
Admissible Heuristics for Multi-Objective Planning

Florian Geißer, Patrik Haslum, Sylvie Thiébaux, Felipe Trevizan
The Australian National University, School of Computing

florian.geisser.work@gmail.com,
{patrik.haslum,sylvie.thiebaux,felipe.trevizan}@anu.edu.au

Abstract

Planning problems of practical relevance commonly include
multiple objectives that are difficult to weight a priori. Sev-
eral heuristic search algorithms computing the Pareto front of
non-dominated solutions have been proposed to handle these
multi-objective (MO) planning problems. However, the de-
sign of informative admissible heuristics to guide these al-
gorithms has not received the same level of attention. The
standard practice is to use the so-called ideal point combi-
nation, which applies a single-objective heuristic to each ob-
jective independently, without capturing any of the trade-offs
between them. This paper fills this gap: we extend several
classes of classical planning heuristics to the multi-objective
case, in such a way as to reflect the tradeoffs underlying the
various objectives. We find that MO abstraction heuristics
achieve overall the best performance, but that not every MO
generalisation pays off.

1 Introduction
Many optimisation problems, including planning, in prac-
tice have multiple, sometimes competing objectives (e.g.,
cost, risk, efficiency, and fairness), and often users cannot
quantify a priori exactly how they desire to balance these.
Multi-objective (MO) optimisation (Ehrgott 2005; Roijers
et al. 2013) tackles this by generating a complete set of non-
dominated options, known as the Pareto front, which repre-
sents the possible trade-offs between the objectives, instead
of a single optimal solution.

Although several algorithms for MO heuristic state-
space search have been proposed (Stewart and White 1991;
Mandow and Pérez-de-la-Cruz 2010; Ulloa et al. 2020; Ah-
madi et al. 2021), no attention has been paid to the ques-
tion of how to derive informative admissible MO heuristics.
In fact, all previous works we are aware of have used the
very simple, so-called ideal point heuristic, which applies
a single-objective admissible heuristic to each objective in-
dependently. While this method has the advantage of being
general, in the sense that any admissible heuristic for each
objective can be used, it results in a MO heuristic that fails to
capture necessary trade-offs between objectives, and there-
fore offers little or no utility over blind search for problems
with a non-trivial objective combination.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To illustrate, consider a simple project planning domain,
with N tasks to be completed. For each task, the options are
to do it by ourselves (taking time, but no cost) or to out-
source (costing money, but taking none of our time). The
two objectives are (own) time and money spent. From any
state, it is possible to solve the problem with either zero time
or zero money spent but of course not both. Therefore, the
ideal point combination of any two single-objective heuris-
tics, including, h?, will be a zero vector, and no better than
blind search. In contrast, a genuine MO heuristic will be a
set of cost vectors that collectively lower-bound the costs of
all non-dominated plans.

MO heuristic search algorithms, such as NAMOA?

(Mandow and Pérez-de-la-Cruz 2010), are specifically de-
signed to accommodate these genuine MO heuristics, in the
form of a set of cost vectors capable of capturing trade-
offs between objectives. For such a heuristic to be admis-
sible, each element of the Pareto front must be dominated
(or equalled) by at least one cost vector in the heuristic set.

This paper addresses the question of how to con-
struct these more powerful admissible heuristics for MO
domain-independent planning. In particular, we find sev-
eral classes of well-known admissible planning heuristics,
namely abstraction-based, critical path-based, and LP/IP-
based heuristics, whose computation can be extended to the
multi-objective case in a principled fashion. We also propose
MO analogues of heuristic combination by maximisation
and cost partitioning. We prove these new MO heuristics are
admissible. We compare their informativeness, run-time and
coverage, relative to each other and their ideal point counter-
parts, using an improved version of NAMOA?. It turns out
that MO abstraction heuristics outperform their ideal point
counterpart, and have overall the strongest performance on
the benchmark set we consider. The same however, does not
generally hold true for all other MO heuristics.

We also briefly discuss ways of compiling MO planning
into classical or numeric planning, though we did not find
any of these compilations to be practical. We conclude there
are several challenging open questions in both theory and
implementation of heuristic search for MO planning.

2 Background
We consider planning problems represented in the STRIPS
formalism (Fikes and Nilsson 1971) but where actions in-

duce costs for multiple objectives simultaneously. Formally,
a STRIPS planning task is a tuple T = 〈P,A, sI , G〉, where
P is a finite set of propositions and A is a finite set of ac-
tions. A state s ⊆ P is a set of propositions and describes a
situation of the world where exactly those propositions are
true. The initial state is given by sI ⊆ P , whereas the goal
G ⊆ P is a set of propositions we want to achieve. A state
s is called a goal state iff G ⊆ s. Each action a ∈ A is a
tuple a = 〈pre(a), add(a), del(a)〉, where pre(a) ⊆ P is the
set of propositions that must be true in order for a to be ap-
plicable, i.e. a is applicable in state s iff pre(a) ⊆ s. Once
a is applied in s its add-effects add(a) ⊆ P and delete-
effects del(a) ⊆ P are applied, resulting in the successor
state s[a] = (s \ del(a)) ∪ add(a). A sequence of actions
π = 〈a1, . . . , an〉 is applicable in state s if ai is applicable
in s[a1] . . . [ai−1] for all i, and we denote the successor state
as s[π]. A solution to the planning task T , a plan, is a se-
quence of actions π = 〈a1, . . . , an〉 that is applicable in sI
and leads to a goal state, i.e. G ⊆ sI [π].

2.1 Multi-objective Planning
A multi-objective planning (MOP) task is a STRIPS plan-
ning task with k cost functions, c1, . . . , ck. Each action a
is associated with a k-dimensional cost vector, ~c(a) ∈ Nk,
where the ith component, denoted ~c(a)i, is a’s contribu-
tion to ci. Note that we assume each action’s cost, for
each cost function, is a non-negative integer. The cost of
a sequence of actions π = 〈a1, . . . , an〉 is also a vector,
~c(π) =

∑n
i=1 ~c(ai), where the sum is taken with vector ad-

dition. With slight abuse of notation, we apply ~c also to sets
of plans: if Π is a set of plans, then ~c(Π) = {~c(π) | π ∈ Π}
is the set of cost vectors of plans in Π. Given two cost vec-
tors ~v1, ~v2, we say that ~v1 Pareto dominates ~v2, denoted
~v1 ≺ ~v2, iff for all i = 1 . . . k : ~vi1 ≤ ~vi2 and addition-
ally ~v1 6= ~v2. Note that ~v1 ≺ ~v2 implies ~vi1 < ~vi2 for at least
one i. Dominance is a strict partial order, i.e., it is transitive
and asymmetric. We say ~v1 dominates or equals ~v2, denoted
~v1 � ~v2, iff ~v1 ≺ ~v2 or ~v1 = ~v2. A plan π1 dominates
(resp. dominates or equals) plan π2 if ~c(π1) ≺ ~c(π2) (resp.
~c(π1) � ~c(π2)).

A MOP task can have multiple solution plans whose cost
vectors are mutually non-dominating, and not equal; these
represent different possible trade-offs between the k cost
functions. The problem of MOP can be defined as comput-
ing the set of all non-dominated plans, known as the Pareto
front, or at least one representative of each such trade-off,
known as a Pareto coverage set. We focus on the latter.

Formally, let T be a MOP task and Π(T) the set of all
plans for T . The Pareto front PF(T) is the set of plans
which are not dominated by any other plan in Π. Note
that the Pareto front contains all possible non-dominated
plans, which can include multiple plans with equal cost
vectors. In the presence of (cycles of) ~0-cost actions, the
Pareto front may even be infinite. A Pareto coverage set
PCS(T) is a subset of PF(T) such that for each plan π′ ∈
Π(T), PCS(T) contains a plan that dominates or equals
π′. Formally, PCS(T) ⊆ PF(T) and ∀π′ ∈ Π(T) ∃π ∈
PCS(T) ~c(π) � ~c(π′).

The Pareto front of a task is unique, but the Pareto cov-
erage set is not, since we may choose different represen-
tatives for each non-dominated cost vector. Note, however,
that ~c(PCS(T)) is unique (i.e., whatever representatives are
chosen they collectively have the same set of cost vectors)
and ~c(PCS(T)) = ~c(PF(T)). In the special case that k = 1,
computing the PCS reduces to finding a plan with minimum
cost, i.e., classical optimal planning.

With slight abuse of notation, we write PF(T , s′, G′) and
PCS(T , s′, G′) for the Pareto front and coverage set of plans
starting from a state s′ different from sI and/or with a goal
G′ different from G. We usually omit T , as it is clear from
context, and may omit s′ or G′ when they are unchanged.

2.2 Multi-objective Heuristic Search
In multi-objective state-space search, the heuristic value of
a state is not a single number, but a set of cost vectors. That
is, H(s) ⊂ Nk. (Note: We will use H for MO heuristics and
h for single-objective heuristics.) A MO heuristic is admis-
sible iff for every state and for every plan from the state, this
set contains a cost vector that dominates or equals that of the
plan (Mandow and Pérez-de-la-Cruz 2010). Formally:
Definition 1. A MO heuristic H is admissible iff ∀s ∈
S(T) ∀π∈PF(s) ∃~v∈H(s) ~v � ~c(π).

This notion of admissibility implies that the perfect
heuristic equals the set of costs of plans in any Pareto cov-
erage set, i.e., H?(s) = ~c(PCS(s)). For single-objective
search problems it is well known that the A? algorithm to-
gether with an admissible heuristic yields an optimal solu-
tion. A similar result exists for multi-objective search: the
NAMOA? best-first search algorithm (Mandow and Pérez-
de-la-Cruz 2010) returns an optimal solution if the underly-
ing heuristic is admissible.

2.3 The Ideal Point Heuristic
Experimental evaluations of MO heuristic search algorithms
(Stewart and White 1991; Machuca et al. 2009; Ulloa et al.
2020) all use the simple ideal point heuristic which estimates
each objective independently.

Formally, given admissible heuristics h1, . . . , hk for each
of the k objectives, the ideal point heuristic combines them
to form a cost vector with the value of each heuristic, i.e.,
~v′(s) = 〈h1(s), . . . , hk(s)〉. ~v′(s) dominates or equals the
cost of every solution in the Pareto front, because each hi
lower-bounds the minimum value of the ith objective in
any solution plan. Hence, the single-vector set Hideal(s) =
{~v′(s)} is an admissible MO heuristic.

A strength of the ideal point heuristic is that it combines
single-objective “black box” heuristics in an admissible way,
without altering their computation. As an MO heuristic,
however, it also has an obvious weakness, in that it fails to
account for any trade-off between the different objectives, as
illustrated by our introductory example.

3 Heuristics for MO Planning
We first describe the multi-objective analogues of two im-
portant general operations: taking the maximum, and admis-
sible sum via cost partitioning, of admissible MO heuris-

tics. We then discuss, in turn, our generalisation of abstrac-
tion heuristics, critical path heuristics and operator counting
heuristics based on (integer) linear programming.

3.1 Maximisation of MO Heuristics
In single-objective heuristic search, taking the maximum,
per state, of two or more admissible heuristics yields an ad-
missible heuristic. This is possible also with MO heuristics,
provided an appropriate definition of “maximum”. However,
what is the maximum of two sets of cost vectors, which
are only partially ordered by dominance, is neither obvious
nor unique. We propose two such definitions: both preserve
admissibility, but they differ on some other properties. In
particular, one preserves heuristic consistency, but the other
does not. This turns out to have a significant impact on the
NAMOA? algorithm. We state both definitions before pro-
ceeding to prove their properties.

Definition 2. Let V1 and V2 be sets of cost vec-
tors of dimension k. The component-wise multi-
objective maximum of V1 and V2 is comax(V1, V2) =
{〈max(~v1

1 , ~v
1
2),max(~v2

1 , ~v
2
2), . . . ,max(~vk1 , ~v

k
2)〉 | ~v1 ∈

V1, ~v2 ∈ V2}.
That is, comax(V1, V2) contains one vector for each

pair of vectors from V1 and V2, respectively, which is
their component-wise maximum. Hence, in the worst case
| comax(V1, V2)| = |V1||V2|.

Let V be a set of cost vectors. We write ND(V) = {~v∈V |
~v′ 6≺ ~v ∀~v′ ∈ V } for the set of non-dominated vectors in V .

Definition 3. Let V1 and V2 be sets of k-dimensional cost
vectors. The anti-dominance maximum of V1 and V2 is
admax(V1, V2) = {~v1 ∈ ND(V1) | ∀~v2 ∈ ND(V2) : ~v1 6≺
~v2} ∪ {~v2 ∈ ND(V2) | ∀~v1 ∈ ND(V1) : ~v2 6≺ ~v1}.

Note that | admax(V1, V2)| ≤ |V1|+|V2|, since it contains
only elements of the two sets.

Both definitions have some natural properties: they are
both commutative and associative, so the maximum of more
than two sets of vectors is unique; and the maximum of two
sets of vectors is dominated by both sets. Most important,
however, is the following:

Proposition 4. LetH1 andH2 be admissible MO heuristics:
(i) H(s) = comax(H1(s), H2(s)) is admissible;
(ii) H(s) = admax(H1(s), H2(s)) is admissible.

Proof. Let πs be a non-dominated plan from state s. By ad-
missibility, there exists ~v1 ∈ H1(s) and ~v2 ∈ H2(s) such
that ~v1 � ~c(πs) and ~v2 � ~c(πs). W.l.o.g., we can assume
~v1 ∈ ND(H1(s)) and ~v2 ∈ ND(H2(s)), since if they are
dominated by some other vector in the respective set, we
can just pick the dominating vector instead; by transitivity,
it will also dominate ~c(πs).

(i) By definition, there is a vector ~u =
〈max(~v1

1 , ~v
1
2), . . . ,max(~vk1 , ~v

k
2)〉 in comax(V1, V2).

Consider the ith objective: Since ~v1 � ~c(πs), we have
~vi1 ≤ ~c(πs)

i, and likewise since ~v2 � ~c(πs), we have
~vi2 ≤ ~c(πs)

i. Thus, ~ui = max(~vi1, ~v
i
2) ≤ ~c(πs)

i. Since this
holds for all k objectives, ~u � ~c(πs).

(ii) At least one of ~v1 and ~v2 is in admax(H1(s), H2(s)),
since it cannot be the case that both ~v1 ≺ ~v2 and ~v2 ≺ ~v1.

Mandow and Pérez-de-la-Cruz (2010) define consistency
of an MO heuristic as follows: H is consistent iff for
all states s, t and every non-dominated s-t-path P , ∀~v ∈
H(t)∃~u ∈ H(s) (~u � ~c(P) + ~v) holds. Like in the single-
objective case, consistency holds iff it holds for all transi-
tions (i.e., paths of length 1). They show that NAMOA?, like
A?, has the property that if the heuristic is consistent then no
search node once closed will need to be reopened. comax
preserves consistency (Proposition 5), but admax does not.
This is important because we confirm experimentally that
MO heuristics that are inconsistent cause NAMOA? to per-
form a sometimes significant number of re-expansions.
Proposition 5. Let H1 and H2 be consistent MO heuristics.
Then H(s) = comax(H1(s), H2(s)) is consistent.

Proof. Consider a transition from state s to state t with cost
~c. To prove consistency we need to prove that for every ~v ∈
H(t) there exists some ~u ∈ H(s) such that ~u � ~c + ~v.
Since H(t) = comax(H1(t), H2(t)), ~v is the coordinate-
wise maximum of two vectors ~v1 ∈ H1(t) and ~v2 ∈ H2(t).
Because H1 and H2 are consistent, there exist ~u1 ∈ H1(s)
such that ~u1 � ~c + ~v1 and ~u2 ∈ H2(s) such that ~u2 �
~c+~v2. Let ~u′ be the coordinate-wise maximum of ~u1 and ~u2.
By definition, ~u′ is part of H(s) = comax(H1(s), H2(s)).
Thus, it suffices to prove that ~u′ � ~c + ~v. Consider the ith
objective: ~vi = max(~vi1, ~v

i
2). From consistency of H1 and

H2, respectively, we have ~ui1 ≤ ~ci + ~vi1, and ~ui2 ≤ ~ci + ~vi2,
and hence max(~ui1, ~u

i
2) ≤ ~ci + max(~vi1, ~v

i
2). As this holds

for all objectives, ~u′ � ~c+ ~v.

In the remainder of the paper, we will use momax to re-
fer to any multi-objective maximum operator that preserves
heuristic admissibility (such as comax or admax).

3.2 Additivity and Cost Partitioning
Another way to strengthen admissible heuristics is to exploit
conditions under which the values of two or more heuristics
can be admissibly added together. A general method to en-
sure this is via cost partitioning (Katz and Domshlak 2008;
Haslum, Bonet, and Geffner 2005). This can be done also
in the MO case. First, we need to define how sets of cost
vectors are added:
Definition 6. Let V1, . . . , Vn be sets of k-dimensional cost
vectors (i.e., Vi ⊂ Nk). The multi-objective sum is V1+. . .+
Vn = {~v1 + . . . + ~vn | ~v1 ∈ V1, . . . , ~vn ∈ Vn}, i.e., the set
of all sums of one vector from each set.
Definition 7. A cost partitioning for an MOP task T with
k-dimensional action cost function ~c is a collection of func-
tions ~c1, . . . ,~cn, each mapping actions to Nk, such that
~c1(a) + . . .+ ~cn(a) � ~c(a) for each action a in T .

Let H/~ci denote the MO heuristic H computed using ~ci
in place of the original cost function ~c. To apply a cost parti-
tioning, we compute H/~ci for each partition ~ci and add the
results. Note that the same or a different admissible heuristic
may be used for each partition.

Proposition 8. Let Σ = {~c1, . . . ,~cn} be a cost partitioning
and H1, . . . ,Hn admissible MO heuristics. Then HΣ(s) =∑

i=1,...,nHi/~ci(s) is admissible.

Proof. Let π be a non-dominated plan from state s. Because
the cost of a plan is the sum of the cost vectors of actions
in it, and by definition of a cost partitioning, (~c1(π) + . . .+
~cn(π)) � ~c(π). Since Hi/~ci is admissible w.r.t. ~ci, there is a
vector ~vi ∈ Hi/~ci(s) such that ~vi � ~ci(π), for i = 1, . . . , n.
Hence, (~v1 + . . . + ~vn) � ~c(π), and (~v1 + . . . + ~vn) ∈
HΣ(s).

An important special case is disjoint cost partitionings,
which for each action assign its full cost vector to one of
the partitions (and ~0 to every other). We say that heuristics
H1, . . . ,Hn are additive iff there is a disjoint cost partition-
ing ~ci, . . . ,~cn such that Hi/~ci equals Hi for all states, i.e.,
each of the heuristics is unchanged by not counting the cost
of actions not in its partition. This means additive heuristics
can be admissibly added without modifying their computa-
tion. Projection abstractions, which we discuss in the next
section, give rise to additive heuristics under certain condi-
tions. However, more general cost partitionings have been
shown to result in stronger heuristics for single-objective
planning (e.g., Seipp, Keller, and Helmert 2017).

3.3 Abstraction Heuristics
Abstraction heuristics use a mapping ϕ from the state space
of the problem into a, usually smaller, abstract state space;
if the mapping is homomorphic (preserves existence and
cost of state transitions), then optimal path cost in the ab-
stract space is an admissible heuristic for search in the orig-
inal space, i.e., hϕ(s) = h?(ϕ(s)). If the abstract space is
small enough, h?(ϕ(s)) can be computed by blind search.
This is efficient because many states map to the same ab-
stract state, but the cost is (pre-)computed only once, stored
in memory, and retrieved by a fast lookup for state evalu-
ation. In planning, the abstraction function is usually de-
fined on the planning task and yields a corresponding ab-
stract task, T ϕ, whose induced state space is the abstract
space. Well known examples of abstraction heuristics in
planning are pattern databases (PDBs) (Edelkamp 2001),
based on projection mappings, and the merge-and-shrink
heuristic (Helmert et al. 2014).

Extending the principle of abstraction heuristics to the
MO setting is straightforward: instead of computing a sin-
gle optimal path cost for each abstract state, we compute a
Pareto coverage set, i.e., Hϕ(s) = ~c(PCS(T ϕ, ϕ(s))).

Proposition 9. Hϕ is admissible if the abstraction map-
ping preserves state transitions with equal or dominating
cost vectors, i.e., for any pair of states s, s′ in the original
state space, if there is an action a such that s[a] = s′, then
there is an abstract action aϕ such that ϕ(s)[aϕ] = ϕ(s′)
and ~c(aϕ) � ~c(a).

Proof. Let πs = 〈a1, . . . , an〉 be a non-dominated plan
from a state s, with cost ~c(πs). Because ϕ preserves state
transition cost vectors, there exists a corresponding abstract
plan π′ϕ(s) = 〈a′1, . . . , a′n〉, whose cost equals or dominates

~c(πs). If π′ϕ(s) is non-dominated in the abstract task, then
~c(π′ϕ(s)) ∈ ~c(PCS(T ϕ, ϕ(s))); otherwise there is another
plan π′′ϕ(s) from ϕ(s) such that ~c(π′′ϕ(s)) ≺ ~c(π′ϕ(s)) and
~c(π′′ϕ(s)) ∈ ~c(PCS(T ϕ, ϕ(s))). In either case, there exists
~v ∈ Hϕ(s) such that ~v � ~c(πs).

Abstraction functions commonly used for planning tasks,
such as projection on a subset of state variables and variable
domain projections, satisfy this condition because each ac-
tion in the original task is represented in the abstract task. Ef-
ficient implementations of abstraction heuristics compute h?
for all abstract states by a single backward search from the
abstract goal, using an algorithm like Dijkstra’s (Edelkamp
2001; Sievers, Ortlieb, and Helmert 2012). Similar algo-
rithms exist for MO shortest-path (e.g., Ehrgott 2005).

Abstraction heuristics are additive, as defined in the pre-
vious section, when the sets of actions that have a non-
empty effect in the corresponding abstract spaces are dis-
joint (Edelkamp 2001). This is true also in the MO case. The
single-objective canonical heuristic (Haslum et al. 2007)
is an abstraction heuristic based on PDBs that makes use
of disjoint additivity. Let C be a collection of abstrac-
tions and A the collection of all maximal (w.r.t. set inclu-
sion) additive subsets of C. The canonical heuristic func-
tion of C is hC(s) = maxΦ∈A

∑
ϕ∈Φ h

ϕ(s). Its exten-
sion to the MOP case is now straightforward: HC(s) =
momaxΦ∈A(

∑
ϕ∈ΦH

ϕ(s)), where the sum over each sub-
set Φ is the MO sum (Definition 6).

To generate a collection of abstractions to be combined
in this way, algorithms from classical planning can be used
as-is if they do not depend on the heuristic values; examples
include systematic enumaration, used by Pommerening et al.
(2013), and Edelkamp’s (2001) bin-packing method.

3.4 Critical Path Heuristics
Critical path heuristics (Haslum and Geffner 2000) is the
family of heuristics denoted by hm (m ∈ N>0) that relaxes
the cost of achieving a set propositions Γ ⊆ P by that of
achieving the most expensive subset of Γ of size m. They
are defined as follows: Let R(Γ) be the set of pairs 〈Γ′, a〉,
where Γ is a set of propositions and a an action, such that
Γ ∩ add(a) 6= ∅, Γ ∩ del(a) = ∅, and Γ′ = (Γ \ add(a)) ∪
pre(a). In each pair, Γ′ is the regression of Γ through action
a. Given a state s ⊆ P , hm(s) = gms (G), where

gms (Γ)=

0 if Γ ⊆ s,

min
〈Γ′,a〉 ∈R(Γ)

c(a) + gms (Γ′) if |Γ| ≤ m,Γ 6⊆ s,

max
Γ′⊂Γ,|Γ′|=m

gms (Γ′) otherwise.

This set of recursive equations implicitly solves a shortest-
path problem from s to each Γ while applying the relaxation
to sets Γ of size greater than m. The hm family of heuristics
is polynomial in |P | and |A| for a fixedm, while being expo-
nential inm. A notable special case is h1 which is equivalent
to hmax (Bonet and Geffner 1999).

In the MO setting, gms (Γ) is a set of non-dominated cost
vectors. In the base case (when Γ ⊆ s), it is {~0}. The min

over achievers in the second case is replaced by taking the
non-dominated vectors from the union of sets given by each
action, i.e., ND(

⋃
〈Γ′,a〉 ∈R(Γ){~c(a) + ~v | ~v ∈ gms (Γ′)}),

adding the vector ~c(a) in place of the single action cost.
The max in the last case is replaced by any admissibility-
preserving momax operator, as defined in Section 3.1.

This MO-hm heuristic is admissible, and can be computed
by the same label-correcting procedure used in the single-
objective case. Depending on the momax operator used, the
heuristic may or may not be consistent.

3.5 IP/LP-based Heuristics
Recently, several admissible classical planning heuristics
based on (Integer) Linear Programming (IP/LP) formula-
tions have been proposed. Constraints of the IP/LP express
properties that must be satisfied by any valid plan (from the
evaluated state), and the objective represents the plan cost.
Pommerening et al. (2014) introduced the operator counting
framework, which allows several IP/LP-based heuristics to
be expressed in a common form and combined. The general
form of an operator counting problem is

min
∑
a∈A

c(a)Ya s.t. C(Ya : a ∈ A)

where c(a) is the cost of action a, Ya represents the number
of occurrences of a in a plan, and C(Ya : a ∈ A) is a set of
operator count constraints, which lower-bound the counting
variables. Counting constraints can be formulated from sev-
eral kinds of information derived from the planning task, in-
cluding landmarks (Karpas and Domshlak 2009), net change
equations, and abstractions. Several types of constraints can
be combined as long as they share only the counting vari-
ables. Although in theory the counting variables are integers,
in practice the quicker-to-solve LP relaxation (allowing frac-
tional counts) is used. Imai and Fukunaga (2015) proposed
an IP formulation of the optimal delete relaxation heuristic,
h+, which also fits the framework.

In principle, extending operator counting heuristics to
MO planning is simple: we replace the scalar c(a) with the
vector ~c(a), resulting in the multi-objective IP/LP,

min
∑
a∈A

~c(a)Ya s.t. C(Ya : a ∈ A) (1)

and compute its PCS. Because the counting constraints en-
force lower bounds on the counting variables that hold for
all valid plans (from state s), this is admissible. In practice,
however, computing the PCS of a multi-objective LP is more
complex than solving a single-objective LP.

Multi-objective Linear Programming The Pareto front
of a multi-objective linear program (MOLP) can be com-
puted in several ways, e.g., by a simplex-like algorithm or
by weighted sum methods (e.g., Ehrgott 2005). Like an or-
dinary LP, the feasible set of an MOLP, and its image in
the objective space, are convex polyhedra. However, non-
dominated solutions do not necessarily lie on the polyhe-
dron’s vertices; entire facets can represent an infinite set of
different non-dominated solutions. As an example, consider

a simple MOLP with objectives c1 = x, c2 = y and con-
straints x + y ≥ 1, x, y ≥ 0: every single point on the line
x + y = 1, between x = 1, y = 0 and x = 0, y = 1, is
a non-dominated solution, representing a different trade-off
between c1 and c2. This causes a problem for MO heuristic
search algorithms since these enumerate the elements of the
heuristic set.

An admissible discrete heuristic set can be obtained by
taking all mutually non-dominated integral cost vectors that
are on or dominated by the Pareto front of the MOLP (see
Figure 1). For the Pareto front of an operator counting
MOLP this set is finite, and it is the strongest discretisation
that is admissible. This is analogous to how in classical opti-
mal planning, the value obtained from an LP-based heuristic
can admissibly be rounded up to the nearest integer, since
action costs are integral.

Iterative Method As an alternative, we propose a method
which solves a series of IPs. It repeatedly finds a new ele-
ment of H(s) by adding constraints to ensure that the cost
of the new solution is not dominated by any element already
found. The process terminates when no such vector exists.

Formally, let C(Ya : a ∈ A) be a set of counting con-
straints that are valid for plans from state s, and initialise
V = ∅. Define the non-dominance constraint as

ndc(V) =
∧
~v∈V

 ∨
i=1,...,k

(∑
a∈A

ci(a)Ya ≤ ~vi − 1

) .

We can now solve

min f(. . .) : C(Ya : a ∈ A) ∪ ndc(V) (2)

to obtain a vector of action counts ~y = 〈ya : a ∈ A〉, and
compute the corresponding cost vector ~v =

∑
a∈A ~c(a)ya.

Update V = V ∪ {~v} and repeat until the constrained prob-
lem (2) is infeasible. Then H(s) = V .

The objective f(. . .) in (2) can be chosen freely, as long
as it ensures that the cost vector ~v found is non-dominated
for the MO problem (1). One way to ensure this is to use
a weighted sum of the cost functions, with strictly positive
weights (Proposition 10 below), but other methods are also
possible (cf., e.g., Ehrgott 2005).

The disjunction in the non-dominance constraint means
that (2) is not an LP when V 6= ∅. It can be solved as an
IP, using indicator variables (which are supported by most
modern IP solvers) or a big-M formulation. The MO heuris-
tic computed by the iterative method is admissible, provided
the cost vectors of all non-dominated solutions to (1) are in-
tegral (Proposition 12 below). This integrality constraint is
necessary, as shown by the example in Figure 1: vectors ~v1,
~v2 and ~v3 are integer cost vectors, that may correspond to
plan costs. ~u is a non-dominated solution to the MOLP. If
~u is added to V first, then neither ~v1 nor ~v3 will be found,
since neither is less than ~u by 1 in at least one dimension.

A simple way to ensure integer cost vectors is to constrain
the counting variables to be integer, i.e., to solve (1) as an
MOIP rather than its MOLP relaxation. This does however
come at a computational cost.

In the remainder of this section, we prove termination and
admissibility of the iterative method.

~u

~v1

~v3

~v2

Figure 1: The Pareto front of the MOLP consists of the line
segments ~v1–~u and ~u–~v3. The set {~v1, ~v2, ~v3} is the admis-
sible discretisation of the Pareto front.

Proposition 10. The cost vector corresponding to an opti-
mal solution to (2) with f =

∑
i=1,...,k wi

(∑
a∈A ci(a)Ya

)
and wi > 0 for i = 1, . . . , k, is non-dominated.

Proof. That optimal solutions to the weighted sum prob-
lem are non-dominated for an MO problem when weights
are strictly positive is well known, and easy to prove (e.g.,
Ehrgott 2005). The only complication here is the non-
dominance constraints in (2), which are not part of (1).

Let ~y = 〈ya : a ∈ A〉 be the optimal solution to
(2). Clearly ~y satisfies C(Ya : a ∈ A), so it is a solu-
tion to (1). It remains to show that it is non-dominated. Let
~v =

∑
a∈A ~c(a)ya, and o =

∑
i=1,...,k wi~v

i the value of the
weighted sum objective f . Suppose there is another solution
~y′ to (1), with cost vector ~v′, such that ~v′ ≺ ~v. Then ~v′i ≤ ~vi
for all i = 1, . . . , k, and ~v′i < ~vi for some i, and thus
o′ =

∑
i=1,...,k ~v

′i < o. ~y satisfies ndc(V), which means
that for all ~u ∈ V , there is some i such that ~vi ≤ ~ui−1. Since
~v′i ≤ ~vi for all i = 1, . . . , k, we must also have ~v′i ≤ ~ui−1,
and thus ~y′ satisfies ndc(V). This contradicts that ~y is an op-
timal solution to (2).

Proposition 11. The iterative method applied to an operator
counting MOLP (or MOIP) terminates with a finite set V of
cost vectors.

Proof. The value that each cost function ci can take in any
non-dominated solution to an operator counting MOLP (or
MOIP) is bounded. Because the counting constraints are sat-
isfied by every valid plan, the sum of the counting vari-
ables is no more than maximum length of a non-looping
plan, which is bounded by 2|P |. Thus, the value of ci is no
more than 2|P |

(
maxa∈A ~c(a)i

)
. The non-dominance con-

straint ensures each new cost vector added to V differs from
each vector already in the set by at least 1 in at least one
dimension. Since both the maximum value and the smallest
difference in each dimension are bounded, V cannot contain
an infinite set of vectors.

Proposition 12. If the cost vectors of all non-dominated so-
lutions to (1) are integral, then H(s) computed by the itera-
tive method is admissible.

Proof. Let H(s) = V be the set of cost vectors computed
by the iterative method for a state s. Since the computa-
tion has terminated, C(Ya : a ∈ A) ∪ ndc(V) must be

infeasible. Let πs be a non-dominated plan from s. Let ~y
be the action counts corresponding to πs, i.e., ya equals the
number of occurrences of a in πs for each a ∈ A, and
~v =

∑
a∈A ~c(a)ya = ~c(πs) the corresponding cost vector.

Since the counting constraints C(Ya : a ∈ A) are valid, they
are satisfied by all plans from s, including πs; hence, ~y is a
solution to (1). ~y does not satisfy ndc(V), since if it did it
would be a solution to (2). Since ~v and all ~u ∈ V are inte-
gral, this implies ~vi ≥ ~ui for all i for some ~u ∈ V . But then
either ~ui = ~vi for all i, meaning ~u = ~v, or ~ui < ~vi for some
i, meaning ~u ≺ ~v; in either case ~u � ~v.

4 Compilation Schemes
Before we present an empirical evaluation of above heuris-
tics, we discuss three general schemes for solving a MO
planning task via a series of single-objective (classical or
numeric) planning tasks. Although we did not find these
compilations to be practical, we describe them as a start-
ing point for further research. Note that these compilation
schemes can also serve to derive an MO heuristic from ar-
bitrary single-objective heuristics, as long as these provide
some form of relaxed solution, not only a heuristic value.

Optimal solutions to the single-objective problem formed
from an MO problem by taking a weighted sum,∑

i=1,...,k wici(π), are non-dominated if all weights are
strictly positive (e.g., Ehrgott 2005). The weighted sum
problem for MOP is a classical planning problem with a sin-
gle additive constant action cost function; it can be handled
by any classical cost-optimal planner. However, weighted
sum minimisation can only yield solutions whose cost vec-
tors lie on the convex hull of the Pareto front, and thus is
complete only for tasks with convex Pareto fronts.

The iterative method described above is in fact a general
compilation scheme for MO planning: we can compile MO
planning into a series of numeric planning tasks, using flu-
ents f1, . . . , fk that track the value of each cost function
and the non-dominance constraint added to the goal. This
scheme has two disadvantages: First, it reduces to numeric,
not classical, planning. The goal disjunctions can be com-
piled away by standard means (cf., e.g., Nebel 2000), leav-
ing a task with so-called simple numeric conditions (Scala,
Haslum, and Thiébaux 2016), but numeric planners still can-
not match classical planners for efficiency. Second, to com-
plete the computation of the Pareto cover set, the last task in
the series must be proven unsolvable.

An alternative to numeric constraints is to exclude the spe-
cific plans (action sequences) already found, rather than their
cost vectors. This can be done by modification of the do-
main and problem (see, e.g., Grastien, Benn, and Thiébaux
2021), remaining in the classical setting. Disadvantages of
this method are: First, the number of different plans with the
same cost vector can be (exponentially) large. Second, the
encoding we tried requires a large number of conditional ef-
fects, and is intractable even with very few plans excluded.

5 Empirical Evaluation
Evaluations of MO heuristic search algorithms have used bi-
objective path-finding on random grids (e.g., Machuca et al.

2009, 2012) or road maps from the 9th DIMACS shortest
path challenge (e.g., Pulido, Mandow, and Pérez-de-la-Cruz
2015, Ulloa et al. 2020). Khouadjia et al. (2013) evaluate a
sub-optimal temporal MO planner, but their benchmarks all
use makespan as one of two objectives and so are not usable
in our setting. Therefore, we introduce the following MOP
benchmark set.

5.1 Benchmarks
Among the IPC domains, one is actually an MO problem:
in the SOKOBAN puzzle, the two traditional objectives are
minimising the number of moves and the number of pushes.
(The IPC domain considers only the latter.) We extend two
other classical planning domains, DRIVERLOG and VISI-
TALL, to MO problems, as follows: In VISITALL (a TSP-
like problem on grids) we add multiple agents, with each
agent’s distance travelled as a separate cost function. Since
agents are interchangeable, this creates a problem like the
example from the introduction where the ideal point is al-
ways a zero vector. For DRIVERLOG (a logistics-like do-
main), we create three versions: DRIVERLOG-2 has the two
objectives of minimising the total distance driven and the
total distance walked (in the IPC version, the single objec-
tive is a linear combination of these two; note that there are
a few other IPC domains whose objectives are also linear
combinations of two or more terms, and which could be
changed into MO problems in the same way); DRIVERLOG-
4 has the two additional objectives of minimising the num-
ber of trucks and number of drivers used in the plan; finally,
in DRIVERLOG-K each driver’s distance walked and each
truck’s distance driven is a separate cost function.

Our second type of benchmark are all-outcomes determin-
isations of probabilistic planning problems, with unit cost
and the negative logarithm of the outcome probability1 as
the two objectives. Thus, the two costs of a plan π are the
length of π and a proxy for the probability of π failing to
be executed in the probabilistic domain. However, π repre-
sents only one specific trajectory, so this is the probability of
that trajectory failing to eventuate; it is possible that the plan
succeeds also when some action(s) have a different outcome.

We apply this transformation to the BLOCKS WORLD,
EXPLODING BW and T-TIREWORLD domains from
IPPC’08 (Bryce and Buffet 2008). In T-TIREWORLD, we
add an action move-and-change-tire combining the
actions move and change-tire, if needed, in a row. This
action is deterministic, i.e., has only one possible outcome,
and its cost is [1.5, 0], where 1.5 is the expectation of ap-
plying change-tire 50% of the time. Without this ac-
tion, the PCS of each T-TIREWORLD task has only one plan,
while in our modified version, it grows with task size.

For SOKOBAN, we use the “easy” and “medium” in-
stances from Haslum et al. (2007); for EXPLODING BW, we
use tasks from the IPPC, plus additional randomly generated
tasks; for all other domains we generate tasks randomly. We
exclude from the final benchmark set any task deemed too
easy (solved by blind search in 10 seconds or less). Figure 2

1We approximate − log pi by b−1000× log pic ∈ N.

Figure 2: Boxplot of PCS size across the solved tasks in each
domain. Omitted for clarity: DRIVERLOG-K has 5 other out-
liers between 86 and 154.

shows distribution of the PCS size of tasks solved by at least
one configuration, after filtering of trivial tasks.

5.2 Experiments
We implemented a multi-objective planner in C++ based
on the NAMOA? algorithm. Following insights from Ulloa
et al. (2020) we modified the original algorithm to achieve
better runtime performance; for details on the algorithm and
the modifications we refer the reader to the corresponding
PDF that is part of the planner and benchmark repository
(Geißer et al. 2022). We used a timeout of 1800 seconds and
a memory limit of 4GB; each planner run uses a single CPU
core. Experiments were run on a cluster with Intel Xeon
Platinum 8274 (Cascade Lake) 3.2 GHz CPUs. We used the
python Lab package (Seipp et al. 2017); the implementation
of operator counting constraints and PDB heuristics is based
on the implementation in Fast Downward (Helmert 2006);
the LP/IP solver used is CPLEX version 20.1.

We compare the multi-objective version of different
heuristics to their ideal point counterparts. We also examine
the effect of our two different MO maximisation operators
in the MO heuristics that use them. We consider heuristic in-
formativeness, measured by the number of node expansions,
and heuristic effectiveness, measured by total runtime, re-
quired by our improved NAMOA? to compute the PCS.

Abstractions We consider the canonical PDB heuristic
(HC , cf. Section 3.3) using systematic pattern collections
C that enumerate subsets of state variables, excluding re-
dundant sets in the same way as Pommerening, Röger,
and Helmert (2013). The MO heuristic computes PCSs for
each PDB, then computes HC . The ideal point heuristic
uses the single-objective hC on the same pattern collec-
tion.2 We evaluated PDBs of size two and three; size three
PDBs performed better in DRIVERLOG domains, but other-
wise worse. Figures 3a and 3b compare expansions and run-
time, respectively, of HC with two variables per PDB using
the two momax operators. Recall that comax is consistent
while admax is not: the effect of inconsistency is visible

2We also tested a hybrid approach, which compute the ideal
point heuristic for each abstraction and then uses HC . This hybrid
was inferior to the pure MO approach.

Critical Path Abstractions Operator Counting

blind Hhmax

ideal Hmax
mo H2

mo H
hC
2

ideal HC
2 H

hC
3

ideal HC
3 Hh+

ideal Hh+

iter Hhseq

ideal Hhseq

iter H
h+
lp

ideal H
h+
lp

iter H
h+
rel

ideal H
h
seq
lp

ideal
momax operator adm. com. com. adm. com. com.

DRIVERLOG-2 (52) 22 44 26 42 6 22 40 40 22 49 1 1 10 – 1 1 8 37
DRIVERLOG-4 (68) 18 46 12 37 2 18 29 31 18 43 – – 4 – 1 1 1 17
DRIVERLOG-K (111) 22 46 14 39 1 22 43 43 22 66 – – 37 2 10 1 25 43
SOKOBAN-E (26) 25 26 26 26 – 26 26 26 26 25 – – 2 – – – – 10
SOKOBAN-M (28) – 18 11 13 – 12 18 18 9 10 – – – – – – – 2
EXPLODING BW (107) 13 46 33 46 24 26 79 79 26 70 39 34 14 – 38 12 31 25
BLOCKS WORLD (20) 6 10 5 5 – 6 14 20 6 18 10 3 19 13 6 1 14 20
T-TIREWORLD (11) 1 2 2 2 1 1 11 11 1 11 – – 1 – – – – 1
VISITALL (13) 3 4 9 6 6 3 7 7 3 6 – – – – – – – 3

Sum (436) 110 242 138 216 40 136 267 275 133 298 50 38 87 15 56 16 79 158

Table 1: Number of tasks solved by NAMOA? with different heuristics.

in BLOCKS WORLD, where using admax leads to signifi-
cantly more node expansions. On the other hand, comax is
more expensive to compute: this is seen in T-TIREWORLD
and VISITALL, where using admax is significantly faster.
Both these domains have large PCSs and also large sets of
heuristic values. Figures 3c and 3d compare HC and hC ,
again for PDBs with two variables per pattern. Clearly, con-
sidering the MO aspect in the abstractions pays off. HC

2 ex-
pands sometimes orders of magnitude fewer nodes, which
often results in better runtime. The overhead of computing
the MO heuristic is noticeable though: on tasks for which
the number of expansions is similar, the ideal point heuristic
often achieves better runtime (e.g., the SOKOBAN domain).

Critical Path Heuristics Figures 3e and 3f compare the
two momax operators in the multi-objective formulation of
hmax (Hmax

mo , cf. Section 3.4). Here, the negative effect of the
inconsistency of admax is much greater, and using comax
leads to significantly fewer expansions and a faster runtime
in nearly all cases. Figures 3g and 3h compare Hmax

mo to the
ideal point variant. Again, the MO heuristic expands sig-
nificantly fewer nodes, but overhead of its computation is
greater than for PDBs, and for many tasks total runtime is
higher than the ideal point heuristic. The exception is VISI-
TALL, where the ideal point heuristic offers no information.

Operator Counting Heuristics We considered two types
of operator counting constraints: the h+ IP formulation by
Imai and Fukunaga (2015), and net change constraints (van
den Briel et al. 2007; Pommerening et al. 2014). To en-
sure admissibility, counting variables are integral (cf. Prop.
12). We therefore compare the iterative method of comput-
ing operator counting heuristics (Hh+

iter and Hhseq

iter , respec-
tively) with the corresponding ideal point heuristics which
also constrain counting variables to be integral (Hh+

ideal and
Hhseq

ideal). Results are shown in Figures 3i, 3j, 3k and 3l. The
integrality restriction makes these heuristics expensive, and
they solve only few tasks. The iterative method has a sig-
nificant overhead compared to the ideal point, as it has to
solve many more IPs per heuristic evaluation.3 The itera-

3We also devised a weighted sum-based MOLP solver and an
efficient discretisation algorithm (cf. Section 3.5) for bi-objective

tive method results in a more informed heuristic, requiring
orders of magnitude fewer expansions, in the VISITALL do-
main, but both it and the ideal point heuristic with integral
counting variables still solve only small tasks (those solved
by blind search in less than 10 seconds).

Coverage The total number of tasks solved by each plan-
ner configuration is shown in Table 1. It also includes: blind
search; H2

mo (cf. Section 3.4; coverage with admax is omit-
ted, as only 8 tasks were solved); PDBs of size 3 (HC

3

and HhC
3

ideal; coverage with admax was generally worse, ex-
cept in VISITALL where 8 tasks were solved); and three
LP-relaxations of operator counting heuristics. The LP-
relaxation of the ideal point heuristic using net change con-

straints (H
hseq
lp

ideal) removes all integrality constraints. In the LP-

relaxations using the h+ constraints (H
h+
lp

ideal andH
h+
lp

iter) count-
ing variables are still integral, since this is necessary for the
iterative method to be admissible, but other variables in the
h+ formulation are relaxed. Coverage generally correlates
with the previous insights regarding expansions and runtime,
and best performing are the MO variants of the canonical
PDB heuristics.

Size of the Heuristic Set We also inspected the size of
the heuristic set returned by each MO heuristic on the tasks
they solve. The MO version of the IP-based heuristics re-
turn a small number of cost vectors: median of 1 and max-
imum of 2 vectors. In contrast, H2

mo returned the largest
number of cost vectors: the median, 75% quartile and max-
imum are 6, 7 and 132 (in an instance of DRIVERLOG-4)
when using admax and 5, 14 and 1,666 (in an instance of
DRIVERLOG-K) when using comax. The MO PDB heuris-
tics seem to achieve a good trade-off between computational
cost and number of returned vectors: HC

2 median was 1,
maximum was 18 and it returned well above 5 vectors for
several tasks, using both admax and comax; and HC

3 me-
dian, 75%-quartile and maximum were 2, 3, and 23, when

problems. We do not include results since this approach currently is
applicable only to the subset of bi-objective tasks. How to compute
the discretisation of the MOLP Pareto front efficiently in general
(for k > 2) is an open problem, which we leave for future work.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3: Comparison of number of NAMOA? node expansions and runtime between the different heuristics. Data points on
axis limits correspond to runs where runtime or memory was exceeded.

using admax and 1, 2, and 20 when using comax.

6 Conclusion
We have shown that extending admissible heuristics from
classical planning into genuine MO heuristics that capture
objective trade-offs can, with the right heuristic for the right
task, greatly improve the performance of MO planning via
search, but also raises several questions. The MO heuristics
are often more informed than their respective ideal point
combination, but this is not always true and our under-
standing of the properties of the task that determine when
it happens is incomplete. The impact of heuristic inconsis-
tency on NAMOA? appears greater than what is usually seen
in single-objective A?. The cause of inconsistency in the
heuristics we considered is one of our MO maximisation op-
erators, admax. Since we have shown that the maximum of
MO heuristic sets is not unique, we may yet ask whether
there are still better momax operators to be discovered.

In this paper, we have evaluated only basic representa-

tives of some of the different families of heuristics, for ex-
ample the canonical PDB heuristic. More advanced classi-
cal heuristic constructions, e.g., recently proposed cost parti-
tioning schemes for abstractions (Seipp, Keller, and Helmert
2017), are likely to yield stronger MO heuristics as well, but
because those constructions exploit information about action
costs, they will require greater changes to adapt.

Some of the MO heuristics are far too expensive per
node to evaluate. This is true of the iterative method of
computing operator counting heuristics in particular. How-
ever, the operator counting framework holds great poten-
tial for integrating other problem aspects into heuristics, no-
tably probabilities (Trevizan, Thiébaux, and Haslum 2017)
for solving multi-objective stochastic shortest path problems
(MO-SSPs) (Roijers et al. 2013) with generalisations of MO
heuristic search. Hence, devising general methods of solv-
ing the operator counting problem that better balance time
and pruning power is an important open problem, which we
have only begun to investigate.

Acknowledgements
This work was supported by ARC project DP180103446,
On-line planning for constrained autonomous agents in
an uncertain world and by computational resources pro-
vided by the Australian Government through the National
Computational Infrastructure (NCI) under the ANU Startup
Scheme. We thank Florian Pommerening for access to his
implementation of LP-based h+.

References
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021. Bi-
Objective Search with Bi-Directional A∗. In Proc. ESA
2021, 3:1–3:15.
Bonet, B.; and Geffner, H. 1999. Planning as Heuristic
Search: New Results. In Proc. ECP 1999, 360–372.
Bryce, D.; and Buffet, O. 2008. 6th Int. Planning Competi-
tion: Uncertainty Track. In 3rd Int. Probabilistic Planning
Competition (IPPC-ICAPS’08).
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.
Ehrgott, M. 2005. Multicriteria Optimization. Springer.
ISBN 3-540-21398-8.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. AIJ, 2: 189–208.
Geißer, F.; Haslum, P.; Thiébaux, S.; and Trevizan, F. 2022.
Code and benchmarks for the ICAPS 2022 paper “Admis-
sible Heuristics for Multi-Objective Planning”. https://doi.
org/10.5281/zenodo.6383217.
Grastien, A.; Benn, C.; and Thiébaux, S. 2021. Comput-
ing Plans that Signal Normative Compliance. In Proc. AIES
2021, 509–518.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admis-
sible Heuristics for Domain-Independent Planning. In Proc.
AAAI 2005, 1163–1168.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Haslum, P.; and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. AIPS 2000, 140–149.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. JACM, 61(3):
16:1–63.
Imai, T.; and Fukunaga, A. 2015. On a Practical, Integer-
Linear Programming Model for Delete-Free Tasks and its
Use as a Heuristic for Cost-Optimal Planning. JAIR, 54:
631–677.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M.; and Domshlak, C. 2008. Optimal Additive Com-
position of Abstraction-based Admissible Heuristics. In
Proc. ICAPS 2008, 174–181.

Khouadjia, M.; Schoenauer, M.; Vidal, V.; Dréo, J.; and
Savéant, P. 2013. Pareto-Based Multiobjective AI Planning.
In Proc. IJCAI 2013, 2321–2327.
Machuca, E.; Mandow, L.; Pérez-de-la-Cruz, J.; and Ruiz-
Sepúlveda, A. 2009. An Empirical Comparison of Some
Multiobjective Graph Search Algorithms. In Proc. KI 2009,
238–245.
Machuca, E.; Mandow, L.; Pérez-de-la-Cruz, J.; and Ruiz-
Sepúlveda, A. 2012. A comparison of heuristic best-first
algorithms for bicriterion shortest path problems. European
Journal of Operational Research, 217(1): 44–53.
Mandow, L.; and Pérez-de-la-Cruz, J. 2010. Multiobjective
A* search with consistent heuristics. J. ACM, 57(5): 27:1–
27:25.
Nebel, B. 2000. On the Compilability and Expressive Power
of Propositional Planning Formalisms. Journal of AI Re-
search, 12: 271–315.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI 2013, 2357–2364.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based Heuristics for Cost-optimal Planning. In
Proc. ICAPS 2014, 226–234.
Pulido, F. J.; Mandow, L.; and Pérez-de-la-Cruz, J. 2015.
Dimensionality reduction in multiobjective shortest path
search. Computers & Operations Research, 64: 60–70.
Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley, R.
2013. A Survey of Multi-Objective Sequential Decision-
Making. JAIR, 48: 67–113.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics
for Numeric Planning via Subgoaling. In Proc. IJCAI 2016,
3228–3234.
Seipp, J.; Keller, T.; and Helmert, M. 2017. A Comparison
of Cost Partitioning Algorithms for Optimal Classical Plan-
ning. In Proc. ICAPS 2017, 259–268.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
Implementation of Pattern Database Heuristics for Classical
Planning. In Proc. SoCS 2012, 105–111.
Stewart, B. S.; and White, C. C., III. 1991. Multiobjective
A∗. JACM, 38(4): 775–814.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Oc-
cupation Measure Heuristics for Probabilistic Planning. In
Proc. ICAPS 2017, 306–315.
Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A Simple and Fast Bi-Objective Search
Algorithm. In Proc. ICAPS 2020, 143–151.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-Based Heuristic for Optimal Planning. In
Proc. CP 2007, 651–665.

