝑖 ,𝑛 is determined by totaling all of the 𝑓 in

𝑖 ,𝑛,𝑚 values with
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constraint (W28).

𝑓 in
𝑖 ,𝑛,𝑚 ≤ M𝑢𝑖 ,𝑛,𝑚 (W23)
𝑓 in
𝑖 ,𝑛,𝑚 ≤ 𝑞out

𝑗 ,𝑚 +M(1 − 𝑟out
𝑗 ,𝑚) +M(1 −𝑢𝑖 ,𝑛,𝑚) (W24)

𝑓 in
𝑖 ,𝑛,𝑚 ≥ 𝑞out

𝑗 ,𝑚 −M(1 − 𝑟out
𝑗 ,𝑚) −M(1 −𝑢𝑖 ,𝑛,𝑚) (W25)

𝑓 in
𝑖 ,𝑛,𝑚 ≤ F𝑗𝛿𝑡𝑖 ,𝑛 (W26)
𝑓 in
𝑖 ,𝑛,𝑚 ≥ F𝑗𝛿𝑡𝑖 ,𝑛 −M𝑟out

𝑗 ,𝑚 −M(1 −𝑢𝑖 ,𝑛,𝑚) (W27)

𝑞in
𝑖 ,𝑛 =

∑︁
𝑙

𝑓 in
𝑖 ,𝑛,𝑙 (W28)

Similarly, we need to find the volume of traffic 𝑞out
𝑖 ,𝑛 flowing out from queue 𝑖 during each

interval 𝑛. Firstly, if the traffic signal controlling 𝑖 is red during interval 𝑛, then 𝑝𝑖 ,𝑛 = 0 and
𝑞out
𝑖 ,𝑛 = 0 is enforced with constraint (W29). Otherwise, if the signal is green and 𝑞𝑖 ,𝑛 = 0 then
𝑖 is discharging at the same rate is the inflow, and 𝑝𝑖 ,𝑛 = 1 and 𝑟out = 1 sets 𝑞out

𝑖 ,𝑛 = 𝑞in
𝑖 ,𝑛 with

constraints (W30) and (W31). Finally if the signal is green and 𝑞𝑖 ,𝑛 > 0, then 𝑖 is discharging
at the rate F𝑖 and 𝑝𝑖 ,𝑛 = 1 and 𝑟out = 0 sets 𝑞out

𝑖 ,𝑛 = F𝑖𝛿𝑡𝑖 ,𝑛 using constraints (W32) and (W33).

𝑞out
𝑖 ,𝑛 ≤ M𝑝𝑖 ,𝑛 (W29)
𝑞out
𝑖 ,𝑛 ≤ 𝑞in

𝑖 ,𝑛 +M(1 − 𝑝𝑖 ,𝑛) +M(1 − 𝑟out
𝑖 ,𝑛 ) (W30)

𝑞out
𝑖 ,𝑛 ≥ 𝑞in

𝑖 ,𝑛 −M(1 − 𝑝𝑖 ,𝑛) −M(1 − 𝑟out
𝑖 ,𝑛 ) (W31)

𝑞out
𝑖 ,𝑛 ≤ F𝑖𝛿𝑡𝑖 ,𝑛 (W32)
𝑞out
𝑖 ,𝑛 ≥ F𝑖𝛿𝑡𝑖 ,𝑛 −M(1 − 𝑝𝑖 ,𝑛) −M𝑟out

𝑖 ,𝑛 (W33)

Finally, we can update the state of queue 𝑖 at the end of interval 𝑖 using constraint (W34).

𝑞𝑖 ,𝑛+1 = 𝑞𝑖 ,𝑛 + 𝑞in
𝑖 ,𝑛 − 𝑞out

𝑖 ,𝑛 (W34)

A continuous time traffic light schedule L representing M cycles, can be defined with M + 1
time steps, 𝑡L

ℓ ,𝑚 , and an M × K incidence matrix, SL. Each column 𝑘 of SL is a vector of zeros
and ones that map intervals in L to phase 𝑘 . Let 𝑠L

𝑚,𝑘 be element (𝑚,𝑘) of SL, then 𝑠L
𝑚,𝑘 = 1 if

phase 𝑘 is green during interval𝑚, zero otherwise. To enforce the minimum and maximum
duration’s of each phase activation, we use constraints (W35) and (W36). Additionaly, if we
wish to have a fixed time schedule with optimized phase duration and offset, we can add a
variable 𝜙fixed

𝑘
for each fixed phase 𝑘 and the optional constraint (W37).

𝑡L
𝑘 ,𝑚+1 − 𝑡

L
𝑘 ,𝑚 ≤ Φmax

𝑘 ,𝑚 (W35)

𝑡L
𝑘 ,𝑚+1 − 𝑡

L
𝑘 ,𝑚 ≥ Φmin

𝑘 ,𝑚 (W36)

𝑡L
𝑘 ,𝑚+1 − 𝑡

L
𝑘 ,𝑚 = 𝜙fixed

𝑘
(W37)

To determine the value of 𝑝𝑖 ,𝑛 , the traffic signal controlling queue 𝑖 during interval 𝑛, we can
use a method similar to constraints (W4) to (W7) to detect overlapping intervals between
®𝛿𝑡𝑖 and each phase, 𝑘 of L. We use introduce two binary variables 𝑣L

𝑖 ,𝑛,𝑚 and 𝑧L
𝑖 ,𝑛,𝑚 and use

constraints (W38) to (W41) to indicate the overlapping time steps. Then an incidence ma-
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trix UL can be defined to indicate those intervals of 𝑖 that fall within an interval of L, with
constraint (W42).

M𝑣L
𝑖 ,𝑛,𝑚 − 𝜖 ≥ 𝑡out

𝑖 ,𝑛 − 𝑡L
𝑘 ,𝑚 (for each phase 𝑘 in L) (W38)

−M(1 − 𝑣L
𝑖 ,𝑛,𝑚) ≤ 𝑡out

𝑖 ,𝑛 − 𝑡L
𝑘 ,𝑚 (for each phase 𝑘 in L) (W39)

M𝑧L
𝑖 ,𝑛,𝑚 − 𝜖 ≥ 𝑡L

𝑘 ,𝑚 − 𝑡out
𝑖 ,𝑛 (for each phase 𝑘 in L) (W40)

−M(1 − 𝑧L
𝑖 ,𝑛,𝑚) ≥ 𝑡L

𝑘 ,𝑚 − 𝑡out
𝑖 ,𝑛 (for each phase 𝑘 in L) (W41)

𝑢L
𝑖 ,𝑛,𝑙 = 𝑣

L
𝑖 ,𝑛,𝑙 + 𝑧

L
𝑖 ,𝑛+1,𝑙+1 − 1 (W42)

However we don’t need to map every interval of ®𝛿𝑡𝑖 to within an interval of L. Only those
intervals with either traffic flowing or where 𝑞>,𝑖0 and the phase of L controlling 𝑖 is red
need to be detected. We already have constraints (W12) and (W13) to set 𝑤out

𝑖 ,𝑛 = 0 when
𝑞𝑖 ,𝑛 > 1, and we define a binary variable 𝑤 in

𝑖 ,𝑛 = 1 when 𝑞in
𝑖 ,𝑛 > 0, zero otherwise, using

constraints (W43) and (W44).

M(1 −𝑤 in
𝑖 ,𝑛) ≥ −𝑞in

𝑖 ,𝑛 + 𝜖 (W43)
M𝑤 in

𝑖 ,𝑛 ≥ 𝑞in
𝑖 ,𝑛 − 𝜖 (W44)

Now we can set element 𝑢L
𝑖 ,𝑛,𝑚 of UL to 1 if either 𝑤 in = 1 or 𝑤out = 1, or to zero otherwise,

with constraints (W45) and (W46), and 𝑝𝑖 ,𝑛 is set to 0 or 1 by the sum of column 𝑚 of UL

weighted by column 𝑘 of SL using constraint (W47).∑︁
𝑙

𝑢L
𝑖 ,𝑛,𝑚 ≥ 1 −𝑤 in

𝑖 ,𝑛 (W45)∑︁
𝑙

𝑢L
𝑖 ,𝑛,𝑚 ≥ 1 −𝑤out

𝑖 ,𝑛 (W46)

𝑝𝑖 ,𝑛 =
∑︁
𝑚

𝑠L
𝑘 ,𝑚𝑢

L
𝑖 ,𝑛,𝑚 (W47)

Finally, we want to force the solver to use all the N𝑖 intervals available to cover as much of the
planning horizon T as possible. We define an objective term to minimizing the absolute value
of the difference between T and the end of the last time interval of each queue, 𝑡out

𝑖 ,N𝑖+1. We
add a new variable 𝑑T

𝑖 ≥ 0 for each queue 𝑖 and set 𝑑T
𝑖 =

��𝑡out
𝑖 ,N𝑖+1 − T

�� using constraints (W48)
and (W49).

𝑑T
𝑖 ≥ 𝑡out

𝑖 ,N𝑖+1 − T (W48)

𝑑T
𝑖 ≥ −𝑡out

𝑖 ,N𝑖+1 + T (W49)

Now we can set the objective to minimize each 𝑑T
𝑖 with constraint (O7).

min
∑︁
𝑖

𝑑T
𝑖 (O7)
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Figure 5.4: Example of a cumulative departure curve for 𝑞2. iThe 𝑞2 values are exactly the
difference between departures without delay (dashed line) and the actual departures with
delay. The area between the curves is the delay in vehicle seconds.

5.7.1 Objective Functions

Since the time intervals of the solver are also variables, we cannot formulate a objective
function to minimize total travel time or delay in a way similar to (O6). However we know
that the value of the queue variable gives the vertical distance between the departures without
delay and the actual departures with delay, and together with Δ𝑡 gives the area which is
the delay in vehicle seconds (see Fig. 5.4). The area of the trapezoid formed between the
two curves is given by (5.84) for each interval 𝑛 and the sum of all such area gives the total
delay in the network. Since 𝛿𝑡𝑖 ,𝑛 is a variable we cannot calculate the area directly with
(5.84). However, during each interval the inflow and outflow is constant in QTM, therefore
we can derive (5.87) for the area without directly using time, and if 𝑓 in

𝑖 ,𝑛 ≠ 𝑓 out
𝑖 ,𝑛 then the area

is proportional to 𝑞𝑖 ,𝑛 .

𝐴𝑛 = 𝛿𝑡𝑖 ,𝑛
𝑞𝑖 ,𝑛 + 𝑞𝑖 ,𝑛+1

2
(5.84)

𝑞𝑖 ,𝑛+1 + 𝛿𝑡𝑖 ,𝑛 𝑓 in
𝑖 ,𝑛 = 𝑞𝑖 ,𝑛 + 𝛿𝑡𝑖 ,𝑛 𝑓 out

𝑖 ,𝑛 (5.85)

𝛿𝑡𝑖 ,𝑛 =
𝑞𝑖 ,𝑛 − 𝑞𝑖 ,𝑛+1

𝑓 out
𝑖 ,𝑛 − 𝑓 in

𝑖 ,𝑛
(5.86)

𝐴𝑛 =
(𝑞𝑖 ,𝑛 − 𝑞𝑖 ,𝑛+1) (𝑞𝑖 ,𝑛 + 𝑞𝑖 ,𝑛+1)

2(𝑓 out
𝑖 ,𝑛 − 𝑓 in

𝑖 ,𝑛)
(5.87)

𝐴𝑛 ∝ 𝑞𝑖 ,𝑛 if 𝑓 out
𝑖 ,𝑛 ≠ 𝑓 in

𝑖 ,𝑛 (5.88)
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This would suggest that minimizing each 𝑞𝑖 ,𝑛 in the objective would have the effect of min-
imizing delay in the network, except during those intervals where 𝑓 out

𝑖 ,𝑛 = 𝑓 in
𝑖 ,𝑛 (for example,

the region between 𝑞2,2 and 𝑞2,3 in Fig. 5.4). We could detect those intervals where 𝑓 out
𝑖 ,𝑛 = 𝑓 in

𝑖 ,𝑛
and derive a term for the objective function. However, simply minimizing the duration of all
intervals where 𝑞𝑖 ,𝑛 > 0, is more straightforward, and we already have the variable 𝑤out

𝑖 ,𝑛 to
indicate the condition. To minimize the duration of intervals where 𝑞𝑖 ,𝑛 > 0, first we define
a new variable 𝑑q

𝑖 ,𝑛 and use 𝑤out
𝑖 ,𝑛 in constraints (W50) and (W51) to set 𝑑q

𝑖 ,𝑛 = 𝛿𝑡𝑖 ,𝑛 only when
𝑞𝑖 ,𝑛 > 0.

𝑑
q
𝑖 ,𝑛 ≤ 𝛿𝑡𝑖 ,𝑛 +M𝑤out

𝑖 ,𝑛 (W50)

𝑑
q
𝑖 ,𝑛 ≥ 𝛿𝑡𝑖 ,𝑛 −M𝑤out

𝑖 ,𝑛 (W51)

Finally, adding terms for 𝑞𝑖 ,𝑛 and 𝑑q
𝑖 ,𝑛 to the objective (O7) gives objective (O8) to minimize

the total delay in the network.

min
∑︁
𝑖

𝑑T
𝑖 +

∑︁
𝑖

∑︁
𝑛

𝑞𝑖 ,𝑛 +
∑︁
𝑖

∑︁
𝑛

𝑑
q
𝑖 ,𝑛 (O8)

[Lin andWang, 2004] show that the difference between𝑦𝑖 ,𝑛+1 and𝑦𝑖 ,𝑛 is a good approximation
of the number of stops. We can derive a similar objective function using |𝑞𝑖 ,𝑛+1 − 𝑞𝑖 ,𝑛 |. We
introducing a new variable 𝑑stop

𝑖 ,𝑛 > 0 and set 𝑑stop
𝑖 ,𝑛 = |𝑞𝑖 ,𝑛+1 − 𝑞𝑖 ,𝑛 | using constraints (W52)

and (W53) to give an alternative objective function (O9) to minimize the number of stops.

𝑞𝑖 ,𝑛+1 − 𝑞𝑖 ,𝑛 ≤ 𝑑stop
𝑖 ,𝑛 (W52)

−𝑞𝑖 ,𝑛+1 + 𝑞𝑖 ,𝑛 ≤ 𝑑stop
𝑖 ,𝑛 (W53)

min
∑︁
𝑖

𝑑T
𝑖 +

∑︁
𝑖

∑︁
𝑛

𝑑
stop
𝑖 ,𝑛 (O9)

5.7.2 An illustrative example

An example of a simple network with two queues controlled by two traffic signals, solved
using the MILP (W1) – (W49), (O7) is shown Fig. 5.5. In the example 𝑁1 = 4 and 𝑁2 = 4, and
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Figure 5.5: QTM Continuous solution example. Only 4 samples per queue are required to
find the exact solution. Intervals 1 and 2 in queue 2 are mapped to interval 3 in queue 1, and
interval 3 in queue 2 is mapped to interval 4 in queue 1. Interval 4 in queue 2, needed to
discharge queue 2, is not mapped to any interval in queue 1.

the state of the variables in the solution is shown below.

®𝛿𝑡1 =
[
5 5 15 5

]
(5.89)

®𝛿𝑡2 =
[
10 5 5 7.5

]
(5.90)

U1 =


0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 (5.91)

A1 =


0 0 10 0
0 0 5 0
0 0 0 5
0 0 0 0

 (5.92)

®𝑤out
1 =

[
1 0 0 1

]
(5.93)

®𝑟out
1 =

[
1 1 0 1

]
(5.94)

®𝑟 in
2 =

[
0 0 1 1

]
(5.95)

From the entries in the U1 we can see that the third interval in 𝑞1, 𝛿𝑡1,3, is mapped to 𝛿𝑡2,1 and
𝛿𝑡2,2, in 𝑞2, and 𝛿𝑡1,4 in 𝑞1 is mapped to 𝛿𝑡2,3 in 𝑞2. Furthermore, the entries in the A1 force the
sum of the durations of 𝛿𝑡2,3 and 𝛿𝑡2,4 to equal the duration of 𝛿𝑡1,3, and that 𝛿𝑡1,4 = 𝛿𝑡2,3. The
entries in ®𝑤out

1 indicate that 𝑞2 is zero at the start of intervals 1 and 4, and ®𝑟out
1 indicates that

𝑞2 is discharging at a rate less than than F1 during intervals 1,2 and 4. Finally, ®𝑟 in
2 indicates
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that 𝑞2 is receiving inflow at the rate F1 during intervals 1 and 2. The cumulative departure
curve for 𝑞2 is shown in Fig. 5.4.

An extended example of a QTM continuous time solution are shown in Fig. 5.6 for an
arterial with two intersections (Fig. 5.6(a)), and a side street (Fig. 5.6(b)). The solver is allocated
13 intervals per queue to find a solution, however, not all intervals are needed in all the
queues. Some of the intervals are given zero duration, while others are mapped arbitrarily,
and contribute nothing to the solution.

5.8 Summary

In this chapter, we showed that with homogeneous time steps and no turning traffic, MILP
formulations for QTM, CTM, and LTM, are equivalent to a VT MILP for finding LWR traffic
flows as a constrained shortest path problem on a VTwave lattice. QTMwas further extended
to model multiple waves, and showed that traffic withholding does not impact on the solution
if the withholding term is removed from the objective function (or equivalently, 𝛽 = 0). We
then used QTM to extend VT theory to include turning movements, and showed that the
problem of optimizing signal plans on traffic networks with turningmovements, is equivalent
to finding the optimal MDP value function. Finally, we introduced a continuous time MILP
to solve QTM traffic flows exactly, and described an objective function for minimizing delay
in signal optimization using the MILP.
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Figure 5.6: An extended QTM continuous time solution example over several intersections
along an arterial (a) with a side street (b). The solver is given 13 intervals per queue. Not all
the intervals are needed by all the queues to find the solution. Some of the unused intervals
are given zero duration, while others are mapped arbitrarily by the solver.
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6.1 Overview

In Chapter 5 we showed that QTM, CTM and LTM MILPS are all equivalently solving a VT
shortest path problem. The question arises how well do these models perform both in terms
of solution quality and solve time? In this chapter we compare QTMwith the CTM, LTM and
VT traffic MILP’s. We run a series of experiments to compare the relative performance of all
these models, using a range of traffic networks and demand scenarios.

6.2 Empirical Evaluation

In this section the performance of several MILP based traffic formulations is compared across
a range of traffic networks and demand scenarios. We consider the scalability by comparing
the CPU time required to solve the MILP, and solution quality in terms of delay distribution.

6.2.1 Models

We compare the following MILP formulations:

• QTM as defined by (O6, Q1–Q6).

• CTM as defined by (O2, C1–C4, C8, C10, C12, C24, C26).

• LTM as defined by (O4, L1–L14).

• VT as defined by (O4, V2).

In combination with the four traffic flow models above, we evaluate three signal timing mod-
els:

• The moving window method of [Lin and Wang, 2004], referred to here as Lin, and
defined as (C19–C22).

• QTM, defined as (Q7–Q16).

• The Signal Constraint Network of [Wada et al., 2017], referred to here as SCN and
defined as (V3, V4).

The features of the models are listed in Table 6.1. Due to the heterogeneous nature of the
features a full comparison is not possible. For example, The formulations of [Wada et al.,
2017] and [Lin and Wang, 2004] do not support turning movements, so we must limit our
evaluation to road networks without turns, and the formulation of [Hajiahmadi et al., 2012]
provides no signal constraints, so we must extend the formulation with one of the other
models signal constraints. The formulations of [Wada et al., 2017] has no constraints for
maximum green, so we can not bound green duration in the evaluations.



§6.2 Empirical Evaluation 99

Feature Matrix
MILP Formulation Traffic

Model
Time Discretization Turn

Movements
Lost
Time

Signal
Constraints

Guilliard et al. [2020] QTM Non-homogeneous Yes Yes Yes
Wada et al. [2017] VT Homogeneous No Yes Yes1
Lin and Wang [2004] CTM Homogeneous No No Yes
Hajiahmadi et al. [2012] LTM Homogeneous Yes No None
1 No maximum green constraints.

Table 6.1: The features of the models under comparison. The heterogeneous nature of the
features makes a full comparison challenging.

6.2.2 Network Parameters

To measure the scalability of the models we use rectangular grid networks ranging in size
from one intersection (1×1), to 81 intersections (9×9). To evaluate the impact of intersection
spacing on the signal optimization problem, we generate two versions of each grid: one with
fixed spacing of 417 m between intersections, and another where the spacing between inter-
sections varies. To maintain the rectangular structure of the grid, we do this by varying the
spacing between each row and each column of the grid between 139 m and 417 m. However,
since the CTM, LTM and VT formulations require the link duration to be an integer multiple
of the time step, the spacings are chosen from one of three values, 139 m, 278 m, or 417 m.
This corresponds to the three possible link travel time durations of 10, 20 or 30 s when the
free flow speed is 13.89 m/s and the time step is 10 s. To further increase the difficulty, for
each grid we use two types of street layout, one-way streets and two-way streets. See Fig. 6.1
for an example of a 9×9 grid with two-way streets and varying spacing.

The fundamental diagram is assumed to be the same for each link, and uses the triangular
fundamental diagram in Fig. 6.2(a).

Each intersection is controlled by a traffic light with two phases: east-west and north-
south, Pℓ = {𝐸𝑊ℓ ,𝑁𝑆ℓ }. Since some of the formulations under evaluation have no maximum
green time or cycle time constraints, no such constraints are placed on the signal timing.
Whenever lost time is considered, a duration of 10 s is used (𝑇 L

ℓ = 10s for QTM) made up of
6 s of start up lost time, 2 seconds of yellow lost time and 2 s of all red.

6.2.3 Demand Profiles

Each network is evaluated by applying demand profiles to the inputs, consisting of platoons
with varying length and arrival time. Platoons enter the network with a flow rate of 0.5
vehicles/s and density of 0.036 vehicles/m (the peak of the triangular fundamental diagram in
Fig. 6.2(a)), and each vehicle is travelling at 13.89 m/s. Platoons are injected into the network
until 𝑡 = 200 s, after which the inflow rate is set to zero. Since the arrival times and durations
of the platoons varies between the inputs, a more challenging problem is created for the
solver to find an optimal signal plan. Predicting such demand profiles seems reasonable,
since existing vehicle sensor technology such as induction loops, radar, and cameras have
been used to detect platoons approaching intersections, and estimate their length and arrival
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Figure 6.1: An example of the largest network used in the experiments with 81 signal con-
trolled intersections, and two-way streets. The distance between intersections varies between
139 m and 417 m.
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Figure 6.2: (a) The triangular fundamental diagram used for all links in the comparison ex-
periments. The forward wave-speed is 13.89 m/s, the backwards wave-speed is 4.63 m/s, the
maximum flow rate of 0.5 Vehicles/s at a density of 0.036 Vehicles/m and the jam density is
0.144 Vehicles/m. (b) The wave cost function corresponding to the fundamental diagram in
(a), gives the path costs used in the VT formulations’ lopsided network.

time [Smith et al., 2013].

6.2.4 Model Parameters

For all models, we use a time step Δ𝑡 = 10 s, and a free flow speed of 𝑣0 = 13.89 m/s. From the
triangular fundamental diagram in Fig. 6.2(a) we get a forward wave speed of 𝑣 = 13.89 m/s,
a backwards wave speed of 𝑤 = 4.63 m/s. The maximum flow rate F = 0.5 and a jam density
𝜌 jam = 0.144 veh/m.

QTM

For each queue 𝑖 , the values for propagation time, Tp
𝑖
= 𝐿

𝑣0
∈ {10 s, 20 s, 30 s} and the queue

capacity Q𝑖 = 𝜌 jam𝐿 ∈ {20 veh, 40 veh, 60 veh}, where 𝐿 ∈ {139 m, 278 m, 417 m} is the link
length. The maximum flow rate between upstream queue 𝑖 and downstream queue 𝑗 is set at
F𝑖 ,𝑗 = 0.5 veh/s, and since there are no turningmovements Pr𝑖 ,𝑗 = 1. For output links Fout

𝑖 = 0.5
veh/s and zero for all other links, and for input links the inflow matrix I is determined from
the generated demand profiles. Each non-output queue is controlled by a traffic single phase
𝑘 of light ℓ , where 𝑘 ∈ {𝐸𝑊ℓ ,𝑁𝑆ℓ }, depending on the link orientation east-west or north-
south. In order to evaluate the impact of withholding on the solution, we use two different
values of 𝛽 for the objective function weight in (O6), 𝛽 = 0.001 and 𝛽 = 0.
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Figure 6.3: One example of a demand profile used in the experiments, with 5 platoons of
varying length and arrival times as applied to an input link over 200 s. The platoons consist
of 15, 15, 5, 20 and 5 vehicles respectively, with a flow rate of 0.5 vehicles/s and a density of
0.036 vehicles/m (the peak of the fundamental diagram in Fig. 6.2(a)).

CTM

To model the networks with CTM, each link must be split into cells, where the length of each
cell is given by 𝐿 = 𝑣0Δ𝑡 = 139 m. This results in 1, 2 or 3 cells per link corresponding to the
possible link lengths of 139, 278 or 417 m, respectively. The maximum cell occupancy is then
𝑁 = 𝜌 jam𝐿 = 20 vehicles per cell, and themaximumflow between cells is𝑄 = Δ𝑡F = 5 vehicles
per time step. The backwards wave ratio used in constraint (C4), is given by 𝑤

𝑣
= 4.63

13.89 = 1
3 ,

and 𝐼𝑖 ,𝑡 used in constraint (C8) is determined from the demand profiles. In order to evaluate
the impact of withholding on the solution, we use two different values of 𝛽 for the objective
function weight in O2, 𝛽 = 0.001 and 𝛽 = 0.

LTM

The variable indexing of the LTM formulation requires knowing the integer number of time
intervals for the forwards and backwards waves to travel the length of the link, giving 𝑤𝑖 =
𝐿
𝑤Δ𝑡 ∈ {2, 4, 6} and 𝑣𝑖 = 𝐿

𝑣Δ𝑡 ∈ {1, 2, 3}, where 𝐿 ∈ {139, 278, 417} is the link length. The max-
imum flow rate per link is determined by the peak of the fundamental diagram in Fig. 6.2(a)
and Δ𝑡 = 10 s as F𝑖 ,𝑗 = 5 vehicles per time step. The cost used in determining receiving flow
in constraints (L1) and (L2) is 𝑐𝑖 = 𝐿𝜌 jam ∈ {20, 40, 60} depending on the link length 𝐿 of 139,
278 or 417 m respectively.

VT

Solving the VT formulation requires construction of the lopsided network of wave paths
using the set of ordinary paths L𝑜 and signal paths L𝑠 . With the fundamental diagram in
Fig. 6.2(a) we have three wave paths to consider: forward wave paths with slope 𝑣 = 13.89,
backwards wave paths with slope 𝑤 = 4.63, and signal paths with slope 0. For the ordinary
wave paths (𝑖 , 𝑗) ∈ L𝑜 this gives a Δ𝑥𝑖 ,𝑗 = 𝐿 where 𝐿 is the link length of 139, 278 or 417 m,
and Δ𝑡𝑖 ,𝑗 = 𝑣𝐿 ∈ {10, 20, 30} for the forward wave paths and Δ𝑡𝑖 ,𝑗 = 𝑤𝐿 ∈ {30, 60, 90} for the
backwards wave paths, corresponding to the link lengths respectively. The cost of ordinary
paths is determined from the cost function in Fig. 6.2(b) as 𝑐𝑖 ,𝑗 = 0 for the forward paths, and
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𝑐𝑖 ,𝑗 = 0.66 𝐿
𝑤

∈ {20, 40, 60} for the backwards paths. For signal paths (𝑖 , 𝑗) ∈ L𝑠 , Δ𝑥𝑖 ,𝑗 = 0,
Δ𝑡𝑖 ,𝑗 = 10 and the cost 𝑐𝑖 ,𝑗 = 0.5Δ𝑡𝑖 ,𝑗𝑝𝑖 ,𝑗 = 5𝑝𝑖 ,𝑗 where 𝑝𝑖 ,𝑗 ∈ {0, 1} is the binary variable
representing the signal state associated with signal path (𝑖 , 𝑗).

Microsimulation Parameters

Weuse IDM as amicro-simulator, and choose parameters similar to those suggested in Treiber
et al. [2000], that give realistic values for urban trafficwith a flow capacity of 0.5 vehicles/s and
a jam density of 0.15 vehicles/m. To simulate the average conditions, we give all vehicles the
same parameter values: length 𝑙 = 4.67 m, desired velocity 𝑣0 = 15 m/s, safe time headway
𝑇 = 1 s, maximum acceleration 𝑎 = 2 m/s2, desired deceleration 𝑏 = 3 m/s2, acceleration
exponent 𝛿 = 4, and jam distances 𝑠0 = 2 m, and 𝑠1 = 2 m.

6.2.5 Evaluation

We generate the 9 different sized grids in 4 scenarios:

• one-way streets with fixed intersection spacing

• one-way streets with varying intersection spacing

• two-way streets with fixed intersection spacing

• two-way streets with varying intersection spacing

Additionally, for each of the 9 sizes, we generate 10 demand profile scenarios, where each
input receives a unique demand profile of varying platoon lengths and arrival times. The 10
demand scenarios are reused in each of the 4 spacing and direction scenarios.

Experiments without Lost Time

We than take each model, and for each of the 9 network sizes and 4 scenarios, and for each
of the three signal timing models, and each of the 10 demand profiles, we solve a MILP with
a planning horizon of 600 s, sufficient to allow all the traffic to clear the network. We use
Gurobi as the solver, running in a single thread, and record the CPU time taken to solve
the MILP to within a MIP gap of 0.01% of the objective value. To evaluate the quality of
the solution, first we calculate the total travel time of the solution by summing the areas
under the departure curves for each output link. Then, to correct any traffic withholding, we
recalculate the traffic flow using the solution policy with the LTM model for VT, and with
𝛽 = 0.001 for the CTM and QTM experiments with 𝛽 = 0. Using the corrected solution, we
take the cumulative departure and arrival curves for each link and calculate the travel time
of each vehicle through the network. By subtracting the free flow travel time, (the time for
the vehicle to travel through the network at the free flow speed, without stopping), we get
the delay incurred by each vehicle.
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Experiments with Lost Time

For the lost time comparison we also use two different versions of the networks. For the
first evaluation, the one-way fixed spacing scenario is used with 10 demand profile scenarios.
We evaluate three models using signal constraints that support lost time: QTM and CTM
with QTM signal constraints, and VT with SCN signal constraints. For each model and each
grid size and each of the 10 demand scenarios, we solve a MILP with a planning horizon of
600’s. We using Gurobi as the solver and in order to run the experiments in a reasonable time
frame, we run the solver with 20 threads across 20 CPU cores. We record the CPU time to
find a solution with a MIP gap of 0.01% of the objective value, along with the delay incurred
by each vehicle.

For the second evaluation, we compare VT with QTM, but relax the constraint that link
lengths are multiples of the time step, and can take any value between 139m and 417m. How-
ever, construction of a valid wave path lattice for VT requires that link lengths be a common
multiple of 𝑣Δ𝑡 and 𝑤Δ𝑡 . Since from the fundamental diagram in Fig. 6.2(a), we have 𝑣

𝑤
= 3,

link lengths for VT must be rounded to the nearest multiple of 𝑣Δ𝑡 before determining the
VT parameters.

In order to evaluate the impact of link length rounding on the VT formulation, we com-
pare VT using three different values of Δ𝑡 : 10 s, 5 s, and 2 s, with QTM using Δ𝑡 = 10 s. For VT
the link lengths are rounded such that when Δ𝑡 = 10 s, 𝐿 ∈ {139, 278, 417}, when Δ𝑡 = 5 s, 𝐿 ∈
{139, 208, 278, 347, 417}, and Δ𝑡 = 2 s, 𝐿 ∈ {139, 167, 194, 222, 250, 278, 306, 333, 361, 389, 417}.
QTM has no such limitations and 𝐿 ∈ [139, 417]. For each grid size and each demand scenario,
and for each model and time step, we solve a MILP with a planning horizon 600s and a lost
time of 10 s, and we record the CPU time taken to solve the MILP to within a MIP gap of 0.01%
of the objective value. Next we adjust the solution signal plan timing to account for the lost
time, and micro-simulate the network with the adjusted signal plan, using vehicles arrivals
determined from the demand scenario. Then, for each vehicle in the micro-simulation, we
determine the delay incurred traversing the network, and record the values.

Fundament Diagram Experiments

To evaluate the impact of shock waves on solver performance we compare QTM with VT,
and CTM using several different fundamental diagrams. For the network we use the 2×2
grid network with a spacing of 𝑣Δ𝑡 = 139 m between intersections, which is the minimum
possible with Δ𝑡 = 10 s. For VT we use the a triangular fundamental diagram with the same
wave speeds as the previous experiments but with a jam density of 0.15 Vehicles/m to more
closely approximate the IDM fundamental diagram. For CTM we use a trapezoidal relation
with 𝑤 = 𝑣 . For QTM, we use two different versions of the solver: QTM with the same F𝑖 ,𝑗
and Q𝑖 as the previous experiments, and QTM with additional backwards waves in a form
that more closely approximates the IDM fundamental diagram, using the constraints (Q23)
and (Q24) described in Section 5.5. The fundamental diagrams are plotted in Fig. 6.10.
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6.3 Results

Fixed spacing with one-way streets

Fig. 6.4 show the result of the comparison for the fixed intersection spacing with one-way
streets scenario. The upper plots show, for each traffic model and each lighting model, the
solve time averaged over the 10 different demand scenarios, as a function of increasing num-
ber of intersections (increasing grid size). Overlaid on each plot are error bars showing the
95% confidence interval on the mean for each grid size. The lower plots show box plots of
delay distribution for every vehicle, across all the grid sizes and demand scenarios, and for
each traffic model and signal model.

The upper plots show that across all the models, solve time increases exponentially with
increasing number of intersections. VT has a consistent performance advantage across all
on the signal models, except under SCN with more the 9 intersections, where QTM with
𝛽 = 0.001 does better. The CTM and LTM show worse performance under all signal models.
QTM with 𝛽 = 0.001 out performs QTM with 𝛽 = 0, while CTM with 𝛽 = 0.001 outperforms
CTMwith 𝛽 = 0 above 36 intersections. The 95% confidence intervals on the mean show that,
for the fixed spacing, one-way scenario, across all the models there is very little variation in
solve time with variation in demand profile.

The box plots show that across all traffic models and signal models, the distribution of
delay is very similar with identical mean, median, and interquartile range, and the maximum
delays are also similar and all are within the measurement resolution of Δ𝑡 = 10 s.

Varying spacing with one-way streets

Fig. 6.5 show the result of the comparison for the varying intersection spacing with one-way
streets scenario. The varying intersection spacing should present a more difficult coordina-
tion problem for the solver to optimize, and across all the traffic models and signal models,
the solve time increases when compared to the fixed spacing scenario. Additionally, the 95%
confidence intervals on the mean show increased variation in solve time. Overall, the trend
is similar to the fixed spacing scenario, with VT performing better than the other traffic mod-
els, except under SCNwhere QTM does better with larger numbers of intersections. Similarly
QTM with 𝛽 = 0.001 outperforms QTM with 𝛽 = 0, while for CTM, 𝛽 = 0.001 does better
then 𝛽 = 0 with larger networks.

The box plots show very similar results to the fixed spacing scenario with identical mean,
median and interquartile range, and the maximum delay is also similar within the resolution
of Δ𝑡 = 10 s.

Fixed spacing with two-way streets

Fig. 6.6 show the result of the comparison for the fixed intersection spacing with two-way
streets scenario. The upper plot shows median solve time taken across all the demand sce-
narios with error bars indicating the 95% confidence interval in the median. Two-way streets
should present a more difficult coordination problem for the solver to optimize, and, com-
pared to the one-way scenarios, there is an across the board further increase in solve time.
The 95% confidence intervals also show an increased variation in solve time.
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Figure 6.4: Results for the fixed intersection spacing, with one-way streets scenarios. The
upper plots show solve time as a function of number of intersections, with VT showing an
advantage except under SCN, and generally models with 𝛽 = 0.001 do better than 𝛽 = 0
with larger networks. The lower plots show the distribution of vehicle delay across all the
scenarios. All the combinations of traffic model and signal model show very similar delay
distribution.



§6.3 Results 107

100 101 102

Number of intersections

10 2

10 1

100

101

102

So
lv

e 
Ti

m
e 

(s
)

QTM Signal Constraints
LTM
CTM
CTM, = 0
QTM
QTM, = 0
VT

100 101 102

Number of intersections

Lin and Wang Signal Constraints
LTM
CTM
CTM, = 0
QTM
QTM, = 0
VT

100 101 102

Number of intersections

Wada Signal Constraints
LTM
CTM
CTM, = 0
QTM
QTM, = 0
VT

LTM CTM CTM
= 0

QTM QTM
= 0

VT
0

20

40

60

80

100

120

De
la

y 
(s

)

LTM CTM CTM
= 0

QTM QTM
= 0

VT LTM CTM CTM
= 0

QTM QTM
= 0

VT

Figure 6.5: Results for the varying intersection spacing, with one-way scenarios. Solve times
increasing slightly compared to the fixed spacing scenario, and the 95% confidence intervals
show increased variation in solve time. Overall, the trend is similar to the fixed spacing
scenario.
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Figure 6.6: Results for the fixed intersection spacing, with two-way scenarios. Solve times
increasing compared to the one-way spacing scenario, and the 95% confidence intervals show
increased variation in solve time. QTM and VT consistently outperform CTM and LTM, with
VT showing increased variation in solve time compared to QTM. 𝛽 = 0.001 consistently
outperforms 𝛽 = 0.

Comparing the performance of the models, VT and QTM consistently outperform CTM
and LTM, with VT showing better median performance across the demand scenarios, but
with increased variation in solve time.

Additionally, we see that the QTM and CTM with 𝛽 = 0.001, does better than 𝛽 = 0,
especially with larger networks.

The box plots show that across all traffic models and signal models, the distribution of
delay is very similar with identical mean, median, and interquartile range, and the maximum
delays are also similar and all are within the measurement resolution of Δ𝑡 = 10 s. Compared
with the one-way scenarios, there is an increase in mean and median and delay, while the
interquartile range remains the same, and the maximum delay is similar within the measure-
ment resolution of Δ𝑡 = 10 s.

Varying spacing with two-way streets

Fig. 6.7 show the result of the comparison for the varying intersection spacing with two-
way streets scenario. The upper plot shows median solve time taken across all the demand
scenarios with error bars indicating the 95% confidence interval in the median. Compared to
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Figure 6.7: Results for the varying intersection spacing with two-way streets scenario. Com-
pared to the fixed spacing, two-way scenario, the median solve times and confidence inter-
vals show similar results. Similarly, the box plots show identical mean, median, interquartile
range, and maximum delays.

the fixed spacing, two-way scenario, the median solve time and 95% confidence intervals also
show similar results. QTM and CTM with 𝛽 = 0.001, continue to do better than 𝛽 = 0.

The box plots show identical interquartile range, and similar mean and median to the
two-way, fixed spacing scenarios, and the maximum delays are also similar within the mea-
surement resolution of Δ𝑡 = 10 s.

Withholding and Objective Function Equivalence

An inspection of the total travel times for the results shows that all the solvers find solutions
with the same total travel time with the resolution of the MIP gap of 0.01%.

Comparing the results For CTM and QTM with 𝛽 = 0.001 and 𝛽 = 0, we see that while
there is some variation on solve time, the box plots show that the solutions are very similar
within the measurement resolution. Further, the values of the total travel time are the same
within the resolution of the MIP gap for both values of 𝛽 and when compared with VT and
LTM, showing that any traffic withholding in the solution does not impact on its quality, and
further that the objective functions are equivalent.

The differences in the QTM results between 𝛽 = 0.001 and 𝛽 = 0 suggest that the 𝛽
weights in the objective function help to guide the solver to the optimum solution. To under-
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stand this, consider that when 𝛽 = 0, during solving the incumbent solution can incur vehicle
withholding at the exit due to the variable cost function of the equivalent shortest path prob-
lem which only yields a valid solution once the bounds have converged. This leads the solver
to explore more suboptimal branches, than when 𝛽 = 0.001. This is further illustrated by the
increase in solve time for VT under SCN compared to QTM with 𝛽 = 0.001, which has the
additional feasible path problem with variable constraints in the signal network. For CTM in
the one-way scenarios, due to the additional terms in objective function from the cells where
𝛽 = 0.001, the effect of withholding on the incumbent solution only becomes apparent with
larger networks.

Lost time comparison

As was shown in Chapter 4, modelling the lost time associated with signal changes is nec-
essary to achieving realizable signal plans. Fig. 6.8 shows the result of solving the one-way,
fixed intersection spacing scenario, over all the demand profiles, but with the addition of lost
time constraints as supported by the CTM, QTM and VT models. The left plot shows the
mean solve time as a function of the number of intersections, with error bars showing the
95% confidence interval on the mean. The box plots on the right show the distribution of
microsimulation delay over all the demand scenarios, with all models finding similar policies,
with the same mean, median, interquartile range and maximum delay within the measure-
ment resolution of Δ𝑡 = 10 s.

The result shows that both VT and QTM do better than CTM, with VT improving over
QTM with increasing number of intersections. Compared with the results without lost time
in Fig. 6.4, the solve times when including lost time constraints are increased for the same
size network, indicating that finding an optimum solution while considering the time lost to
signal changes is a more difficult problem.

Micro-simulation with varying link lengths

Accurate modelling of distances between intersections is critical for good signal coordina-
tion, and it is interesting to see the trade off between time step resolution, and signal plan
quality. Additionally, increasing the number of time steps can increase the time needed to
find the optimum solution, so a balance must be found. Fig. 6.9 shows the result of compar-
ing VT using several different values of Δ𝑡 with QTM using Δ𝑡 = 10 s, micro-simulated on
networks with varying distances between intersections. The right plot shows the mean solve
times across the demand scenarios, as a function of number of intersections, with error bars
giving the 95% confidence interval. As the time step size is reduced for VT, the solve time
increases for all grid sizes. The right plot shows for each model and time step size, box plots
of the distribution of vehicle delay in the micro-simulation. VT policies show improving de-
lay distribution with decreasing time step, however QTM with Δ𝑡 = 10 s is able to find better
policies with lower maximum, median and average delay, while solving at all grid sizes in
less time than VT with Δ𝑡 = 2 s.
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Figure 6.8: Results for the fixed intersection spacing scenario, with one-way streets and lost
time constraints. Compared with the fixed intersection spacing, one-way scenario, without
lost time in Fig. 6.4, the solve times are significantly increased with the addition of lost time
constraints. VT using the SCN performs better than QTM and CTM with lower solver times
and tighter 95% confidence intervals on the mean. The box plots show all the models find
similar policies in terms of predicted delay.
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Figure 6.9: Micro-simulation comparison of QTM and VT with varying intersection spacing.
The left plot shows the mean solve times with different values of Δ𝑡 , and error bars give the
95% confidence interval. The right box plots show the distribution of per vehicle delay under
micro-simulation of the policies, across all simulation runs. VT policies show improving delay
distribution with decreasing time step, however QTM with Δ𝑡 = 10 s is able to find policies
with lower maximum, median and average delay, in less time than VT with Δ𝑡 = 2 s.
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Micro-simulation with varying Fundamental Diagrams

Fig. 6.10 shows the impact of different fundamental diagrams on performance. The lower
left plot shows the three fundamental diagrams used in the experiment compared with that
of the IDM microsimulator. For QTM the fundamental diagram is shown for the case where
the link length is the minimum of 131 m with Δ𝑡 = 10 s, and forms the same trapezoidal
shape used for CTM. VT uses a triangular shape where the wave speeds are limited to be
integer ratios of link length to the time step. QTM with wave extensions (QTMW) is solved
using a fundamental diagram with additional wave speeds to more closely approximate the
continuous relationship of the IDM fundamental diagram. The upper left plot shows the
solve time with increasing traffic demand, while the upper right plot compares the increase
in average delay per vehicle with increasing traffic demand, and the lower right box plots
show the distribution of delay for three different levels of demand. QTM performs well with
the lowest solve times and delay distribution similar to CTM, while both outperform VT in
solve time, and median and average delay. QTMW outperforms the other solvers with lower
mean, median, interquartile range and maximum delay, but at the cost of additional solve
time compared to QTM and CTM.

Figure 6.11 shows the solutions of VT and QTMW along a street under the same demand
scenario. The density of the LWR flow is calculated from each solutions cumulative arrival
and departure curves and fundamental diagram, and plotted in shades of green. The IDM
microsimulation of each solution’s policy is overlaid with a each vehicle trajectory shown as
a black trace. The red and yellow signal states over time are plotted horizontally for each in-
tersection along the street. In Fig. 6.11(a), we can see that VT with a triangular fundamental
diagram overestimates the spillback from the traffic signals, resulting in a suboptimal pol-
icy that does not align well with the microsimulation. Whereas in Fig. 6.11(b), we see that
QTMwith the additional backwards waves, closely predicts the vehicle flow and finds a more
optimal policy.

6.4 Summary

In this chapter, we ran a suite of experiments to compare QTMwith LTM, CTM and VTMILP
formulations for traffic signal optimization, across a range of network topologies and demand
scenarios, and using different fundamental diagrams. The results were evaluated in terms of
solve time and delay distribution as a measure of quality. Overall, the results showed that
when comparing both the solve time and the quality, QTM is able to find better policies with
lower delay, and in less time than the other formulations.
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Figure 6.10: Micro-simulation comparison of fundamental diagrams with increasing traffic
demand. Lower left plot shows the three fundamental diagrams compared to the IDM micro-
simulator. Upper left plot shows the solve time with increasing traffic demand. Upper right
plot compares the increase in average delay with increasing traffic demand, and the lower
right box plots show the distribution of delay for three different levels of demand. QTM
with the additional backwards waves (QTMW) shows better average delay with increasing
demand, as well as improved delay distribution.
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Figure 6.11: An example of a VT solution compared to QTMW for the same demand scenario
at 5400 Veh/h in Fig. 6.10. The density of the LWR flow predicted by each model is shaded
in green and overlaid with the vehicle traces of an IDM microsimulation of the policies. (a)
VT with a triangular fundamental diagram overestimates the spillback from the traffic sig-
nals, resulting in a suboptimal policy that does not align well with the micro-simulation. (b)
QTMW using a more detailed fundamental diagram, closely predicts the vehicle flow and
finds a more optimal policy.
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7.1 Summary

In Chapter 3, the Queue Transmission Model was introduced as a MILP model blending ele-
ments of cell based and link basedmodels, andwith the unique property of non-homogeneous
time steps. It was shown how the non-homogeneous time property can be used to extend the
planning horizon of a controller, without increasing the number of time intervals compared
with a homogeneous time controller, such that the controller has both high fidelity in the
near term and can adapt to long term predicted changes in traffic flow. Then a series of ex-
periments using a receding horizon controller, with both non-homogenous and homogenous
time steps, were used to optimize traffic signals on several different network topologies. It
was demonstrated that QTM as a non-homogeneous time controller was able to find poli-
cies with substantially lower delay using less time intervals when compared with QTM as a
homogeneous time controller.

Several extensions to QTM were presented in Chapter 4, along with micro-simulation
validation of QTM generated signal plans. In the first extension, QTM was augmented to
model the lost time associated with signal changes. By noting that the active periods of QTM
signal phases represent the effective green time – the time during which traffic is actually
flowing in the intersection, then lost time can be modelled by introducing additional “all
red” phases in-between. After solving with lost time constraints, the start and end of the
signal phases are adjusted to include the lost time in a post processing step. A comparison of
micro-simulated traffic flows with QTM, showed that modelling lost time is critical to finding
optimized signal plans.

Since different forms of fixed time control are still used extensively in the real world, QTM
was also extended to find optimal fixed time controllers. This was done by adding constraints
on the phase durations such that they can be optimized along with the offset, but remain fixed
across all cycles in the signal plan. When considered as an offline process, plans generated
using QTM optimized fixed time control can be deployed immediately to improve existing
infrastructure.

Another real world problem studied in this thesis is how the introduction of light rail
systems that share intersections with vehicle traffic impacts congestion and what can be done
tominimize this impact (Chapter 4). To answer these questions, QTMwas extended to include
constraints for light rail schedules, such that signal plans are optimized to consider light rail
crossings. The performance of these extensions was evaluated using both fixed time and
optimized adaptive controllers, on several networks topologies. Various scenarios without
light rail and two different light rail schedules were considered, and delay was measured
across a range of traffic demand levels, using multiple different arrival patterns. The results
showed that in some scenarios, when compared with the use of fixed time control beforehand,
QTM optimized signals plans can effectively nullify the impact of introducing light rail.

In Chapter 5 we used Variational Theory to show that QTM, CTM, LTM and VTMILPs are
equivalent to solving a shortest path problem representing the discrete Hamilton Jacobi form
of the LWR kinematic wave equation. We then showed that several commonly used objective
functions to minimize delay, all equivalently minimize the total travel time of the network by
maximizing the area under the total cumulative departure curve. The VT equivalence, along
with the objective function equivalence, demonstrates that:
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Figure 7.1: A closed loop model predictive controller for traffic signal optimization, must
estimate the state of the traffic network from sensor data, and learn the model parameters.
Uncertainty in the state estimate must then be considered by the optimizer.

• QTM models an LWR traffic flow using a trapezoidal fundamental diagram.

• Removing the objective function terms to prevent traffic withholding in CTM and QTM
does not impact on the optimality of the policies, since withholding within any time
interval implies that the equivalent node in the VT lattice network is not on any shortest
wave path from a boundary node to an exit node.

We then further extended QTM with multiple shockwaves to model any concave funda-
mental diagram with arbitrary precision, and showed using microsimulation that it can be
used to further improve the quality of the solutions.

We then derived a continuous time MILP for solving QTM. This formulation has the ad-
vantage of requiring only the minimum number of intervals for a QTM solution, with time
steps only at change points in the queue function. This gives the exact solution to a QTM traf-
fic flow through a signalized network. We then developed an objective function to minimize
delay and find an optimal continuous time signal plan.

Finally, in Chapter 6, we evaluated the performance of QTM compared with CTM, LTM
and VT MILP formulations for global signal optimization. A set of controllers with different
signal constraint models was evaluated on a series of grid shaped traffic networks, ranging in
size up to 81 intersections, with multiple demand scenarios. Using multiple topologies of one-
way and two-way streets, fixed intersection spacing, discretely varying intersection spacing,
and continuously varying intersection spacing, we showed that QTM is able to outperform
the other formulations, when considering both the solve time and the quality of the solution
under micro-simulation.

7.2 Future Work

This thesis has focused on MILP based traffic signal optimization models, but a closed loop
model predictive controller must also estimate the traffic state and learn themodel parameters



118 Conclusion

Bellman	Equation	Relationship

Hamilton	Jacobi
equation

Variational	Theory
Lax-Hopf formula	(SP)

Hamilton	Jacobi	
Bellman	equation

Variational	Theory	with	turns	
Bellman	equation	(SSP)

Continuous Discrete

Figure 7.2: Relationship between the Hamilton Jacobi equation and the Bellman equation.
Variational Theory (VT) can solve a discrete form of the Hamilton Jacobi equation, using the
Lax-Hopf formula, as a shortest path problem (SP). With the addition of turn probabilities,
VT takes the form of a stochastic shortest path problem (SSP), equivalent to solving a Markov
Decision Problem value function using the Bellman equation.

as illustrated in Fig. 7.1. This presents additional challenges:

• Irregular sensor coverage and noise results in partial observability of the traffic state.
In turn, this leads to uncertainty in estimating the model parameters.

• This uncertainty should then be considered by the optimizer.

Scenarios involving turning movements were not evaluated in this work and are an ad-
ditional source of uncertainty. Indeed, in Chapter 5 we derived an extension for VT using
turn probabilities, and saw that it is a stochastic shortest path problem, equivalent to max-
imising a Markov Decision Process (MDP) value function [Littman et al., 2013] (See Fig. 7.2).
When considered along with the partial observability of the state, the result is a partially
observable MDP (POMDP) which is known to be intractable to solve optimally. However,
recently there have been promising results in approximately solving large POMDP’s using
Monte Carlo Tree search [Silver and Veness, 2010; Kurniawati and Yadav, 2016; Sunberg and
Kochenderfer, 2018], and future work would be to apply these frameworks to traffic signal
optimization, and investigate the benefits when compared to a MILP based approach.

While this thesis has demonstrated improved scalability of MILP’s for global traffic signal
optimization, the results in Chapters 4 and 6 show there are practical limits. Future work
would be to exploremethods of decomposition and partitioning in order to improve scalability
even further.

Objective functions for traffic signal optimization have received little focus in the liter-
ature. Methods have been presented for minimizing total delay [Lo, 1998], number of stops
[cite lin and wang], emission reduction [Han et al., 2016a], and bounding shockwaves [Han
et al., 2012], but none have looked at the distribution of delay. An Important future work
to address this deficiency will need to consider fairness measures beyond simple averages
or upper bounds on delay and, for instance, consider constraints on the maximum observed
delay by the top 5-percentile vehicles
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Figure 7.3: Example of the QTM continuous time solution from Section 5.7.2, along with the
equivalent VT shortest path solution. Cumulative vehicle counts are labelled at the ends of
each time interval. The VT solution suggests that the number of intervals needed to find the
cumulative departure values is less than the four per queue needed for the QTM continuous
time solution.

Performance of the QTM continuous timeMILP needs to be evaluated, with the possibility
of a hybrid formulation that uses continuous time for the short-term control horizon and
discrete non-homogenous QTM to extend to the planning horizon. Figure 7.3 shows the
result when a shortest path solution is overlaid on the QTM continuous time solution from
the example in Section 5.7.2, it is clear that there is room for further reduction in the number
of time intervals needed to find the solution. Future work would be to extend the fixed wave
path lattice of VT with the QTM continuous framework, and solve it as a dynamic shortest
path problem.
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A.1 Code Repository

The code for all the experiments in this thesis can be found in the GitHub repository:
https://github.com/iainguilliard/qtm

https://github.com/iainguilliard/qtm
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