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Abstract

We present three novel graph representations of planning
tasks suitable for learning domain-independent heuristics us-
ing Graph Neural Networks (GNNs) to guide search. In par-
ticular, to mitigate the issues caused by large grounded GNNs
we present the first method for learning domain-independent
heuristics with only the lifted representation of a planning
task. We also provide a theoretical analysis of the expressive-
ness of our models, showing that some are more powerful
than STRIPS-HGN, the only other existing model for learn-
ing domain-independent heuristics. Our experiments show
that our heuristics generalise to much larger problems than
those in the training set, vastly surpassing STRIPS-HGN
heuristics.

1 Introduction
Graph Neural Networks (GNNs) have recently attracted the
interest of the planning community, for learning heuristic
cost estimators, task orderings, value functions, action poli-
cies, and portfolios, to name a few (Shen, Trevizan, and
Thiébaux 2020; Garg, Bajpai, and Mausam 2020; Karia and
Srivastava 2021; Ståhlberg, Bonet, and Geffner 2022a; Ma
et al. 2020; Sharma et al. 2022; Teichteil-Königsbuch et al.
2023). GNNs exhibit great generalisation potential, since
once trained, they offer outputs for any graph, regardless
of size or structure. Representing the structure of planning
domains as graphs, GNNs can train on a set of small prob-
lems to learn generalised policies and heuristics that apply to
all problems in a domain. As noted by Shen, Trevizan, and
Thiébaux (2020), this also allows for learning heuristics ap-
plicable to multiple domains, or even domain-independent
heuristics that apply to domains unseen during training.

In this paper, we explore the use of GNNs for learning
both domain-dependent and domain-independent heuristics
for classical planning, with an emphasis on the latter. To the
best of our knowledge, STRIPS-HGN (Shen, Trevizan, and
Thiébaux 2020) is the only existing model designed to learn
domain-independent heuristic functions from scratch. The
models in (Ståhlberg, Bonet, and Geffner 2022a) are inher-
ently domain-dependent, given that they use different update
functions for predicates of the planning problems, and hence
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cannot generalise to unseen problems with a different num-
ber of predicates. Neural Logic Machines (Dong et al. 2019;
Gehring et al. 2022) are also domain-dependent models as
they assume a maximum arity of input predicates.

STRIPS-HGN has several drawbacks when learning
domain-independent heuristics: (1) its hypergraph represen-
tation of planning tasks ignores delete lists and thus cannot
theoretically learn h∗, (2) its aggregation function is not per-
mutation invariant due to ordering the neighbours of each
node which may prevent it from generalising effectively, (3)
it assumes a bound on the sizes of action preconditions and
effects, meaning that it also has to discard certain edges in
its hypergraph in its message updating step, and (4) it re-
quires constructing the whole grounded hypergraph, whose
size becomes impractical for large problems.

Our contributions remedy these issues and make the fol-
lowing advances to the state of the art. Building on well-
known planning formalisms, namely propositional STRIPS,
FDR, and lifted STRIPS, we define novel grounded and
lifted graph representations of planning tasks suitable for
learning domain-independent heuristics. In particular, this
results in the first domain-independent GNN heuristic based
on a lifted graph representation. We also establish the theo-
retical expressiveness of Message-Passing Neural Networks
(MPNN) acting upon our graphs in terms of the known
domain-independent heuristics they are able to learn, and
suggest further research directions for learning h∗.

We then conduct two sets of experiments to complement
our theory and evaluate the effectiveness of learned heuris-
tics. The first set aims to measure the accuracy of learned
heuristics on unseen tasks, while the second set evaluates the
effectiveness of such learned heuristics for heuristic search.
Planners guided by heuristics learnt using our new graphs
solve significantly larger problems than those considered
by Shen, Trevizan, and Thiébaux (2020), Karia and Srivas-
tava (2021) and Ståhlberg, Bonet, and Geffner (2022b). In
the domain-dependent setting, planners guided by our lifted
heuristics achieves greater coverage than using hFF in sev-
eral domains and returns lower cost plans overall.

2 Background and Notation
Planning A classical planning task (Geffner and Bonet
2013) is a state transition model Π = ⟨S,A, s0, G⟩ consist-
ing of a set S of states, a set A of actions, an initial state s0,



and a set G of goal states. Each action a ∈ A is a function
a : S → S∪⊥mapping a state s in which the action is appli-
cable to its successor a(s), and states in which it is not appli-
cable to ⊥. The cost of the action is c(a) ∈ N. A solution or
a plan in this model is a sequence of actions π = a1, . . . , an
such that si = ai(si−1) ̸= ⊥ for all i ∈ {1, . . . , n} and
sn ∈ G. In other words, a plan is a sequence of applicable
actions which when executed, progresses our initial state to
a goal state. The cost of π is c(π) =

∑n
i=1 c(ai). A plan-

ning task is solvable if there exists at least one plan. We now
describe three ways to represent planning tasks.

A STRIPS planning task is a tuple Π = ⟨P,A, s0, G⟩
with P a set of propositions (or facts), A a set of actions,
s0 ⊆ P an initial state, and G ⊆ P the goal condition.
A state s is a subset of P and is a goal state if G ⊆ s.
An action a ∈ A is a tuple ⟨pre(a), add(a),del(a)⟩ with
pre(a), add(a),del(a) ⊆ P and add(a) ∩ del(a) = ∅, and
has an associated cost c(a) ∈ R. The action is applicable
in a state s if pre(a) ⊆ s, and leads to the successor state
s′ = (s \ del(a)) ∪ add(a).

An FDR planning task (Helmert 2009) is a tuple Π =
⟨V, A, s0, s⋆⟩ where V is a finite set of state variables v,
each with a finite domain Dv . A fact is a pair ⟨v, d⟩ where
v ∈ V, d ∈ Dv . A partial variable assignment is a set of
facts where each variable appears at most once. A total vari-
able assignment is a partial variable assignment where each
variable appears once. The initial state s0 is a total variable
assignment and the goal condition s⋆ is a partial variable
assignment. Again, A is a set of actions of the form a =
⟨pre(a), eff(a)⟩ where pre(a) and eff(a) are partial variable
assignments. An action a is applicable in s if pre(a) ⊆ s,
and leads to the successor state s′ = (s∪ eff(a)) \ {⟨v, d⟩ ∈
s | ∃d′ ∈ Dv, ⟨v, d′⟩ ∈ eff(a) ∧ d ̸= d′}.

A lifted planning task (Lauer et al. 2021) is a tuple Π =
⟨P,O,A, s0, G⟩where P is a set of first-order predicates,A
is a set of action schema,O is a set of objects, s0 is the initial
state and G is the goal condition. A predicate P ∈ P has pa-
rameters x1, . . . , xnP

for nP ∈ N, noting that nP depends
on P and it is possible for a predicate to have no param-
eters. A predicate with n parameters is an n-ary predicate.
A predicate can be instantiated by assigning some of the xi

with objects from O or other defined variables. A predicate
where all variables are assigned with objects is grounded,
and is called a ground proposition. The initial state and goal
condition are sets of ground propositions. An action schema
a ∈ A is a tuple ⟨∆(a),pre(a), add(a),del(a)⟩where ∆(a)
is a set of parameter variables and pre(a), add(a) and del(a)
are sets of predicates from P instantiated with either param-
eter variables or objects in ∆(a)∪O. Similarly to predicates,
an action schema with n = |∆(a)| parameter variables is an
n-ary action schema. An action schema where each variable
is instantiated with an object is an action. Action application
and successor states are defined in the same way for both
STRIPS and lifted planning.

Graph neural networks The introduction of graph neu-
ral networks (GNN) requires additional terminology. In the
context of learning tasks, we define a graph with edge la-
bels to be a tuple ⟨V,E,X⟩ where V is a set of nodes,

E a set of undirected edges with labels where ⟨v, u⟩ι =
⟨u, v⟩ι ∈ E denotes an undirected edge with label ι be-
tween nodes u, v ∈ V , and X : V → Rd a function rep-
resenting the node features of the graph. The edge neigh-
bourhood of a node u in a graph under edge label ι is
Nι(u) = {⟨u, v⟩κ ∈ E | κ = ι}. The edge neighbourhood
of a node u in a graph is N (u) =

⋃
ι∈RNι(u) where R is

the set of edge labels for the graph.
A Message-Passing Neural Network (MPNN) (Gilmer

et al. 2017) is a type of GNN which iteratively updates node
embeddings of a graph with edge labels locally in one-hop
neighbourhoods with the general message passing equation

h(t+1)
u = cmb(t)

(
h
(t)
u , agg

(t)
⟨u,v⟩ι∈N (u) f

(t)
(
h
(t)
u ,h

(t)
v , ι

))
where in the t-th iteration or layer of the network, h(t)

u ∈
RF (t)

is the embedding of node u of dimension F (t), and
h
(0)
u is given by the node feature corresponding to u in X.

We have that cmb(t) and f (t) are arbitrary almost every-
where differentiable functions and agg(t) is usually a dif-
ferentiable permutation invariant function acting on sets of
vectors such as sum, mean or component-wise max.

In order for an MPNN to produce a graph representation
for an input, it is then common to pool all the node em-
beddings after a number of message passing updates with
a graph readout function Φ which is again usually given by
a differentiable permutation invariant function.

3 Representation
In this section, we introduce three novel graph representa-
tions designed for learning heuristic functions for planning
tasks. Each graph is tailored to a specific task representa-
tion and all of them allow us to learn domain-independent
heuristic functions.

Grounded Graphs
A graph representation for grounded STRIPS problems al-
ready exists, namely the STRIPS problem description graph
(PDG) (Shleyfman et al. 2015). It was originally used to
study which classical heuristics were invariant under sym-
metries in the planning task. In order to learn heuristics,
we provide an alternative graph representation for STRIPS
problems which includes node features and edge labels.

Definition 3.1. The STRIPS learning graph (SLG) of a
STRIPS problem ⟨P,A, s0, G⟩ is the graph ⟨V,E,X⟩ with

• V = A ∪ P ,
• E = Epre ∪ Eadd ∪ Edel where for ι ∈ {pre, add,del}

Eι = {⟨a, p⟩ι | p ∈ ι(a), a ∈ A} ,

• X : V → R3 defined by u 7→ [u ∈ P ;u ∈ s0;u ∈ G].

By allowing for edge labels, we only require one node for
each proposition to encode the semantics of action effects
in contrast to STRIPS PDG which requires three nodes for
each proposition. Thus SLG is smaller while not losing any
information. We also note that three dimensional node fea-
tures are sufficient for encoding whether a node corresponds
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Figure 1: The SLG subgraph of an action a defined by
pre(a) = {p0, p1, p2}, add(a) = {p3, p4} and del(a) =
{p0, p2}, indicated by black, blue and red edges respectively.
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Figure 2: The FLG subgraph of an action a defined by
pre(a) = {⟨v2, d2,1⟩ , ⟨v3, d3,2⟩} and eff(a) = {⟨v1, d1,1⟩,
⟨v2, d2,2⟩, ⟨v3, d3,1⟩}, indicated by black and blue edges re-
spectively. Asparagus edges link variables and values.

to an action or proposition, and in the latter case, whether
it is true in the initial state and present in the goal. Fig. 1
illustrates an example SLG subgraph.

The FDR problem description graph (PDG) (Pochter, Zo-
har, and Rosenschein 2011) is an existing graph represen-
tation designed to identify symmetrical states during search
for FDR problems. Since PDG is not designed for learning,
it lacks vector node features and edge labels. Def. 3.2 ex-
tends FDR PDG with learning in mind by retaining its graph
structure and adding node features and edge labels. Fig. 2
illustrates an example of an FLG subgraph.
Definition 3.2. The FDR learning graph (FLG) of an FDR
problem ⟨V, A, s0, s⋆⟩ is the graph ⟨V,E,X⟩ with
• V = V ∪

⋃
v∈V Dv ∪A,

• E = Evar:val ∪ Epre ∪ Eeff with

Evar:val =
⋃

v∈V{⟨v, d⟩var:val | d ∈ Dv}
Epre =

⋃
a∈A{⟨d, a⟩pre | (v, d) ∈ pre(a)}

Eeff =
⋃

a∈A{⟨d, a⟩eff | (v, d) ∈ eff(a)},

• X : V → R5 defined by

u 7→ [u ∈ V;u ∈ A; val(u); true(u); goal(u)]

where val(u) = ∃v ∈ V , u ∈ Dv , true(u) = ∃v ∈ V ,
⟨v, u⟩ ∈ s0 and goal(u) = ∃v ∈ V , ⟨v, u⟩ ∈ s⋆.

Lifted Graphs
Lifted algorithms for planning offer an advantage by avoid-
ing the need for grounding thus saving both time and mem-
ory. To leverage these benefits for heuristic learning, a lifted
graph representation that is amenable to learning is needed.
However, designing such graphs is non-trivial due to the
extra relations to encode, namely the interactions between
predicates, action schema, propositions true in the current
state, the goal condition and objects. The only graph repre-
sentation encoding all the information of a lifted planning
task is the abstract structure graph (ASG) (Sievers et al.
2019). Similarly to PDG, ASG was designed to compute
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Figure 3: LLG instance subgraph (a) and schema subgraph
(b) with graph layer descriptions of a Blocksworld instance.

symmetries but it has also been used for learning planning
portfolios (Katz et al. 2018).

An ASG is constructed by first defining a coloured graph
on abstract structures, a recursive structure defined with
sets, tuples, and the input objects, and then defining a lifted
planning task as an abstract structure. ASGs have several
limitations when used with MPNNs for making predictions.
Their encoding of predicate and action schema arguments is
done via a sequence or directed path, where the graph uses a
directed path of length n to encode n arguments. There are
also many more auxiliary nodes to encode the abstract struc-
tures. These issues cause problems as a larger receptive field
is required for MPNNs to learn the structure and semantics
of the planning problem, and directed edges limit informa-
tion flow and expressiveness when used with MPNNs.

To overcome the issues with ASGs, Def. 3.3 introduces a
new graph representation for lifted planning tasks designed
to be used with MPNNs. It consists of two main compo-
nents: the schema subgraph which encodes the domain’s ac-
tion schemas and the instance subgraph which encodes the
instance specific information containing the current state and
the goal condition. We assume no partially instantiated ac-
tion schema as is usual for most PDDL domains, but the
definition could be extended to allow partial grounding as a
tradeoff between expressiveness and graph size.

Definition 3.3. Let T ∈ N. The lifted learning graph (LLG)
of a lifted problem Π = ⟨P,O,A, s0, G⟩ is the graph G =
⟨V,E,X⟩ with
• V = P ∪ O ∪N(A) ∪N(s0 ∪G) with

N(s0 ∪G) =
⋃

p=P (o1,...,onP
)∈s0∪G {p, p1, . . . , pnP

}

N(A) =
⋃

a∈A
(
{a} ∪ {aδ | δ ∈ ∆(a)}∪⋃

f∈{pre,add,del}
⋃

p=P (δ1,...,δnP
)∈f(a){

pa,f , pa,f,1, . . . , pa,f,nP

})



N(s0 ∪ G) contains nodes corresponding to the state and
goal, and ground arguments layer as in Fig. 3(a), while
N(A) provides all the nodes corresponding to the action
schema, schema argument, predicate argument and schema
predicate layers in Fig. 3(b).
• E = Eν ∪ Eγ ∪

⋃
f∈{pre,add,del} Ef where

Eν =
{
⟨o, P ⟩ν | o ∈ O, P ∈ P

}
∪{

⟨a, aδ⟩ν | δ ∈ ∆(a), a ∈ A
}

Eγ =
⋃

p=P (o1,...,onP
)∈s0∪G

({
⟨p, pi⟩γ | i∈ [nP ]

}
∪{

⟨pi, oi⟩γ | i∈ [nP ]
}
∪
{
⟨p, P ⟩γ

})
Ef =

⋃
p=P ()∈f(a)

{
⟨P, pa,f ⟩f , ⟨pa,f , a⟩f

}
∪⋃

p=P (δ1,...,δnP
)∈f(a),nP≥1

({
⟨P, pa,f ⟩f

}
∪{

⟨pa,f , pa,f,i⟩f , ⟨pa,f,i, aδi⟩f | i∈ [nP ]
})

for f ∈ {pre, add,del}. Eν connects objects to predicates
and schemas to their arguments, as indicated by gray edges
in Fig. 3, Eγ connects nodes inP ,O, and N(s0∪G) in order
to represent propositions in the goal and true in the state as
instantiated predicates with objects in the correct arguments,
and

⋃
f∈{pre,add,del} Ef connects nodes in P and N(A) to

encode the semantics of action schema in the graph.
• X : V → R5+T defined by

u 7→ [u ∈ P;u ∈ O;u ∈ A;u ∈ s0;u ∈ G] ∥ IF(u)

where ∥ denotes vector concatenation, IF(u) = IF(i) for
u of the form pi or pa,f,i with f ∈ {pre, add,del} and
IF(u) = 0⃗ otherwise, and IF : N → RT is defined by a
fixed randomly chosen injective map from N to the sphere{
x ∈ RT | ∥x∥ = 1

}
.

We use the index function IF to encode the index at which
an object instantiates the argument of a predicate or action
schemas. This usage of IF lets us address STRIPS-HGN’s
limitation of having a fixed maximum number of parame-
ters for predicates and action schemas that is chosen before
training. Specifically, IF provides a numerically stable rep-
resentation of an unbounded range of indexes that is agnos-
tic to the maximum arity of the problem. Moreover, IF im-
proves generalisation to large and unseen indexes as they are
mapped to normalised vectors already seen by the model.

IF draws inspiration from positional encoding functions
used in Transformers (Vaswani et al. 2017) and GNNs (Li
et al. 2020; Dwivedi et al. 2022; Wang et al. 2022) for encod-
ing positions as vectors. However, while Transformers and
GNNs use positional encodings to encode all input tokens
and graph nodes respectively, we use IF features only in the
subset of nodes required to encode argument indexes in the
lifted planning task. Furthermore, positional encodings aim
to correlate positions and their corresponding features, such
that objects close to each other are given similar features.
In contrast, IF generates features for each index that are in-
dependent of one another. Hence, IF features are randomly
generated i.i.d. for each index and also a priori such that
they can be used for domain-independent learning.

hmax/add
STRIPS-HGN

h+
h∗

LLG

SLG
FLG

Figure 4: Expressiveness hierarchy of MPNNs on graph rep-
resentations with respect to STRIPS-HGN and the heuristics
hmax, hadd, h+ and h∗. Bold outlines represent new graphs.

4 Expressiveness
We have defined three novel graph representations of plan-
ning tasks for the goal of learning domain-independent
heuristics. In this section we will categorise the expres-
siveness of such graph representations when used with
MPNNs by identifying which domain-independent heuris-
tics they are able to learn. Our study also includes char-
acterising the expressiveness of STRIPS-HGN (Shen, Tre-
vizan, and Thiébaux 2020), the previous work on learning
domain-independent heuristics. Fig. 4 summarises the main
theorems of this section via an expressiveness hierarchy.
Proofs of theorems are provided in a technical report (Chen,
Thiébaux, and Trevizan 2023b).

We begin with a lower bound on what MPNNs can learn
by showing that they can theoretically learn to imitate al-
gorithms for computing hmax and hadd on our grounded
graphs with the use of the approximation theorem for neural
networks (Cybenko 1989; Hornik, Stinchcombe, and White
1989). We note that the theorem does not say anything about
generalisability.

Theorem 4.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG}, ε > 0
and h ∈ {hadd, hmax}. Then there exists a set of parame-
ters Θ for an MPNN FΘ such that for all planning tasks Π,
if naive dynamic programming for computing h converges
within L iterations for Π, and h(Π) ≤ B, then we have
|h(Π)−FΘ(G(Π))| < ε.

MPNNs acting on SLG and FLG are strictly more ex-
pressive than STRIPS-HGN. The idea of the theorem is that
STRIPS-HGN discards delete effects which prohibits it from
learning h∗. Furthermore, it is possible to imitate STRIPS-
HGN with minor assumptions on MPNN architectures act-
ing on either of our grounded graphs.

Theorem 4.2 (MPNNs on grounded graphs are strictly more
expressive than STRIPS-HGN). Let G ∈ {SLG,FLG}.
Given any set of parameters Θ for a STRIPS-HGN model
SΘ, there is a set of parameters Φ for an MPNN FΦ

such that for any pair of planning tasks Π1 and Π2 where
SΘ(Π1) ̸= SΘ(Π2), we have FΦ(G(Π1)) ̸= FΦ(G(Π2)).
Furthermore, there exists a pair of planning problems Π1

and Π2 such that there exists Φ where FΦ(G(Π1)) ̸=
FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all Θ.

The first of our negative results is that MPNNs cannot
learn hadd or hmax on the lifted LLG graph. This is due to
the graph being too condensed in the lifted version so that



MPNNs cannot extract certain information for computing
these heuristics. The proof idea is to find a pair of planning
tasks which appear symmetric to MPNNs in the LLG repre-
sentation but have different hmax and hadd values.
Theorem 4.3 (MPNNs cannot learn hadd and hmax on
lifted graphs). Let h ∈

{
hadd, hmax

}
. There exists a pair

of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such
that for any set of parameters Θ for an MPNN we have
FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Next, we have that MPNNs cannot learn h+ and thus h∗

on any of our graphs. This result is not unexpected given that
the expressiveness of MPNNs is bounded by the graph iso-
morphism class GI whose hardness is known to be in the low
hierarchy of NP, unlike h+ which is NP-complete. Similarly
to the previous theorem, the proof follows the technique of
finding a pair of planning tasks with different h+ values that
are indistinguishable by MPNNs on any of our graphs.
Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our
graphs). Let h ∈ {h+, h∗} and G ∈ {SLG,FLG,LLG}.
There exists a pair of planning tasks Π1 and Π2 with
h(Π1) ̸= h(Π2) such that for any set of parameters Θ for
an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

One may ask if it is possible to learn any approximation of
h+ or h∗ on all planning problems. Unfortunately, it is not
possible to learn either absolute or relative approximations.
This is formalised in the following theorem, where the proof
consists of a class of planning task pairs generalising the
previous example.
Theorem 4.5 (MPNNs cannot learn any approximation of
h+ or h∗). Let h ∈ {h+, h∗}, G ∈ {SLG,FLG,LLG}
and c > 0. There exists a pair of planning tasks Π1 and Π2

with h(Π1) ̸= h(Π2) such that for any set of parameters
Θ for an MPNN we do not have |FΘ(G(Π1))− h(Π1)| ≤
c ∧ |FΘ(G(Π2))− h(Π2)| ≤ c. Also, for any set of pa-
rameters we do not have |1−FΘ(G(Π1))/h(Π1)| ≤ c ∧
|1−FΘ(G(Π2))/h(Π2)| ≤ c.

We note that our theorems provide extreme upper and
lower bounds on what MPNNs can learn with some of our
graphs. Although in the general case we have the negative re-
sult that we cannot learn h+ or h∗, it is still possible to learn
h∗ on subclasses of planning tasks. For example, Ståhlberg,
Bonet, and Geffner (2022a) theoretically analyse which do-
mains their MPNN architecture can learn h∗ for, by using
the well known result concerning the connection between
MPNNs and 2-variable counting logics (Cai, Fürer, and Im-
merman 1992; Barceló et al. 2020). Furthermore, the results
in this study concern MPNNs but there exist more expres-
sive graph representation learning methods. For example,
under additional assumptions, the universal approximation
theorem with random node initialisation by Abboud et al.
(2021) can be applied to learn h∗. Lastly, note that neither
our results nor previous works examine the generalisability
of learned heuristic functions.

5 Experiments
We provide experiments in order to evaluate the effective-
ness of our graph representations for use with both domain-

domain train validate test largest sol.

blocks b ∈ [3, 10] 40 b ∈ [11] 3 b ∈ [15, 100] 90 b = 75∗

ferry l, c ∈ [2, 10] 125 l, c ∈ [11] 3 l, c ∈ [15, 100] 90 l, c = 100
gripper b ∈ [1, 10] 10 b ∈ [11] 1 b ∈ [15, 100] 18 b = 100

n-puzzle n ∈ [2, 4] 100 n ∈ [5] 3 n ∈ [5, 9] 50 n = 6∗

sokoban n ∈ [5, 7] 60 n ∈ [8] 3 n ∈ [8, 12] 90 n = 12∗

spanner s, n ∈ [2, 10] 75 s, n ∈ [11] 3 s, n ∈ [15, 100] 90 s, n = 75
visitall n ∈ [3, 10] 24 n ∈ [11] 3 n ∈ [15, 100] 90 n = 65

visitsome n ∈ [3, 10] 24 n ∈ [11] 3 n ∈ [15, 100] 90 n = 95∗

Table 1: Problem splits with sizes and number of tasks per
domain. Right most column indicates largest size problem
solved with GOOSE. Problem size is not completely corre-
lated with difficult for domains marked ∗.

dependent and domain-independent learning of heuristic
functions, as well as to answer some open questions left be-
hind in our theoretical discussion. In order to do so, we in-
troduce our GOOSE planner which combines graph genera-
tion, graph representation learning and domain-independent
planning. Code is available at (Chen, Thiébaux, and Tre-
vizan 2023a).

GOOSE The Graphs Optimised fOr Search Evaluation
(GOOSE) architecture represents planning tasks with one
of the three graphs described previously (SLG, FLG,
LLG) and uses MPNNs to learn heuristic functions for
search. During heuristic evaluation, GOOSE treats each
state s of a planning task ⟨S,A, s0, G⟩ as a new plan-
ning subtask ⟨S,A, s,G⟩ which is then transformed into
the chosen graph and fed into an MPNN. We use a
RGCN (Schlichtkrull et al. 2018) message passing step:
h
(t+1)
u = σ

(
W

(t)
0 h

(t)
u +

∑
ι∈R

⊕
⟨u,v⟩ι∈Nι(u)

W
(t)
ι h

(t)
v

)
,

where ⊕ denotes the aggregator over neighbours under dif-
ferent edge labels. GOOSE uses the eager GBFS compo-
nent of Fast Downward (Helmert 2006) for search, but calls
the trained models for heuristic evaluation and parallelises
the evaluation of successor states on GPUs for each opened
node. GOOSE only constructs graphs from static proposi-
tions computed by Fast Downward.

Setup For domain-dependent heuristic learning, we train
5 models for each domain on optimal plans with problems
specified in Tab. 1. Each plan of length h∗ contributes states
s0, s1, . . . , sg with corresponding labels h∗, h∗ − 1, . . . , 0.
For domain-independent heuristic learning, we consider the
problems and domains of the 1998 to 2018 IPC dataset, ex-
cluding the domains in Tab. 1. We train 5 models using opti-
mal plans generated by scorpion (Seipp, Keller, and Helmert
2020) with a 30min cutoff time and unit costs. In both set-
tings, a model is trained with the Adam optimiser (Kingma
and Ba 2015), batch size 16, initial learning rate of 0.001 and
MSE loss. We schedule our learning rate by extracting 25%
of the training data and reducing the learning rate by a factor
of 10 if the loss on this data subset did not decrease in the
last 10 epochs. Training is stopped when the learning rate
becomes less than 10−5 on this subset, which often occurs
within a few minutes. Following a similar method to Ferber,
Helmert, and Hoffmann (2020), we select the best model for
both settings by choosing the model which solves the most
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Figure 5: (a) GOOSE learned heuristics (y-axis) vs. h∗ (x-
axis). No n-puzzle problem could have h∗ computed. (b)
hFF (y-axis) vs. GOOSE (x-axis) on number of expanded
nodes (left) and plan cost (right). Points on the bottom right
triangles favour hFF and on the top left triangles favour
GOOSE. Problems unsolved by a configuration get value set
to the maximum of the plot’s axis.

problems in the validation set (Tab. 1). We break ties with
the sum of number of expanded nodes, and the training loss.
We choose a hidden dimension of 64 with 8 message passing
layers and the mean aggregator. GOOSE is run with a single
NVIDIA GeForce RTX 3090 GPU.

Baselines We evaluate against blind search, Fast Down-
ward’s implementation of eager GBFS with hFF, and
domain-dependent STRIPS-HGN. STRIPS-HGN was
trained using the parameters described in the original paper
but with the same dataset as GOOSE and is called from
Fast Downward’s eager GBFS for heuristic evaluation.
The other baselines are run on CPUs only. All GOOSE
configurations and baselines are run with a 600 second
timeout and 8GB main memory. We note that we also
evaluated Powerlifted’s (Corrêa et al. 2020) implementation
of lifted eager GBFS with both hFF and its extension with
GOOSE but they do not offer any advantage over Fast
Downward on the chosen problems.

Results
We recall from our theoretical study that it is not pos-
sible to learn any approximation of h∗ over all planning
tasks, although it may still be possible for certain plan-
ning subclasses or domains. Furthermore, we can learn
domain-dependent h∗ heuristics for certain domains simi-
larly to (Ståhlberg, Bonet, and Geffner 2022a). Thus, we
propose and answer the following question empirically.

How close to the optimal heuristic are our learned
heurstics? To answer this question, we report the heuristic
of the initial state h(s0) computed by our models on all plan-
ning problems for which we can compute the optimal heuris-
tic either by a hard coded solver or an optimal planner in
Fig. 5(a). In the domain-dependent training setting, GOOSE
with LLG provides the best predictions over most do-
mains except for Sokoban. GOOSE achieves close to perfect
heuristic estimates even as problems scale in size. This can
be explained by LLG encoding predicate information which
the other graph representations do not have access to and
for some domains, it suffices to count the predicates of true
propositions to compute h∗. Meanwhile, MPNNs are not ex-
pressive enough to decode predicate information from the
grounded graphs. In the domain-independent training set-
ting, GOOSE heuristics tend to overestimate h∗ on VisitAll,
whose perfect heuristic can often be computed by count-
ing unreached goals, and underestimate on Sokoban. The
grounded graphs (SLG and FLG) underestimate on Grip-
per, Spanner and Sokoban. This suggests GOOSE heuristics
are overfitting on the training set for the more expressive
grounded graphs as it is not possible to compute h∗. In par-
ticular, FLG is more prone to overfitting since it encodes ad-
ditional planning task structure in the conversion of STRIPS
to FDR.

How useful are learned domain-dependent heuristics
for search? To answer this question, we refer to Fig. 6
for a coverage table over all domains with various plan-
ners. We notice that GOOSE with LLG trained in a
domain-dependent fashion provides the best coverage on
Blocksworld and Spanner, and is tied with Fast Downward’s
eager GBFS with hFF on Gripper. GOOSE with SLG per-
forms best on the grid based path finding domains VisitAll
and VisitSome. Meanwhile, hFF performs best on the re-
maining Ferry, n-puzzle and Sokoban domains. However,
all GOOSE configurations perform worse than blind search
on Sokoban. Even though it expands fewer nodes than blind
search, the runtime cost of computing GOOSE heuristics is
too high. This may be due to the difficulty of the domain
(PSPACE-complete) as size increases, given that in prob-
lems with similar size to the training set GOOSE outper-
forms the other baselines. STRIPS-HGN solves significantly
fewer problems due to its slower evaluation on CPUs.

Fig. 5(b) shows the number of node expansions and
returned plan quality of the best performing domain-
dependent GOOSE graph, LLG, against hFF. In domains
where one planner solves significantly more problems than
the other, it also has fewer node expansions. We also note
that GOOSE generally has higher plan quality than hFF over
all problems which both planners were able to solve.



baselines domain-dep. domain-ind.

blind hFF HGN SLG FLG LLG SLG FLG LLG

blocks (90) - 19 - - 6 62 9 8 6
ferry (90) - 90 - 32 33 88 28 22 2
gripper (18) 1 18 5 9 6 18 5 3 9
n-puzzle (50) - 36 - 10 10 - 6 3 -
sokoban (90) 74 90 10 31 29 34 45 40 15
spanner (90) - - - - - 60 - - -
visitall (90) - 6 25 46 50 44 16 41 -
visitsome (90) 3 26 33 72 39 65 73 65 15

Figure 6: Coverage of planners and GOOSE over various
domains. Cell intensities indicate the top 3 planners per row.

domain-dep. domain-ind.

aggr. L SLG FLG LLG SLG FLG LLG

mean

4 0.40 0.43 0.94 0.19 0.15 0.18
8 0.53 0.40 1.00 0.38 0.32 0.33
12 0.44 0.37 0.85 0.37 0.32 0.21
16 0.31 0.18 0.75 0.36 0.32 0.12

max

4 0.46 0.50 0.89 0.33 0.29 0.30
8 0.41 0.43 0.88 0.36 0.30 0.52
12 0.36 0.43 0.80 0.12 0.24 0.39
16 0.41 0.36 0.53 0.06 0.24 0.20

Figure 7: Total coverage normalised per domain of GOOSE
over various parameters and training paradigms, and nor-
malised again by the coverage of the best performing con-
figuration. Higher scores are better and the maximum score
is 1. The best scores per column are highlighted in bold.

How useful are learned domain-independent heuristics
for search? We again refer to Fig. 6 for the cover-
age of GOOSE trained with domain-independent heuris-
tics. With the exception of Sokoban, domain-independent
GOOSE outperforms blind search which suggests that the
learned domain-independent heuristics have some informa-
tiveness. This is supported by Fig. 5(a) which shows that
in most domains domain-independent heuristics provide a
mostly-linear approximation of h∗. Most notably, domain-
independent grounded graphs still outperform hFF on Visi-
tAll and VisitSome, and domain-independent LLG is able to
solve some Spanner problems.

The best performing domain-independent GOOSE graph
with 8 message passing layers and mean aggregator is the
grounded graph SLG. It provides enough information to
learn domain-independent heuristics with MPNNs in com-
parison to LLG, but also does not provide too much in-
formation to prevent overfitting in comparison to FLG
which computes additional structure. Domain-independent
GOOSE with SLG returns better quality plans, and expands
fewer nodes than hFF on VisitAll, VisitSome, and more than
half the Blocksworld instances which both planners were
able to solve. Domain-independent GOOSE also outper-
forms or ties with domain-dependent STRIPS-HGN across
all domains except VisitAll. However, domain-independent
GOOSE generally expands more nodes and returns lower
quality plans than their domain-dependent trained variants
with the same graph.

How important is finding the right graph neural net-
work parameters? We report the normalised coverage of

GOOSE with hyperparameters L ∈ {4, 8, 12, 16} layers and
⊕ ∈ {max,mean} aggregator in Fig. 7. We omitted results
with the sum aggregator as it yielded unstable training and
poor predictions. Increasing the number of layers theoreti-
cally improves informativeness and accuracy of predictions
but requires longer evaluation time and is more difficult to
train. There is no single set of parameters that performs well
over all graphs and training settings. Generally 4 or 8 lay-
ers result in similar coverages for domain-dependent train-
ing, and 8 or 12 layers for domain-independent training,
while increasing the number of layers beyond this results
in worse performance due to the aforementioned reasons.
We note that the effectiveness of max and mean aggrega-
tions vary with the graph representation and domain as both
aggregators lose information in different ways. However, in
the domain-dependent setting, LLG with the mean aggrega-
tor generally outperforms the max aggregator given that the
model can recover the information lost during normalisation
through the grouping of edge labels and node types.

How long do GOOSE evaluations take? GOOSE on a
single core CPU takes 0.2-0.9s to perform a full GNN eval-
uation on grounded graphs, and 0.2-0.3s on lifted graphs.
With optimal GPU usage, grounded graphs take 0.1-5ms per
state evaluation and lifted graphs take 0.07-0.7ms. Optimal
usage is achieved when the batch size is greater than 32 for
lifted graphs and 4 for grounded graphs. In our experiments,
the grounded graphs were able to optimally use the GPU
while the lifted graphs were not, resulting in a higher aver-
age state evaluation time. We note that evaluating states of
successor nodes further in the queue to increase the batch
size is also not optimal as the expanded states may never be
evaluated in sequential GBFS. Evaluation of heuristics on
GPUs is almost always faster than on CPU due to the paral-
lel execution of GNN matrix and scatter operations.

6 Conclusion
We have constructed various novel graph representations
of planning problems for the task of learning domain-
independent heuristics. In particular we provide the first
domain-independent graph representation of lifted planning.
All our new models are also complemented by a theo-
retical analysis of their expressive power in relation to
domain-independent heuristics and the previous work on
learning domain-independent heuristics, STRIPS-HGN. We
also construct the GOOSE planner using heuristic search
with heuristics learned from our new graph representations.
GOOSE has also been optimised for runtime with the use of
GPU batch evaluation and is able to solve significantly larger
problems than those seen in the training set, vastly surpass-
ing STRIPS-HGN learned heuristics, and outperforming the
hFF heuristic on several domains. It remains for future work
to implement search algorithms used by stronger satisficing
planners in GOOSE, and to optimise GPU utilisation when
computing heuristics. Furthermore GOOSE can be extended
to predict deadends alongside a heuristic for further prun-
ing the search space. Lastly, we aim to improve the expres-
siveness of learned heuristics by leveraging stronger graph
representation learning techniques.
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Milano, M.; Barro, S.; Bugarı́n, A.; and Lang, J., eds., Euro-
pean Conference on Artificial Intelligence (ECAI), volume
325, 2346–2353.
Garg, S.; Bajpai, A.; and Mausam. 2020. Symbolic Net-
work: Generalized Neural Policies for Relational MDPs.
In International Conference on Machine Learning (ICML),
volume 119, 3397–3407.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis

Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling,
L. P.; Sohrabi, S.; and Katz, M. 2022. Reinforcement Learn-
ing for Classical Planning: Viewing Heuristics as Dense Re-
ward Generators. In International Conference on Automated
Planning and Scheduling (ICAPS), 588–596.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In International Conference on Machine Learn-
ing (ICML), volume 70, 1263–1272.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artif. Intell., 173(5-6): 503–535.
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural networks, 2(5): 359–366.
Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In AAAI Conference on Artificial Intelligence (AAAI), 8064–
8073.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning.
International Planning Competition, 57–64.
Kingma, D. P.; and Ba, J. 2015. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR).
Lauer, P.; Torralba, A.; Fiser, D.; Höller, D.; Wichlacz, J.;
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A Proofs of Theorems
This appendix includes the proofs of all theorems. For ease
of reference, theorem statements are also repeated here.

Theorem A.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG}, ε > 0
and h ∈ {hadd, hmax}. Then there exists a set of parameters
Θ for an MPNN FΘ such that for all planning tasks Π, if
naive dynamic programming for computing h (Alg. 1) con-
verges within L iterations for Π, and h(s0) ≤ B, then we
have |h(s0)−FΘ(G(Π))| < ε.

Proof. The main idea of the proof is that we can encode
Alg. 1 for computing h into an MPNN using a correct choice
of continuous bounded functions and aggregation operators
and using the approximation theorem to find parameters in

Algorithm 1: Naive dynamic programming for com-
puting hadd and hmax

Data: Propositional STRIPS planning task
Π = ⟨P,A, s0, G⟩, desired heuristic
h ∈

{
hadd, hmax

}
Result: h(s) ∈ N

1 if h = hadd then ⊕ ←
∑

;
2 else if h = max then ⊕ ← max;
3 h(0)[p]← 0, ∀p ∈ s0
4 h(0)[p]←∞, ∀p ∈ P \ s0
5 for i = 1, . . . do
6 for a ∈ A do
7 h(i)[a]← ⊕p∈pre(a)h

(i−1)[p]

8 for p ∈ P do
9 h(i)[p]←

min
(
h(i−1)[p],mina∈A,p∈add(a) h

(i)[a] +

c(a)
)

10 if h(i) = h(i−1) then
11 return ⊕p∈gh

(i)[p]

order to achieve the desired function. We will assume uni-
tary cost actions and note that the below proof can be gener-
alised to account for general cost actions. We first deal with
the case where h = hmax and G = DLG, where DLG is the
graph SLG but without delete edges. The proof generalises
to SLG as an MPNN can learn to ignore delete edges.

Let x(u) ∈ R3 be the feature of node u. By definition
of DLG as the graph SLG (Def. 3.1) with no delete edges,
it is defined by x

(u)
0 = 1 if u corresponds to a proposition

node, else x
(u)
0 = 0 when u corresponds to an action node

a. Furthermore, x(u)
1 = 1 if u is a proposition in the initial

state and x
(u)
2 = 1 if u is a goal proposition. Note that it is

possible that x(u)
1 = x

(u)
2 = 1 when a proposition is both a

goal condition and in the initial state. If not mentioned, we
have that x(u)

i = 0 everywhere else.
Then we will construct a MPNN with 2L + 2 layers. For

the first layer we have an embedding layer which ignores
neighbourhood nodes with agg(0) = 0⃗ and φ(0)(hu,hN ) =
femb(hu). Let K be the finite set of possible node features in
a DLG representation of a planning task. Then femb : K →
R3 is defined by

femb([0, 0, 0]
⊤) = [0, 0, 0]⊤ (1)

femb([1, 0, 0]
⊤) = [B, 0, 1]⊤ (2)

femb([1, 0, 1]
⊤) = [B, 1, 1]⊤ (3)

femb([1, 1, 0]
⊤) = [0, 0, 1]⊤ (4)

femb([1, 1, 1]
⊤) = [0, 1, 1]⊤. (5)

This first round of message passing updates corresponds
to the initialisation step of the heuristic algorithm with B



representing infinity values. We also note that after apply-
ing agg(0) and φ(0) and throughout the remaining forward
pass of the MPNN, node embeddings will have the form
[x0, x1, x2] which encode information about their corre-
sponding proposition or action during the execution of the
hmax algorithm where

• x0 corresponds to the intermediate h values computed in
the hmax algorithm,

• x1 signifies whether the node corresponds to a goal node,
and

• x2 determines if the node is a proposition or action node.

The next 2L layers use the component wise max aggre-
gation function agg = max and alternates between set-
ting φ(l)(hu,hN ) = fa([hu

∥∥hN ]) and φ(l+1)(hu,hN ) =

fp([hu

∥∥hN ]) where fa : R6 → R3 and fp : R6 → R3 are
defined by

fa



x0
x1
x2
y0
y1
y2


 =

[
x0x2 − (1− x2)y0

x1x2

x2
2

]
, (6)

fp



x0
x1
x2
y0
y1
y2


 =

[
min(x0,−y0 + 1)x2

x1x2

x2
2

]
. (7)

These functions correspond to the iterative updates of
h(l)[a] and h(l)[p] in Alg. 1, recalling that L is the num-
ber of iterations it takes for the algorithm converges. More
specifically, suppose we have a node u with embedding
hu = [x0, x1, x2] and aggregated embedding from its neigh-
bours hN = [y0, y1, y2]. Then we have two cases.

• If x2 = 0, indicating that the node u corresponds to a n
action, then we get

fa([hu

∥∥∥hN ]) = [−y0, 0, 0] (8)

fp([hu

∥∥∥hN ]) = [0, 0, 0]. (9)

Eq. 8 corresponds to Line 7 in Alg. 1 where−y0 contains
the negative of h[a]. We take the negative since we are
restricted to using max aggregators only1 which in turn
means we require taking maximums of negatives in order
to mimic the minimum aggregator later in Line 9 of the
same algorithm. Eq. 9 corresponds to Line 9 but since
this line only affects propositions and h[a] values do not
need to be stored after execution of this line, we set hu

to zero.
• If x2 = 1, indicating that the node u corresponds to a

proposition, then we get

fa([hu

∥∥∥hN ]) = [x0, x1, x2] (10)

fp([hu

∥∥∥hN ]) = [min(x0,−y0 + 1), x1, x2]. (11)

1As min aggregators conflict with ReLU activation functions
commonly seen in neural networks.

We recall fa corresponds to Line 7 which only affects
h[a] values. Given that we require storing h[p] values
throughout the whole algorithm, fa acts as the identity
function on hu for proposition nodes as seen in Eq. 10.
This is in contrast to fp which acts as the zero function
on hu for action nodes. Eq. 11 corresponds to Line 9
where −y0 is equivalent to the mina∈A,p∈add(a) h[a] =
maxa∈A,p∈add(a)−h[a] term by definition of DLG, agg
and fa acting on action node embeddings.

We append a final layer to the network where we ig-
nore neighbourhood nodes with agg(2L+1) = 0⃗ and
φ(2L+1)([x0, x1, x2]

⊤,hN ) = x0x1. In combination with a
max readout function Φ, this corresponds to computing the
final heuristic value. The above encoding of Alg. 1 has also
been experimentally verified to be correct.

In order to satisfy the neural network component of the
MPNN, we replace the φ(i) for i = 0, . . . , 2L+1 with feed-
forward networks. Noting that we have finitely many layers
we can choose small enough fractions of ε for the universal
approximation theorem for neural networks (Hornik, Stinch-
combe, and White 1989; Cybenko 1989) to approximate the
continuous functions φ(i) whose domain is bounded in the
ball of radius B in order to achieve our result.

The encoding for hadd is the same except we use a sum
aggregator agg =

∑
and readout.

For the case of the other FLG, we note that the hmax and
hadd algorithm for FDR problems and hence FLG graph
representations work in the obvious way by compiling FDR
planning tasks into propositional STRIPS planning task by
treating variable-value pairs in FDR problems as proposi-
tional facts.

Theorem A.2 (MPNNs on grounded graphs are
strictly more expressive than STRIPS-HGN). Let
G ∈ {SLG,FLG}. Given any set of parameters Θ
for a STRIPS-HGN model SΘ, there is a set of parameters
Φ for an MPNN FΦ such that for any pair of planning
tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2), we have
FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair
of planning problems Π1 and Π2 such that there exists Φ
where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2)
for all Θ.

Proof sketch. To show the first part of the theorem, we de-
scribe how to construct an MPNN FΦ acting on SLG and
FLG corresponding to a given STRIPS-HGN (Shen, Tre-
vizan, and Thiébaux 2020) model SΘ such that for any pair
of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2),
we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). First we note that each
STRIPS-HGN hypergraph message passing layer can be em-
ulated by two MPNN message passing layers. We note that
the STRIPS-HGN aggregation function is not permutation
invariant as it requires ordering the messages it receives be-
fore concatenating them and updating the aggregated fea-
ture. This can similarly be done for a MPNN. Another differ-
ence with STRIPS-HGN and MPNNs is the usage of global
features that are updated with each message passing layers.
The MPNN framework can also be extended to make use of
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Figure 8: LLG of problems used in Thm. A.3 (edges be-
tween objects and predicates omitted). Only colours are
known to the WL algorithm, not the node descriptions in the
figure. The only difference between the two graphs lies in
the different edges between the top two layers of the graph
as highlighted by the dashed regions. However, they are in-
distinguishable by the WL algorithm.

global features, for example by appending a virtual node to
the whole input graph, and using different weights for the
message passing functions associated with the virtual node.
Lastly, STRIPS-HGN uses the same weights for each mes-
sage passing layer and this may also be done for an MPNN.

For the second part of the theorem, we note that for
any planning problem Π by definition of STRIPS-HGN,
SΘ(Π) = SΘ(Π+) for all parameters Θ where Π+ is the
delete relaxation of Π. Now consider the STRIPS problem
Π = ⟨P,A, s0, G⟩ with P = G = {p0, p1}, s0 = {p0}, and
A = {a0, a1} where both a0 and a1 have empty precondi-
tion and

add(a0) = {p1} , del(a0) = {a0}
add(a1) = {a1} , del(a1) = ∅.

Then the optimal plan for Π has cost 2, while the optimal
plan cost of its delete relaxation Π+ is 1. There exists a set of
parameters for an MPNN FΦ acting on G ∈ {SLG,FLG}
such that FΦ(G(Π)) = 2 ̸= 1 = FΦ(G(Π+)).

Theorem A.3 (MPNNs cannot learn hadd and hmax on
lifted graphs). Let h ∈

{
hadd, hmax

}
. There exists a pair

of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such
that for any set of parameters Θ for an MPNN we have
FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Proof. Consider the two (delete free) lifted problems P1 =

⟨P,O,A, s(1)0 , G⟩ and P2 = ⟨P,O,A, s(2)0 , G⟩ with
P = {Q(x1, x2),W (x1, x2)}, O = {o1, o2}, s

(1)
0 =

{Q(o1, o2), Q(o2, o1)}, s
(2)
0 = {Q(o1, o1), Q(o2, o2)},

G = {W (o1, o2),W (o2, o1)} and one action schema
A = {a} with ∆(a) = {δ1, δ2}, pre(a) = {Q(δ1, δ2)},
add(a) = {W (δ1, δ2)} and del(a) = ∅.

By definition P1 can be solved with a plan consisting of
a(o1, o2) and a(o2, o1) in either order and the correspond-
ing heuristic values are hmax(s

(1)
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Figure 9: SLG of problems used in the proof of Thm. A.4.
Black edges indicate preconditions and blue edges indicate
add effects.

On the other hand P2 is unsolvable in which case we have
hmax(s

(2)
0 ) = hadd(s

(2)
0 ) =∞.

The graphs are indistinguishable by the WL algorithm
where we colour nodes by mapping their features to the set
of natural numbers for the LLG graphs, given that the set of
possible node features is countable. Note that it is possible to
extend the WL algorithm to deal with edge labelled graphs
by replacing each labelled edge with a coloured node con-
nected to the edge’s endpoints. Fig. 8 illustrates the graph
representations for LLG. Then the result follows by the con-
trapositive of (Xu et al. 2019, Lem. 2) as WL assigns the
same output for both graphs, and hence any MPNN also as-
signs the same output.

Theorem A.4 (MPNNs cannot learn h+ or h∗ with our
graphs). Let h ∈ {h+, h∗} and G ∈ {SLG,FLG,LLG}.
There exists a pair of planning tasks Π1 and Π2 with
h(Π1) ̸= h(Π2) such that for any set of parameters Θ for
an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

Proof. Consider the two (delete free) planning problems
P1 = ⟨P,A1, s0, G⟩ and P2 = ⟨P,A2, s0, G⟩ with P =
{p1, p2, g3, g4}, G = {g3, g4}, s0 = ∅ and action sets
A1 = {a(1)i | i = 1, . . . , 6}, A2 = {a(2)i | i = 1, . . . , 6}
where actions have no delete effects and are defined by

pre(a
(1)
1 ) = ∅, add(a

(1)
1 ) = {p1},

pre(a
(2)
1 ) = ∅, add(a

(2)
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(1)
2 ) = ∅, add(a

(1)
2 ) = {p2},

pre(a
(2)
2 ) = ∅, add(a

(2)
2 ) = {p2},

pre(a
(1)
3 ) = {p1}, add(a

(1)
3 ) = {g3},

pre(a
(2)
3 ) = {p1}, add(a

(2)
3 ) = {g3},

pre(a
(1)
4 ) = {p1}, add(a

(1)
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pre(a
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(2)
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pre(a
(2)
5 ) = {p2}, add(a

(2)
5 ) = {g3},

pre(a
(1)
6 ) = {p2}, add(a
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We have that the minimum plan cost for P1 is 4 by apply-
ing actions a

(1)
1 , a

(1)
2 , a

(1)
3 , a

(1)
5 whereas the minimum plan

cost for P2 is 3 with actions a(1)1 , a
(1)
3 , a

(1)
5 , as seen in Fig. 9.

Both h+ and h∗ return 4 for P1 and 3 for P2.
Colour refinement assigns the same invariant to the graph

representations of P1 and P2 and thus by the contrapositive
of (Xu et al. 2019, Lem. 2), any MPNN assigns the same
embedding to both graphs.

Theorem A.5 (MPNNs cannot learn any approximation of
h∗). Let G ∈ {SLG,FLG,LLG} and c > 0. There exists a
pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such
that for any set of parameters Θ for an MPNN we do not
have |FΘ(G(Π1))− h(Π1)| ≤ c∧|FΘ(G(Π2))− h(Π2)| ≤
c. Furthermore, for any set of parameters we do not have∣∣∣1− FΘ(G(Π1))

h(Π1)

∣∣∣ ≤ c ∧
∣∣∣1− FΘ(G(Π2))

h(Π2)

∣∣∣ ≤ c.

Proof. Let us fix n ∈ N with n > 2. Then we will
construct a pair of planning problems whose optimal plan
costs are 2n − 1 and n2 respectively but are indistin-
guishable by MPNNs by any graph representations G ∈
{SLG,FLG,LLG} of the problems. Thus, we can make
our absolute and relative errors, given by n2 − 2n + 1 and
n2

2n−1 respectively, arbitrary large.
Consider the two (delete free) planning problems given

by P1 = ⟨P,A1, s0, G⟩ and P2 = ⟨O,A2, s0, G⟩ with
P = {p(x, y) | x, y ∈ [n]}, G = {p(n, y) | y ∈ [n]} ⊂
P , s0 = ∅ and actions A1 = {a1(y, z) | y, z ∈ [n]} ∪
A and A2 = {a2(y, z) | y, z ∈ [n]} ∪ A where A =
{a(x, y) | x ∈ [n− 1], y ∈ [n]}. All actions have no delete
effects and their preconditions and add effects are given as
follows

pre(a(1, y)) = ∅, add(a(1, y)) = {p(1, y)} ,
∀y ∈ [n]

pre(a(x, y)) = {p(x− 1, y)} , add(a(x, y)) = {p(x, y)} ,
∀x ∈ [2..n− 1], y ∈ [n]

pre(a1(y, z)) = {p(n− 1, y)} , add(a1(y, z)) = {p(n, y)} ,
∀y, z ∈ [n]

pre(a2(y, z)) = {p(n− 1, z)} , add(a2(y, z)) = {p(n, y)} ,
∀y, z ∈ [n]

where we note that the case n = 2 is given in the proof of
Thm. A.4. We refer to Fig. 10 for the case of n = 3. An
optimal plan for P1 consists of executing all actions a ∈ A
and a1(y, 1) for y ∈ [n]. On the other hand, an optimal plan
for P2 consists only of executing a(x, 1) for x ∈ [n − 1]
followed by a2(y, 1) for all y ∈ [n]. Thus, the optimal plan
costs for P1 and P2 are n2 and 2n− 1 respectively.

As in the previous proof, any graph representations of the
pair of problems for any n are indistinguishable by colour
refinement and hence by MPNNs (Xu et al. 2019, Lem. 2).
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(a) SLG of P1 for n = 3.
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Figure 10: SLGs of problems used in the proof of Thm. A.5
where black edges indicate preconditions and blue edges in-
dicate add effects.


