
The Australian National University
2600 ACT | Canberra | Australia

School of Computing

College of Engineering and
Computer Science (CECS)

GOOSE: Learning Heuristics and
Parallelising Search for Grounded and
Lifted Planning
— 24 pt Honours project (S2/S1 2022–2023)

A thesis submitted for the degree
Bachelor of Science (Advanced) (Honours)

By:

Dillon Z. Chen

Supervisors:

Felipe Trevizan

Sylvie Thiébaux

September 2023

Declaration:

I declare that this work:

• upholds the principles of academic integrity, as defined in the University Academic
Misconduct Rules;

• is original, except where collaboration (for example group work) has been autho-
rised in writing by the course convener in the class summary and/or Wattle site;

• is produced for the purposes of this assessment task and has not been submitted
for assessment in any other context, except where authorised in writing by the
course convener;

• gives appropriate acknowledgement of the ideas, scholarship and intellectual prop-
erty of others insofar as these have been used;

• in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

September, Dillon Z. Chen

ii

https://www.anu.edu.au/about/governance/legislation
https://www.anu.edu.au/about/governance/legislation

Acknowledgements

I would like to acknowledge Felipe Trevizan and Sylvie Thiébaux for their wonderful su-
pervision over the last three semesters. They have provided me with all sorts of remark-
able support and guidance, including but not limited to the wealth of time and integrity
spent on providing feedback for multiple drafts, boundless freedom in my projects bal-
anced by insightful pointers, and funding for attending research conferences abroad. All
of these factors have been instrumental to the success of this project and my growth as a
researcher. I am also grateful for the bountiful amount of computing resources Felipe and
Sylvie have provided me for this project, including access to the Gadi supercomputer,
the planning group computing cluster, and the School of Computing cluster.

I also acknowledge my previous supervisors Pascal Bercher and Qing Wang whose su-
pervision and desire for my success was also indispensable over the course of my research
journey. Lastly, I am indebted to my family’s continuous support and encouragement
throughout my academic pursuits and personal passions.

iii

iv

Abstract

Artificial intelligence can be categorised into two main paradigms: model-free learners
and model-based solvers. Learners aim to learn functions with specified domains and
targets from data and have been popularised by major advancements in deep learning
architectures and hardware. They are able to make quick decisions in various tasks such
as computer vision and natural language processing and are able to handle noisy data
well. However, they struggle at long range reasoning and lack theoretical guarantees for
critical tasks. Solvers on the other hand aim to solve problems modelled by a planning
expert which require long range reasoning with theoretical guarantees. The reasoning
capabilities of solvers come at the expense of computational complexity and difficulty of
leveraging parallelism for hardware such as GPUs. In this thesis, we focus on a class of
solvers in the form of planners, which ‘plan’ by finding a course of actions to taken to
reach a specified goal.

This thesis combines the best of both worlds by taking advantage of the capabilities of
learners to speedup planners for solving large scale reasoning problems. We do so by
introducing our Graph neural networks Optimised fOr Search Evaluation (GOOSE)
framework for learning heuristic functions for guiding search during planning. The two
learning tasks we focus on are learning domain-dependent heuristic functions from small
problems of a given planning domain for use in much larger problems from the same
domain, and learning domain-independent heuristic functions, a form of zero-shot learn-
ing where we learn heuristic functions from a set of domains for use in problems from
unseen domains.

Our contributions can be categorised into four main themes. We model and construct
various, novel graph representations of both grounded and lifted planning tasks for use to
learn heuristics. The construction of such graphs are complemented with theory which
aim to answer the question what domain-independent heuristics can we learn? On the
planning side of our work, we introduce efficient parallelisation techniques for speeding
up heuristic search using learned heuristic functions for planning. Our final contribution
consists of combining all our previous components into GOOSE and evaluating it with
a new and comprehensive set of experiments which sets a new standard for the field of
learning for planning.

v

vi

Table of Contents

1 Introduction 3
1.1 AI, deep learning, and planning . 3
1.2 Learning for planning, planning for learning, and why we need both . . . 4
1.3 Contributions . 5
1.4 Structure of the thesis . 6

2 Background 9
2.1 Planning formalisms . 9

2.1.1 Propositional STRIPS . 10
2.1.2 Finite Domain Representation . 10
2.1.3 Lifted STRIPS . 11
2.1.4 Additional comments . 12

2.2 Heuristic search . 13
2.2.1 Heuristic search algorithms . 14
2.2.2 Heuristic functions . 15
2.2.3 Brief history of heuristic search and extensions 21
2.2.4 Taxonomy of learning heuristic functions 22

2.3 Graph neural networks . 23
2.3.1 Message passing neural networks 24
2.3.2 MPNNs and the Weisfeiler-Lehman algorithm 26
2.3.3 Beyond MPNNs . 28

3 Graph representations 31
3.1 Grounded graphs . 32

3.1.1 STRIPS-HGN hypergraphs as graphs 32
3.1.2 Grounded STRIPS graphs with full information 36
3.1.3 FDR graphs . 38

3.2 Lifted graphs . 39

4 What can we learn? 47
4.1 Lower bounds . 48
4.2 Upper bounds . 51

vii

Table of Contents

4.3 Further discussion . 57
4.3.1 A more refined hierarchy . 57
4.3.2 More powerful GRL techniques . 58

5 Experiments 1: expressivity and generalisability 61
5.1 Setup . 62

5.1.1 Dataset . 62
5.1.2 Model configurations . 63
5.1.3 Feature augmentations . 64
5.1.4 Training pipeline and hyperparameters 64

5.2 Results . 65
5.2.1 Expressivity . 65
5.2.2 Generalisability . 68
5.2.3 Discussion . 70

6 The GOOSE framework 73
6.1 Learning and planning . 73
6.2 Optimising heuristic evaluation . 74

6.2.1 Background of GPU usage and parallelisation in search 74
6.2.2 Parallelised lazy search . 75
6.2.3 Parallelised eager search . 78

7 Experiments 2: inference for search 79
7.1 Benchmark domains . 80

7.1.1 Blocksworld . 80
7.1.2 Ferry . 81
7.1.3 Gripper . 81
7.1.4 Hanoi . 82
7.1.5 n-puzzle . 82
7.1.6 Sokoban . 83
7.1.7 Spanner . 83
7.1.8 VisitAll . 83
7.1.9 VisitSome . 84

7.2 GOOSE setup . 84
7.2.1 Learner . 84
7.2.2 Planner . 85

7.3 Experimental setup . 85
7.3.1 Testing instances . 86
7.3.2 Training pipeline and model selection 86
7.3.3 Baselines . 88

7.4 Results . 89
7.4.1 Blocksworld . 90
7.4.2 Ferry . 93
7.4.3 Gripper . 96

viii

Table of Contents

7.4.4 Hanoi . 99

7.4.5 n-puzzle . 101

7.4.6 Sokoban . 103

7.4.7 Spanner . 106

7.4.8 VisitAll . 109

7.4.9 VisitSome . 112

7.5 CPU vs GPU runtime . 115

8 Related work 119
8.1 Learning heuristics for planning . 119

8.2 Learning generalised policies for planning 122

8.3 Other applications of learning for planning 123

9 Conclusion 125
9.1 Contributions . 125

9.2 Limitations . 126

9.3 Future work . 127

9.3.1 Improving performance . 127

9.3.2 Extensions for more expressive planning 129

9.3.3 Open theoretical questions . 130

9.4 Final remarks . 131

A Graph and dataset statistics 133
A.1 Graph sizes . 133

A.2 Inference dataset information . 134

B Additional results for inference 137
B.1 Best performing model scores . 138

C Additional results for search 139
C.1 Domain-dependent training validation scores 140

C.2 Domain-independent training validation scores 142

C.3 Coverage table – few objects . 144

C.4 Coverage table – many objects . 145

C.5 Coverage plots of runtime and plan quality 146

C.5.1 Blocksworld . 146

C.5.2 Ferry . 148

C.5.3 Gripper . 150

C.5.4 Hanoi . 152

C.5.5 n-puzzle . 154

C.5.6 Sokoban . 156

C.5.7 Spanner . 158

C.5.8 VisitAll . 160

C.5.9 VisitSome . 162

ix

Table of Contents

Bibliography 165

x

List of Tables

2.1 Levels of generality of different heuristic function algorithm taxonomies. . 22

3.1 Various graph representations of planning problems. Deletes indicate
whether the graph representation encodes delete effects or not. 31

5.1 Mean and standard deviation of macro F1 scores (scaled betweeen 0 and
100) for different configurations of graph representations and feature aug-
mentations on subsets of the training and testing datasets. Cells are
shaded blue if the score is greater than 50.0, with higher intensities for
higher values, and shaded red if the score is less than 50.0, with higher
intensities for lower values. 66

7.1 Summary of domains considered, objects whose number can vary, optimal
plan cost if it can be computed in polynomial time or complexity for
computing the optimal plan, and minimal and maximal branching factor
during search. 79

7.2 Varying degrees of difficulty of learning for planning evaluation ranked
from easiest to hardest. 85

7.3 Planning domains used for our evaluation with training, validation and
test set splits. We note that the validation and test sets do not have
any associated ground truth values such as an optimal plan or h∗. The
symbol ∗ indicates overlap with training set, † indicates not all problems
were solved from the description. 87

7.4 Qualitative summary of results on large/unseen problems. Model entries
are of the form α → β indicating that training was done on problems
with up to α objects and a model was able to solve problems with up to
β objects in the given 10 minute timeout. Domain-independent trained
model entries have α = 0 since they have not seen the domain during
training. - indicates no problems could be solved. † indicates problems
could be solved but performance is worse than classical heuristics. 89

7.5 Coverage of solved instances on Blocksworld. The top 3 performing
planners for each row are highlighted, with the best planner in bold. . . . 90

xi

List of Tables

7.6 Coverage of solved instances on Ferry. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 93

7.7 Coverage of solved instances on Gripper. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 96

7.8 Coverage of solved instances on Hanoi. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 99

7.9 Coverage of solved instances on n-puzzle. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 101

7.10 Coverage of solved instances on Sokoban. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 103

7.11 Coverage of solved instances on Spanner. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 106

7.12 Coverage of solved instances on VisitAll. The top 3 performing planners
for each row are highlighted, with the best planner in bold. 109

7.13 Coverage of solved instances on VisitSome. The top 3 performing plan-
ners for each row are highlighted, with the best planner in bold. 112

7.14 Summary of GPU hardware statistics. 117

A.1 Unitary cost domains from 1998-2018 IPCs with corresponding number of
solved instances and states for use in the inference experiments described
in Ch. 5. 135

C.1 Validation metrics of best model with sum readout and domain-dependent
training chosen for each domain. w. loss represents the best weighted
train and validation loss given by Eq. 5.3 140

C.2 Validation metrics of best model with mean readout and domain-
dependent training chosen for each domain. w. loss represents the best
weighted train and validation loss given by Eq. 5.3 141

C.3 Validation metrics of best model with sum readout and domain-independent
training chosen for each domain. w. loss represents the best weighted
train and validation loss given by Eq. 5.3 142

C.4 Validation metrics of best model with mean readout and domain-
independent training chosen for each domain. w. loss represents the
best weighted train and validation loss given by Eq. 5.3 143

C.5 Coverage table of classical heuristics and learned heuristics with sum
readout on planning tasks with few objects. 144

C.6 Coverage table of classical heuristics and learned heuristics with mean
readout on planning tasks with few objects. 144

C.7 Coverage table of classical heuristics and learned heuristics with sum
readout on planning tasks with many objects. 145

C.8 Coverage table of classical heuristics and learned heuristics with mean
readout on planning tasks with many objects. 145

xii

List of Figures

2.1 A Blocksworld instance with a description of a plan, from [Slaney and
Thiébaux, 2001]. This figure is seen again in Ch. 7. 11

2.2 A pair of graphs which WL assigns the same output to. 27

3.1 Information flow of delete relaxation representations DRG and DRGE with
MPNNs and STRIPS-HGNs represented with arrows. Information flow
from global graph features or virtual nodes are omitted. 35

3.2 SDGE subgraph of an action a with pre(a) = {pre1, pre2,pre3}, add(a) =
{add1, add2} and del(a) = {del1,del2, del3}. In the case where a proposi-
tion is a precondition and also in the delete effect, we will have a multiedge
between the proposition and action node. 37

3.3 FDGE subgraph of an action a with pre(a) = {⟨v2, d2,1⟩ , ⟨v3, d3,2⟩} and
eff(a) = {⟨v1, d1,1⟩ , ⟨v2, d2,2⟩ , ⟨v3, d3,1⟩}. 39

3.4 Encodings of predicate arguments with different lifted graph representations. 40

3.5 LDGE subgraph of ground predicates (a) and an action schema (b) with
graph layer descriptions. The underlying graph structure of LDGE is iso-
morphic to that of LDG. 41

3.6 An example of a PE function for T = 2. 44

3.7 Graph representations of the Blocksworld instance described in Lst. 3.1
and 3.2. LDG is omitted as it is structurally the same as LDGE but with-
out edge labels. Graphs on the right have edge labels. Green nodes
correspond to facts true in the current state. Yellow nodes correspond to
goal facts. Orange nodes correspond to grounded or lifted actions. Purple
nodes correspond to predicates. Black, blue and red edges correspond to
preconditions, add effects and delete effects respectively. 46

4.1 Hierarchy of expressivity with graphs from Ch. 3 combined with MPNNs. 47

4.2 LDG of P1 and P2 (edges between objects and predicates omitted). Only
colours are known to the WL algorithm, not the node descriptions in the
figure. The only difference between the two graphs lies in the different
edges between the top two layers of the graph. However, they are indis-
tinguishable by the WL algorithm. 52

xiii

List of Figures

4.3 DRG of P1 and P2 . 53

4.4 DRGE of P1 (left) and P2 (right). Black edges indicate preconditions and
blue edges indicate add effects. 54

4.5 DRGEs of problems used in the proof of Thm. 5 where black edges indicate
preconditions and blue edges indicate add effects. 56

4.6 Instead of computing h∗, we can compute or learn Oα instead. 58

5.1 Training and test split of the IPC dataset. We further construct a val-
idation set from the training set for scheduling the number of training
epochs. 63

5.2 Mean and standard deviation of accuracy per target h∗ value for test
sets with various graph representations and feature augmentations over
5 experiment repeats. The y-axes indicate accuracy (%) and the x-axes
target h∗ value. The vertical red line indicates the interval of the h∗ values
which the model was exposed to during training. Shaded regions indicate
one standard deviation from the mean. 67

5.3 Confusion matrices of predicted and true heuristic values with various
model configurations. Training was done on data with target heuristic
value h∗ ≤ 32 (one third of the way down the rows and columns of the
matrices). The y-axes correspond to the true label, and the x-axes the
predicated label. Both axes are in the range [0, 96] where values increase
down the y-axes and increase from left to right of the x-axes. 69

6.1 Greedy batched heuristic evaluation is not always useful. Each box rep-
resents a node in the queue of the form (α, h, h′) where α is the name of
the state, h is the heuristic of the state and ? if not evaluated yet, and
h′ is the heuristic of the parent node’s state. The priority of the queue is
defined by h′.
(1) The current state of the queue. (2) Batch evaluate the first 4 nodes
in the queue. (3) The successors of node A are inserted into the front of
the queue as their priority is given by h(A) = 3 which is lower than the
priority of any other node in the queue. 76

7.1 A Blocksworld instance with a description of the optimal plan, from [Slaney
and Thiébaux, 2001]. The move action encapsulates some sequence of ac-
tions from {unstack, put-down, pick-up, stack}. 80

7.2 A gripper instance with two balls and a description of the optimal plan,
from [Shen et al., 2020]. 81

7.3 A real life Tower of Hanoi instance, from https://en.wikipedia.org/w

iki/Tower_of_Hanoi. 82

7.4 A 15 puzzle instance, from https://en.wikipedia.org/wiki/15_puzzle. 82

7.5 A spanner instance with 5 spanners, 3 nuts and 3 locations. 83

xiv

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/15_puzzle

List of Figures

7.6 VisitAll (left) vs VisitSome (right). You have to either visit all or some
of the goal locations marked in yellow, starting from some initial state
marked in green. 84

7.7 Cumulative coverage over number of expanded states on seen/small size
Blocksworld instances. Total number of problems: 40. 92

7.8 Cumulative coverage over number of expanded states on unseen/large size
Blocksworld instances. Total number of problems: 90. 92

7.9 Cumulative coverage over number of expanded states on seen/small size
Ferry instances. Total number of problems: 125. 95

7.10 Cumulative coverage over number of expanded states on unseen/large size
Ferry instances. Total number of problems: 90. 95

7.11 Cumulative coverage over number of expanded states on seen/small size
Gripper instances. Total number of problems: 10. 98

7.12 Cumulative coverage over number of expanded states on unseen/large size
Gripper instances. Total number of problems: 18. 98

7.13 Cumulative coverage over number of expanded states on seen/small size
Hanoi instances. Total number of problems: 8. 100

7.14 Cumulative coverage over number of expanded states on seen/small size
n-puzzle instances. Total number of problems: 20. 102

7.15 Cumulative coverage over number of expanded states on unseen/large size
n-puzzle instances. Total number of problems: 50. 102

7.16 Cumulative coverage over number of expanded states on seen/small size
Sokoban instances. Total number of problems: 30. 105

7.17 Cumulative coverage over number of expanded states on unseen/large size
Sokoban instances. Total number of problems: 90. 105

7.18 Cumulative coverage over number of expanded states on seen/small size
Spanner instances. Total number of problems: 75. 108

7.19 Cumulative coverage over number of expanded states on unseen/large size
Spanner instances. Total number of problems: 90. 108

7.20 Cumulative coverage over number of expanded states on seen/small size
VisitAll instances. Total number of problems: 40. 111

7.21 Cumulative coverage over number of expanded states on unseen/large size
VisitAll instances. Total number of problems: 90. 111

7.22 Visualisations of plans returned by GOOSE on VisitSome. The black
circle is the initial location, the green circles the goal locations, and the
plan starts from dark blue and ends at dark red. 113

7.23 Cumulative coverage over number of expanded states on seen/small size
VisitSome instances. Total number of problems: 40. 114

7.24 Cumulative coverage over number of expanded states on unseen/large size
VisitSome instances. Total number of problems: 90. 114

7.25 Distributions of heuristic evaluation time per batch (left) and per sample
(right) on FDG and LDG on the CPU host and GPU device with various
batch sizes. 115

xv

List of Figures

7.26 Distributions of ratio of time spent on memory transfers between CPU
host and GPU device to total heuristic evaluation and memory transfer
runtime on FDG and LDG with various batch sizes. The CPU/1 configu-
ration is omitted as it transfers no data to the GPU. 116

7.27 Distributions of heuristic evaluation time per sample on FDG (left) and
LDG (right) with different batch sizes and GPUs. 117

9.1 A possible SDGE extension to deal with stochastic planning. The figure
illustrates the subgraph of an action a with pre(a) = {pre1, pre2, pre3},
and three probabilistic effects of the form (prob. of activating, add, del)
with eff1(a) = (0.3, {p1} , {p4}), eff2(a) = (0.1, {p1, p5} , ∅), and eff3(a) =
(0.6, {p2, p3} , {p4}). 130

A.1 Box plots of number of nodes for various graph representations. 133

A.2 Box plots of number of edges for various graph representations. 134

A.3 Distribution of samples by their h∗ labels. 134

B.1 Maximum accuracy per target h∗ value over 5 experiment repeats. The
vertical red line indicates the interval of the h∗ values which the model
was exposed to during training. y-axis: accuracy, x-axis: target h∗ value. 138

C.1 Cumulative coverage over runtime on seen/small size Blocksworld in-
stances. Total number of problems: 40. 146

C.2 Cumulative coverage over plan cost on seen/small size Blocksworld
instances. Total number of problems: 40. 146

C.3 Cumulative coverage over runtime on unseen/large size Blocksworld
instances. Total number of problems: 90. 147

C.4 Cumulative coverage over plan cost on unseen/large size Blocksworld
instances. Total number of problems: 90. 147

C.5 Cumulative coverage over runtime on seen/small size Ferry instances.
Total number of problems: 125. 148

C.6 Cumulative coverage over plan cost on seen/small size Ferry instances.
Total number of problems: 125. 148

C.7 Cumulative coverage over runtime on unseen/large size Ferry instances.
Total number of problems: 90. 149

C.8 Cumulative coverage over plan cost on unseen/large size Ferry instances.
Total number of problems: 90. 149

C.9 Cumulative coverage over runtime on seen/small size Gripper instances.
Total number of problems: 10. 150

C.10 Cumulative coverage over plan cost on seen/small sizeGripper instances.
Total number of problems: 10. 150

C.11 Cumulative coverage over runtime on unseen/large sizeGripper instances.
Total number of problems: 18. 151

xvi

List of Figures

C.12 Cumulative coverage over plan cost on unseen/large size Gripper in-
stances. Total number of problems: 18. 151

C.13 Cumulative coverage over runtime on seen/small size Hanoi instances.
Total number of problems: 8. 152

C.14 Cumulative coverage over plan cost on seen/small size Hanoi instances.
Total number of problems: 8. 152

C.15 Cumulative coverage over runtime on unseen/large size Hanoi instances.
Total number of problems: 18. 153

C.16 Cumulative coverage over plan cost on unseen/large size Hanoi instances.
Total number of problems: 18. 153

C.17 Cumulative coverage over runtime on seen/small size n-puzzle instances.
Total number of problems: 20. 154

C.18 Cumulative coverage over plan cost on seen/small size n-puzzle instances.
Total number of problems: 20. 154

C.19 Cumulative coverage over runtime on unseen/large size n-puzzle in-
stances. Total number of problems: 50. 155

C.20 Cumulative coverage over plan cost on unseen/large size n-puzzle in-
stances. Total number of problems: 50. 155

C.21 Cumulative coverage over runtime on seen/small size Sokoban instances.
Total number of problems: 30. 156

C.22 Cumulative coverage over plan cost on seen/small size Sokoban instances.
Total number of problems: 30. 156

C.23 Cumulative coverage over runtime on unseen/large size Sokoban in-
stances. Total number of problems: 90. 157

C.24 Cumulative coverage over plan cost on unseen/large size Sokoban in-
stances. Total number of problems: 90. 157

C.25 Cumulative coverage over runtime on seen/small size Spanner instances.
Total number of problems: 75. 158

C.26 Cumulative coverage over plan cost on seen/small size Spanner instances.
Total number of problems: 75. 158

C.27 Cumulative coverage over runtime on unseen/large size Spanner instances.
Total number of problems: 90. 159

C.28 Cumulative coverage over plan cost on unseen/large size Spanner in-
stances. Total number of problems: 90. 159

C.29 Cumulative coverage over runtime on seen/small size VisitAll instances.
Total number of problems: 40. 160

C.30 Cumulative coverage over plan cost on seen/small sizeVisitAll instances.
Total number of problems: 40. 160

C.31 Cumulative coverage over runtime on unseen/large size VisitAll in-
stances. Total number of problems: 90. 161

C.32 Cumulative coverage over plan cost on unseen/large size VisitAll in-
stances. Total number of problems: 90. 161

xvii

List of Figures

C.33 Cumulative coverage over runtime on seen/small sizeVisitSome instances.
Total number of problems: 40. 162

C.34 Cumulative coverage over plan cost on seen/small size VisitSome in-
stances. Total number of problems: 40. 162

C.35 Cumulative coverage over runtime on unseen/large size VisitSome in-
stances. Total number of problems: 90. 163

C.36 Cumulative coverage over plan cost on unseen/large size VisitSome in-
stances. Total number of problems: 90. 163

1

2

Chapter 1

Introduction

1.1 AI, deep learning, and planning

The concept of artificial intelligence (AI) was introduced by Turing through the Turing
test with the prompt ‘Can machines think?’ One can further trace back the roots of AI
to Alan Turing’s universal computer [Turing, 1937], also known as the Turing machine,
as a second proof to Hilbert and Ackermann’s Entscheidungsproblem conjecture. AI up
to the 1980s was viewed more as fields of programming, computational complexity and
knowledge representation.

Fast forward to the after the 80s and now the 21st century and the view of AI has
shifted into two paradigms as described by Hector Geffner [2018]: learners which ‘learn’
model-free functions with specified domains and targets from data, and solvers which
aim to ‘solve’ problems modelled by a planning expert with robustness and theoretical
guarantees. Learners have been achieving an incredible rate of advancement in both
research and industry, starting from the resurgence of neural networks since the advent
of ImageNet for image classification [Krizhevsky et al., 2012], advancement in computing
power and economics for deep learning [Amodei and Hernandez, 2018], and available data
on the web. In the previous year, we have seen major advances in generative models
such as large language models (LLMs) for seemingly interactive artificial intelligence.
However, learners have a plethora of shortcomings in their current form, as there is no
transparency on why they work, they have few theoretical guarantees and are not robust
to unseen tasks, and they have many issues concerning fairness and bias. Nevertheless,
these are some problems that researchers and engineers in these fields are currently
trying to tackle.

Solvers, or specifically planners as we will consider in this work, reason about the given
model in order to ‘plan’ with the objective of computing sequences of actions to solve
the current task at hand. They are robust and general in the sense that they are

3

1 Introduction

guaranteed to solve any instance of their intended task with perfect accuracy given
enough time and memory. The caveat as stated in the previous sentence is that planning
problems are generally intractable to solve. Furthermore, there is no one state-of-the-art
planner [Helmert and Domshlak, 2009, Seipp et al., 2020, Richter and Westphal, 2010]
which is tractable for all instances [Wolpert and Macready, 1995]. The difficulty arises
from the construction of the planners’ models which are often complex and large in order
to effectively model the problems we would like to solve. Deciding what aspects of the
world we want to model, such as uncertainty in the world and the degree of observability
of our agents, coupled with the curse of dimensionality makes planning a difficult task of
balancing the expressivity and representability. We want our models to be applicable in
the real world, but also they have to be solvable with respect to our computing resources.
Thus, it is no surprise that mainstream learners, which mimic information from data in
order to perform specified one step tasks, are not able to match the reasoning capabilities
of planners [Valmeekam et al., 2022, 2023].

1.2 Learning for planning, planning for learning, and why
we need both

Thus, it is a reasonable idea to combine the two branches of AI to compensate for
each other’s weaknesses. The main method we explore is by leveraging the immense
advancement of deep learning hardware and techniques to alleviate the intractability of
sequential planning. As we discussed, the main weakness of planning is their inherent
computational complexity. Propositional planning, the simplest form of planning, is
PSPACE-complete [Bylander, 1994]. By considering further extensions of planning such
as incorporating uncertainty, more compact formalisms and features to model numerical
values and time, the complexity of planning can become much more difficult. It is also
the case that there is still no convincing algorithm which utilises parallelisation to speed
up domain-independent planning, given that it is accepted that we can no longer expect
exponential advancements in sequential hardware. Thus, researchers are still relying
on studying and improving algorithms rather than advances in hardware in order to
speed up planning. ASNets [Toyer et al., 2018] was a wake up call for the field of
learning for planning. It displayed convincing experimental results on certain planning
domains with respect to classical state-of-the-art algorithms for planning. However,
since ASNets’ inception, there has not been any other convincing learning architecture
that can generalise to solving difficult planning problems outside its training set quickly,
with experiments in the literature limited to solving small problems. This thesis focuses
on developing learners for planners that are competitive on very large problems and are
also optimised for speed.

Although we do not study the topic of planning for learning in this thesis, we also mention
that planning and ideas from planning can conversely help learning. For example, the
main limitations of model free reinforcement learning (RL) are sample inefficiency, where
RL algorithms require a large number of interactions with the world in order to learn

4

1.3 Contributions

anything useful, and the difficulty of designing useful reward functions. Planning and
symbolic action models can be employed with RL techniques [Illanes et al., 2020] in order
to inject some information about the environment such that the learner doesn’t have to
learn the environment from scratch. In computer vision, it is often the case that we
implicitly model the physics and invariant structures of the world into the architectures.
It has also been suggested that we should build artificial intelligence with insights from
cognitive sciences, stating that machines should be able to learn to model the world [Lake
et al., 2016].

Robots can be seen as the closest tangible architecture to artificial intelligence which
combines both learning and planning: where learning is used for sensing information
about the world and planning is used to reason what to do with our available information.

1.3 Contributions

This work focuses on constructing fast models which use learning for planning as well as
providing formal theoretical insights into such work and other methods in the literature.
At the core of the thesis is our proposed Graph neural networks Optimised fOr Search
Evaluation (GOOSE) framework for learning heuristic functions and solving planning
tasks quickly. We categorise our contributions into four main themes:

Modelling

We construct improved, novel graph representations of planning tasks for the goal of
learning for planning by combining graph representation learning techniques such as
graph neural networks. The graphs are also defined with domain-independent learning in
mind, meaning that we can train on data from specified planning domains and perform
inference on unseen planning domains. This work is the first to do so without any
required assumptions on the planning domains we work with.

Theory

On top of defining novel graphs, we provide a comprehensive theoretical analysis of what
we can and can not learn with our GOOSE framework. We identify classes of domain-
independent heuristics GOOSE is able to learn with different graph representations.
The theoretical results are also complemented by a set of experiments for answering
open questions.

Parallelisation

On the planning side of our GOOSE framework, we develop intelligent algorithms for
optimising the runtime of our learned neural network heuristic functions for search with
effective GPU utilisation. This is also a novel contribution that goes beyond naive
algorithms of the flavour of batching as many heuristic evaluations during search which
we identify as a suboptimal technique.

5

1 Introduction

Learning for planning

Our last contribution includes combining all the components of GOOSE for the goal of
learning to solve planning problems quickly. We propose a new standard of rigorous and
comprehensive experiments for the field of learning for planning with which we use to
evaluate GOOSE in comparison to classical planning techniques. This in turn allows us
to transparently identify both strengths and limitations of this work as well as provide
additional insights to our theoretical results.

1.4 Structure of the thesis

In order to present our contributions, we have structured our thesis in the following way:

• Chapter 2 provides the core concepts of planning and graph representation learning
used in this work. On the planning side, we motivate and formalise various planning
representations and discuss heuristic search, the current state-of-the-art for solving
the class of planning problems we are interested in. On the learning side, we focus
on graph representation learning with the assumption that readers are already
familiar with mainstream deep learning concepts such as neural networks and how
they can be trained.

• Chapter 3 presents our first set of novel contributions, namely by formally defining
novel graph representations of planning tasks with domain-independent learning in
mind. They are carefully constructed by building on planning formalisms described
in the background chapter.

• Chapter 4 presents our second set of contributions with a comprehensive theoret-
ical analysis of what we can and can not learn with our graphs in conjunction
with graph representation learning methods. We also identify further optimistic
directions of research to account for theoretical limits we have identified.

• Chapter 5 encapsulates our first set of experiments to support our theoretical
results and complement open questions and discussions from our theory chapter.
This can be seen as the set of experiments focused purely on evaluating the learning
side of this work with learning metrics focused on the target function being learned.

• Chapter 6 introduces the GOOSE framework and also provides our contributions
to the planning side of this work. We develop more intelligent algorithms we
use in order to make our learned neural network heuristic functions feasible and
competitive for practical use.

• Chapter 7 presents the main experimental setup and results which align with the
goal of our thesis: to construct an efficient and practical architecture which lever-
ages learning for planning. We explicitly introduce our GOOSE framework by
combining all the components mentioned in the previous chapters. Then we eval-
uate GOOSE on a diverse set of difficult benchmarks which require our learning

6

1.4 Structure of the thesis

component to generalise from training samples constructed from small planning
instances in order to tackle the curse of dimensionality associated with solving
large problems. These experiments evaluate the effectiveness of the learned heuris-
tic functions during search, as opposed to studying the learning error and other
metrics employed in the first set of experiments.

• Chapter 8 surveys related work in the field of learning for planning, and illustrates
where this work places in the current literature.

• Chapter 9 concludes this work by discussing our main contributions and results,
and identifying promising future work and the dominant open questions and chal-
lenges of the field.

7

8

Chapter 2

Background

In this section, we provide the necessary formal definitions required for our work as
well as additional background and historical notes describing the major directions of
research and state-of-the-art of the respective fields. The three main components we
explore are planning formalisms for representing planning tasks in Sec. 2.1, heuristics
and heuristic search for solving planning problems in Sec 2.2, and graph neural networks
for performing inference tasks on graph structured data in Sec. 2.3.

2.1 Planning formalisms

Here we introduce different formalisms used for representing planning problems. For
our work, we further restrict our focus to the classical setting in which the world is
deterministic, fully observable and states are discrete [Geffner and Bonet, 2013]. The
classical planning model can be explicitly described by its state space, where a state
represents the world at a given point and actions provide us a method of transitioning
between states.

Definition 1 (Planning task). A planning task is a state model Π = ⟨S,A, s0, G⟩ where
S is a set of states, A is a set of actions, where each action a ∈ A is a function a : S →
S ∪ ⊥ with a(s) = ⊥ if the action is not applicable in s, or otherwise a(s) = s′ ∈ S
which is the successor of a state when applying action a in s, and has an associated cost
c(a) ∈ N, an initial state s0, and a set of goal sets G.

A solution or a plan for a planning task is a sequence of actions π = a1, . . . , an where
we define si as the successor state of applying ai in si−1 and we have sn ∈ G. In other
words, a plan is a sequence of valid actions which when executed progresses our initial
state to a goal state. The cost of a plan π is given by c(π) =

∑n
i=1 c(ai). A planning

task is solvable if there exists at least one plan. ■

9

2 Background

In practice, nobody encodes the state space of each planning task explicitly as the size
of the state space of real life problems are generally too large to enumerate and write
in memory. Thus the planning community has constructed various planning formalisms
each with their advantages and disadvantages. In this section we will focus on three of
the main formalisms for pedagogical reasons.

2.1.1 Propositional STRIPS

The simplest representation of a planning task is given in propositional STRIPS in which
states are modelled as a subset of binary facts. Then we can compactly represent the
state space by representing each state as a subset of facts that hold true in the given
state.

Definition 2 (STRIPS planning task). A propositional STRIPS planning task is a tuple
Π = ⟨P,A, s0, G⟩ with P a set of propositions (or facts), A a set of actions, s0 ⊆ P an
initial state and G ⊆ P the goal condition. A state s is a subset of P and is a goal state
if G ⊆ s.

An action a ∈ A is a tuple ⟨pre(a), add(a), del(a)⟩ with pre(a), add(a), del(a) ⊆ P and
add(a) ∩ del(a) = ∅ and has an associated cost c(a) ∈ N. An action a is applicable
in a state s if pre(a) ⊆ s in which case applying a in s results in the successor state
s′ = (s \ del(a)) ∪ add(a). ■

The delete relaxation of a STRIPS problem Π ignores the delete effects on actions and
is defined to be Π+ = ⟨P,A+, s0, G⟩ with A+ = {⟨pre(a), add(a), ∅⟩ | a ∈ A}.

The main advantage of the propositional STRIPS formalism is its simplicity. However,
this simplicity comes with several drawbacks such as large representation sizes when
trying to model certain problems. As a running example, let us consider the canonical
Blocksworld domain. The Blocksworld domain consists of a set of n unique blocks
labelled as integers and a table, where blocks are stacked on each other or sitting on the
table. The goal of the Blocksworld domain is to restack the blocks in order to construct
a certain configuration of towers. Fig. 2.1 illustrates a Blocksworld instance specified by
its initial state and a goal state.

To model a state of the Blocksworld problem in propositional STRIPS, we have at least
n2 propositions (on a b) with a, b ∈ [n] := {1, . . . , n} representing that block a is on
block b, alongside various other propositions. This allows us to represent how blocks on
stacked in the world. However, one may notice for any state that for each a, there is at
most one b such that (on a b) is true. In other words we have many pairs of mutually
exclusive propositions.

2.1.2 Finite Domain Representation

One can reduce the number of location propositions by looking at more compact repre-
sentations of problems such as the Finite Domain Representation (FDR) [Helmert, 2009]

10

2.1 Planning formalisms

Figure 2.1: A Blocksworld instance with a description of a plan, from [Slaney and
Thiébaux, 2001]. This figure is seen again in Ch. 7.

where now a state may be represented by a set of variables, where each variable has its
own finite domain. It originated from the SAS+ formalism [Bäckström and Nebel, 1995]
where the main difference between the two formalisms lies in the existence of prevail
conditions in SAS+ which may be compiled away into FDR. The SAS in SAS+ stands
for Simplified Action Structures [Bäckström and Klein, 1991].

Definition 3 (FDR/SAS+ planning task). An FDR (or SAS+) planning task is a tuple
Π = ⟨V, A, s0, s⋆⟩ where V is a finite set of state variables v, each with a finite domain
Dv. A fact is a pair ⟨v, d⟩ where v ∈ V, d ∈ Dv. A partial variable assignment is a set of
facts where each variable appears at most once. A total variable assignment is a partial
variable assignment where each variable appears at least once. The initial state s0 is a
total variable assignment and the goal condition s⋆ is a partial variable assignment.

Again, A is a set of actions a of the form a = ⟨pre(a), eff(a)⟩ where pre(a) and eff(a)
are partial variable assignments. An action a is applicable in s if pre(a) ⊆ s in which
case applying a in s gives us the successor state s′ = (s ∪ eff(a)) \ {⟨v, d⟩ ∈ s | ∃d′ ∈
Dv, ⟨v, d′⟩ ∈ eff(a) ∧ d ̸= d′}. ■

The delete relaxation of an FDR planning task Π redefines the successor state of applying
a in s by s′ = (s ∪ eff(a)) and allows variables to appear more than once in a state.

Returning to our Blocksworld example, we may represent the configuration of blocks by
variables on a each with the corresponding domain {table} ∪ [n] \ {a} as each block
can be on top of another block or on the table. We note that there exist automatic
methods for converting propositional planning tasks into FDR representation [Helmert,
2009]. Aside from encoding mutexes, FDR representations are crucial for constructing
abstraction heuristics such as pattern database heuristics which solves projections of
problems onto subsets of variables [Edelkamp, 2001, Haslum et al., 2007].

2.1.3 Lifted STRIPS

One issue with the previous representations is that their input size usually grows expo-
nentially with the number of objects depending on the domain of choice. This is a result
of instantiating all possible combinations of propositional facts and actions. For example
in the Blocksworld domain, we have O(n2) actions for both propositional STRIPS and

11

2 Background

FDR formalisms to represent all possible actions for the stack and unstack actions for
stacking/unstacking a block a on top of another block b. In other words, these two
actions have arity 2 as they take two possible arguments and thus representing them all
explicitly means there are O(n2) copies of them. There exist large domains [Masoumi
et al., 2015, Gnad et al., 2019, Lauer et al., 2021] where we have actions with high arity
k or a large number of objects n such that O(nk) is very large. This usually means that
we are not even able to represent the problem in memory.

This motivates a lifted representation which only encodes the first order information of
propositions and actions via predicates and action schema. In fact, this is usually how
planning tasks are encoded as input into planners in the PDDL language. We follow the
notation of [Lauer et al., 2021] for the definition of lifted STRIPS planning tasks.

Definition 4 (Lifted STRIPS planning task). A lifted (STRIPS) planning task is a
tuple Π = ⟨P,O,A, s0, G⟩ where P is a set of first-order predicates, A is a set of action
schema, O is a set of objects, s0 is the initial state and G is the goal condition. A
predicate P ∈ P has a tuple of parameters1 P (x1, . . . , xnP) for nP ∈ N, noting that nP

depends on P and it is possible for a predicate to have no parameters. We say that a
predicate with n parameters is an n-ary predicate. A predicate can be instantiated by
assigning some of the xi with objects from O or other defined variables. A predicate
where all variables are assigned with objects is grounded, and is known as a ground
proposition. The initial state and goal condition are sets of ground propositions.

An action schema a ∈ A is a tuple ⟨∆(a), pre(a), add(a), del(a)⟩ where ∆(a) is a set of
parameter variables and pre(a), add(a) and del(a) are sets of predicates from P instan-
tiated with either parameter variables or objects in ∆(a) ∪ O. Similarly to predicates,
an action schema with n = |∆(a)| parameter variables is an n-ary action schema. ■

An action schema where each variable y ∈ ∆(a) is instantiated with an object is known as
a ground action, or just action. A lifted STRIPS planning task can induce a propositional
STRIPS planning task by grounding all predicates and actions. The definition of action
application on states for lifted planning tasks is the same as in the propositional case.

Because of the more compact representation of lifted planning tasks, we gain a more
expressive formalism. Indeed, solving lifted planning tasks is known to be EXPTIME-
complete [Erol et al., 1995]. This can be compared to the propositional case which is
PSPACE-complete [Bylander, 1994] to solve. Furthermore, it is known from the polyno-
mial time hierarchy [Stockmeyer, 1976] that EXPTIME is strictly harder than PSPACE.
This is in contrast to how it is unknown whether P=NP and/or NP=PSPACE.

2.1.4 Additional comments

Satisficing planning refers to determining whether a planning task is solvable. On the
other hand, optimal planning refers to finding an optimal plan, i.e. a plan with minimal
cost over all plans, for a given planning task which is assumed to be solvable. Both

1One can further define types associated to each variable.

12

2.2 Heuristic search

variants are known to be PSPACE-complete in the propositional case [Bylander, 1994]
by reducing from polynomial space bounded Turing machines. However in practice, op-
timal planning is a much more difficult problem. Satisficing planning for delete relaxed
problems is in polynomial time by simply greedily applying actions until we either can-
not do so anymore or until the goal is reached, noting that plans are bounded by the size
of the number of actions. On the other hand, optimal planning for delete relaxed prob-
lems is NP-complete [Bylander, 1994] by reducing from 3SAT. However, we do not know
whether P = NP or NP = PSPACE yet. Complexity analysis is a good baseline tool for
measuring the expressiveness of planning formalisms and has been done for all sorts of
planning formalism variants and extensions such as for probabilistic planning [Littman,
1997] and hierarchical task network (HTN) planning and its nondeterministic exten-
sions [Erol et al., 1996, Alford et al., 2015, Chen and Bercher, 2021, 2022].

The canonical method for constructing planning tasks as inputs into planners is through
the Planning Domain Definition Language (PDDL). After parsing a PDDL file, plan-
ners usually translate the task into a lifted planning task, followed by an optional step
of grounding it into a propositional STRIPS planning problem and finally converting
it into an FDR planning task. There exist various versions and extensions to model
more expressive domains and features such as making use of conditional and quantified
conditions and effects, state dependent axioms, numeric variables, and time in temporal
planning. We refer the interested reader to [Haslum et al., 2019] for more details on
PDDL and what features it can handle.

2.2 Heuristic search

Heuristic search is a powerful and the de-facto method for solving planning problems,
resulting in the common conception that ‘planning is just search’. Heuristic search
methods generally consist of two core components:

1. a heuristic (value) function, which gives an estimate of the optimal cost to the goal
from any given state, and

2. a heuristic search algorithm which uses a heuristic to guide search and reduce the
number of expansions, hence saving time and memory.

There also exist many complementary methods for improving heuristic search such as
computing mutexes [Helmert, 2006, Alcázar and Torralba, 2015] and symmetries [Pochter
et al., 2011, Abdulaziz et al., 2015, Sievers et al., 2019] to restrict and simplify the
search space through pruning unnecessary states. An important direction of research
in heuristic search is representation of the problem. More specifically, we would like to
work with a representation that is polynomial in the input PDDL [Lauer et al., 2021]
such as the lifted formalism described previously instead of a grounded representation
which may occur an exponential blowup in the input. However, working in the lifted
representation is not a trivial task. In the only known lifted planner [Corrêa et al., 2020],
the generation of successor states is done via conjunctive database queries which is in

13

2 Background

general an NP-hard problem. Nevertheless, this does not rule out the possibility that
there may exist a polynomial time successor state generator.

A heuristic value function or simply heuristic for a problem with state space S has the
form h : S → R≥0 ∪ {∞}. An ∞ value may be assigned to dead ends, states in which
there exist plan. The optimal heuristic h∗ assigns each state s the cost of the optimal
plan of reaching the goal from that state if such a plan exists, else it assigns ∞. An
heuristic is safe if h(s) =∞ implies h∗(s) =∞ for all s ∈ S. An heuristic h is admissible
if h(s) ≤ h∗(s) for all s ∈ S. An heuristic is goal aware if h(g) = 0 for all goal states g.
An heuristic is consistent if it is goal aware and h(s) ≤ c(a) + h(s′) for all s ∈ S, a ∈ A
and s′ = a(s). An heuristic which is consistent is admissible although the converse is
not true. A heuristic h dominates another heuristic h′ if h(s) ≥ h′(s) for all s ∈ S.
Intuitively, higher admissible heuristic value costs result in better performance in A∗

search although this is not a theoretical guarantee [Holte, 2010]. We refer to Sec. 2.2.2
for specific examples of constructing heuristic functions.

2.2.1 Heuristic search algorithms

Heuristic search algorithms utilise a heuristic to decide the order of nodes to expand
during a graph search of the transition graph induced by a planning problem, where a
node holds information about a state in the planning task and also the current partial
plan which takes us to that state from the initial state. The frontier of a heuristic search
algorithm is generally represented by a priority queue and referred to as the open list,
and any node that is not currently in the queue but has been in the queue before is in
the closed list.

The A∗ algorithm is a well known example of a heuristic search algorithm with optimality
and other theoretical guarantees [Pearl, 1984]. Given a search problem, let g be the
function which assigns a node n the cost of the partial plan stored in the node. Our
heuristic function h can evaluate nodes by evaluating the corresponding state. Then each
iteration of A∗ expands a node n in the search frontier with the lowest f(n) = g(n)+h(n)
value. Plans found by A∗ are optimal when h is admissible. Consistent heuristics ensure
that A∗ does not have to re-expand nodes.

Another common heuristic search algorithm is Greedy Best First Search (GBFS) which
pops nodes from the frontier in order of their lowest f(n) = h(n) value. GBFS does not
have any optimality guarantees but as a tradeoff is generally more efficient for satisficing
planning.

Besides these two canonical heuristic search algorithms, there also exist a whole zoo of
improved or alternate heuristic search algorithms. Iterative Deepening A∗ (IDA∗) [Korf,
1985] and Recursive Best First Search (RBFS) [Korf, 1993] can be seen as DFS versions
of A∗ and GBFS respectively, which sacrifice solving time for linear space complex-
ity. Performing DFS lookaheads for GBFS [Stern et al., 2010] and A∗ [Bu et al., 2014]
can reduce the time complexity overhead of purely DFS methods. Best-First Width
Search [Lipovetzky and Geffner, 2017] combines the advantages of the exploitation as-

14

2.2 Heuristic search

pects of heuristic search for guiding search towards the goal and the exploration aspects
of Width-Based Search [Lipovetzky and Geffner, 2012] which aids in avoiding local min-
ima or plateaus in the search space by attempting to guide the planner to explore states
which look different to those that have been explored before with a novelty measure.
Local search methods can also be integrated into GBFS [Xie et al., 2014] as forms of
exploration to deal with such local minima and plateaus.

Bidirectional A∗ [Pohl, 1969] performs two A∗ search algorithms simultaneously, a for-
ward search from the initial state and a backwards search from a specified goal node.
Its advantages are outweighed by its difficult termination criteria for proving optimal-
ity and the need to specify a goal state for planning problems. Symbolic Bidirectional
A∗ [Torralba et al., 2016] combines heuristic search with abstraction heuristics and sym-
bolic search [McMillan, 1993] which reasons over sets of states in order to improve the
termination criterion of bidirectional search.

All the methods described so far are eager search methods which evaluate the heuris-
tic function of a state the moment it is generated. However, there also exists lazy
search [Helmert, 2006, Richter and Helmert, 2009] in which the heuristic evaluation of
a node is delayed until it gets expanded from the search queue. In turn, a node’s value
for the priority queue in search is determined by its parent’s heuristic value. This de-
ferred evaluation of heuristic values sometimes provide a performance boost in solving
speed in cases when there are many more generated nodes than expanded and evaluated
nodes. For reference, we provide the pseudocode of eager and lazy GBFS in Alg. 1 and
2 without node reopenings.

Preferred operators [Hoffmann and Nebel, 2001, Helmert, 2006, Richter and Helmert,
2009] are as the name suggests operators which are preferred and useful in some way
and are often provided alongside the computation of a heuristic value. In eager search,
preferred operators may be used as additional information to guide search by pruning
away successor nodes that are not constructed by the preferred operator. They may also
be used in lazy search with a dual-queue search where one queue stores nodes generated
by preferred operators which results in an additional priority for preferred operators.
The combination of preferred operators and lazy search offers a significant performance
boost over eager search alone [Richter and Helmert, 2009, Corrêa et al., 2020].

2.2.2 Heuristic functions

In this section we survey domain-independent heuristic functions since we are focused on
automation in planning. This is in opposition to domain-dependent heuristic functions
which can be seen as handcrafted heuristics for specific planning problems. An example
of this is using the Manhattan or L1 distance heuristic for pathfinding on grids.

The baseline heuristic function is the zero heuristic h = 0 which provides no information
about states. However, when used in conjunction with A∗ search, we usually define
the baseline to be h(s) = 1 for all non-goal states and h(s) = 0 for goal states. The
reasoning for this is that A∗ only checks whether a state satisfies the goal condition

15

2 Background

Algorithm 1: Eager GBFS

Data: Planning problem ⟨S,A, s0, G⟩; heuristic function h.
1 OPEN← ∅
2 s.closed← ⊥, ∀s ∈ S
3 OPEN.push(s0, 0)
4 while OPEN ̸= ∅ do
5 s← OPEN.popFront()
6 s.closed← ⊤
7 for a ∈ A do
8 if a(s) = ⊥ then
9 continue

10 t← a(s)
11 if t ∈ G then
12 return Extract plan from t

13 if t.closed = ⊥ then
14 OPEN.push(t, h(t))

15 return No solution

when it is popped from the frontier and not when it is generated as a successor. With
the zero heuristic (h = 0), this results in unnecessary node expansions, and with very
bad tie breaking could result in expanding the whole state space. We can constrast this
to breadth first search (BrFS) where the goal condition checked when successors are
generated which is sound and complete for unitary action costs.

Another simple heuristic is the goal count heuristic, hgc, which counts the number of
unachieved propositional goals remaining. Despite its simplicity, it performs very well
on certain domains due to its computation speed and informedness for simple domains.
However, like many of the more informed heuristics we will begin to explore, the goal
count heuristic is defined for the previously discussed planning formalisms and not enu-
merated representations.

The most powerful heuristic is the perfect heuristic h∗ which is the cost of the optimal
plan from any given state. Of course, computing it is infeasible and usually amounts to
solving the planning task by itself all together.

Delete relaxation heuristics

Early work on domain-independent heuristics focused on the delete relaxation of the
problem. We begin with the most powerful delete relaxation heuristic: the perfect delete
relaxation heuristic h+. This is the cost of the optimal delete relax plan from any given
state. One method of computing it involves iteratively solving a minimum cost hitting
set problem for an increasing set of disjunctive action landmarks [Haslum et al., 2012].

16

2.2 Heuristic search

Algorithm 2: Lazy GBFS

Data: Planning problem ⟨S,A, s0, G⟩; heuristic function h.
1 OPEN← ∅
2 s.closed← ⊥, ∀s ∈ S
3 OPEN.push(s0, 0)
4 while OPEN ̸= ∅ do
5 s← OPEN.popFront()
6 s.closed← ⊤
7 s.h← h(s)
8 for a ∈ A do
9 if a(s) = ⊥ then

10 continue

11 t← a(s)
12 if t ∈ G then
13 return Extract plan from t

14 if t.closed = ⊥ then
15 OPEN.push(t, s.h)

16 return No solution

A disjunctive action landmark is itself a set of actions of which at least one contributes
to any plan for a delete relaxed problem.

The hadd and hmax heuristics are some of the earliest domain-independent heuristics
which are computed on the relaxed problem where we achieve every or the most costly
proposition in each subgoal respectively. Their formal definitions are given below and a
naive value iteration method for computing them for propositional STRIPS problem are
given in Alg. 3 and 4. Their computation and definition for FDR problems can be made
in the obvious way by treating variable value pairs as propositions, whereas we refer the
reader to [Corrêa et al., 2021] for the computation of hadd and hmax for lifted STRIPS
problems without grounding.

Definition 5 (hadd/hmax). Let Π = ⟨P,A, s0, G⟩ be a propositional STRIPS problem.
The additive heuristic hadd/hmax is defined by hadd(s) = hadd(s,G) and hmax(s) =
hmax(s,G) where

hadd(s, g) =

0, if g ⊆ s

min
a∈A,p∈add(a)

[c(a) + hadd(s, pre(a))], if g = {p}∑
p∈g

hadd(s, {p}), if |g| > 1.

(2.1)

17

2 Background

and

hmax(s, g) =

0, if g ⊆ s

min
a∈A,p∈add(a)

[c(a) + hmax(s, pre(a))], if g = {p}

max
p∈g

hmax(s, {p}), if |g| > 1.

(2.2)

■

Algorithm 3: Naive hadd

Data: Propositional STRIPS planning task Π = ⟨P,A, s0, G⟩
Result: hadd(s) ∈ N

1 h(0)[p]← 0, ∀p ∈ s0
2 h(0)[p]←∞, ∀p ∈ P \ s0
3 for i = 1, . . . do
4 for a ∈ A do

5 h(i)[a]←
∑

p∈pre(a) h
(i−1)[p]

6 for p ∈ P do

7 h(i)[p]← min
(
h(i−1)[p],mina∈A,p∈add(a) h

(i)[a] + c(a)
)

8 if h(i) = h(i−1) then

9 return
∑

p∈g h
(i)[p]

Algorithm 4: Naive hmax

Data: Propositional STRIPS planning task Π = ⟨P,A, s0, G⟩
Result: hmax(s) ∈ N

1 h(0)[p]← 0, ∀p ∈ s0
2 h(0)[p]←∞, ∀p ∈ P \ s0
3 for i = 1, . . . do
4 for a ∈ A do

5 h(i)[a]← maxp∈pre(a) h
(i−1)[p]

6 for p ∈ P do

7 h(i)[p]← min
(
h(i−1)[p],mina∈A,p∈add(a) h

(i)[a] + c(a)
)

8 if h(i) = h(i−1) then

9 return maxp∈g h
(i)[p]

We note that hmax is an admissible heuristic that is always dominated by h+ and hadd

is inadmissible and dominates h+. The hmax algorithm is an optimistic algorithm which
assumes that reaching the most costly proposition in a set of propositions is sufficient for
achieving all propositions, whereas the hadd algorithm is a pessimistic heuristic which
assumes that propositions are always achieved independently of each other.

18

2.2 Heuristic search

The hFF heuristic [Hoffmann and Nebel, 2001] is an approximation of h+ for unitary
cost problems. The computation of hFF can be summarised in two main steps:

1. A progression phase, where we greedily apply actions at our current state when-
ever possible until we reach our goal condition in the delete free relaxation of the
problem.

2. A regression phase, where actions are extracted backwards from the goal state
corresponding to a delete relax plan.

This first step is akin to unrolling the delete relaxation planning graph of the Graphplan
algorithm [Blum and Furst, 1997], a directed graph for representing a planning task,
with alternating layers between proposition and action nodes. The original intent of
the planning graph in Graphplan is to compute plans for planning tasks and in the
process also stores mutual exclusion relations (mutexes) of pairs of propositions and
actions. However, such mutexes can be ignored in the delete relaxation case [Hoffmann
and Nebel, 2001]. The hFF heuristic described previously is not a well defined heuristic
as it also requires a tie breaking strategy for selecting actions to apply and extract in
both the progression and regression phase. Similarly to hmax and hadd, it is possible to
compute it for lifted planning without grounding [Corrêa et al., 2022].

The set-additive heuristic hSA [Keyder and Geffner, 2008] combines the ideas of hadd

and hFF which encodes the cost of a relaxed plan but is also able to deal with arbitrary
action costs. It differs from hadd as it aggregates and propagates information with a set
union of actions as opposed to the sum of action costs.

Critical path heuristics

The critical path heuristic hm can be seen as a generalisation of hmax which instead of
computing the best cost of reaching a single goal proposition, computes the best cost of
reaching a set of goals of size m ∈ N \ {0}. In this way, hmax = h1.

Definition 6 (hm). Let Π = ⟨P,A, s0, G⟩ be a STRIPS problem and m ∈ N \ {0}. The
critical path heuristic hm is defined by hm(s) = hm(s,G) where

hm(s, g) =

0, if g ⊆ s

min
a∈A,regr(g,a) ̸=⊥

[c(a) + hm(s, regr(g, a))], if |g| ≤ m

max
g′⊂g,|g′|=m

hm(s, g′), if |g| > m

(2.3)

and

regr(g, a) =

{
⊥, if add(a) ∩ g = ∅ or del(a) ∩ g ̸= ∅
(g \ add(a)) ∪ pre(a), else.

(2.4)

■

19

2 Background

From the definition we can see that hm takes delete effects into account and thus is
not classified as a delete relaxation heuristic. One can also notice that hm ≤ hm+1

and furthermore, hm = h∗ for some m ≤ |G| ∈ N. Given a planning problem P , the
hm heuristic can be computed by a dynamic programming approach as an extension of
Alg. 4 or alternatively by computing hmax on a transformation of a problem [Haslum,
2009]. The computation for hm is exponential in m which becomes prohibitive for large
m. In practice, one uses up tom = 2. However, it is more common to use the h2 heuristic
as a preprocessing step by computing invariants to simplify the planning task [Haslum,
2007, Alcázar and Torralba, 2015].

More powerful heuristics: abstractions, cost partitioning and more...

So far we have outlined some baseline heuristics which are still useful today despite
their age, namely hadd and hFF for satisficing planning. However, such heuristics are
inadmissible and thus do not guarantee optimal plans when used in conjunction with
any heuristic search algorithm such as A∗ or GBFS. For the sake of completeness, in this
section we briefly survey some powerful admissible heuristics constructed in the previous
one and a half decade for optimal planning. We will not dwelve into them in much detail
as our work focuses primarily on satisficing planning, and it is also known that highly
accurate admissible heuristics do not necessarily perform better with satisficing search
algorithms such as GBFS [Wilt and Ruml, 2015].

Abstraction heuristics are heuristics which are computed from abstractions of our given
planning tasks: very informally, simplifications of the problem. One of the earliest
abstraction heuristics are pattern databases (PDBs) [Edelkamp, 2001] which are projec-
tions of planning problems to subsets of variables, known as a pattern. The heuristic
computed from a single pattern may not be informative and thus, one usually considers
a combination of patterns as done in the canonical heuristic [Haslum et al., 2007] for a
collection of patterns. One requires that patterns are orthogonal in the sense that no
actions affect variables in both patterns for them to be combined admissibly. Merge and
shrink (M&S) abstractions [Helmert et al., 2007] take a different approach by trying to
construct a single good abstraction by searching over the space of abstractions by merg-
ing pairs of abstractions or shrinking them. It was shown that M&S abstractions are the
most general abstractions in the sense that any abstraction function can be theoretically
represented as an M&S abstraction. Furthermore they can compute h∗ and even in
polynomial time for certain benchmarks. Cartesian abstractions for planning [Seipp and
Helmert, 2013], originating from the model-checking community, also generalise PDBs
and provide more efficient abstraction refinement techniques than M&S.

Cost partitioning is a powerful method for combining n heuristics in an admissible way
by distributing action costs over n copies of a planning problem in an intelligent man-
ner. The method was introduced to planning by computing optimal cost partitionings
for heuristics via linear programs [Katz and Domshlak, 2008]. It has also been used
to theoretically classify various classes of heuristics through cost partitioning compila-
tions [Helmert and Domshlak, 2009] and produced the LM-cut heuristic as an additive

20

2.2 Heuristic search

landmark heuristic dominating hmax. Saturated cost partitioning [Seipp et al., 2020]
is a greedy method for constructing cost partitionings for a sequence of heuristics by
assigning a cost function to the first heuristic in the sequence and allocating the residual
cost function for the remaining heuristics in the sequence. Given that the order of the
heuristics has an impact on the cost partitioning quality constructed in this way, a set
of orders is precomputed with which we take the maximum for each state for evaluation.

2.2.3 Brief history of heuristic search and extensions

Heuristic search has been used for solving planning problems since the advent of the
first International Planning Competition (IPC) in 1998 and the HSP planner [Bonnet
and Geffner, 1998] which combines the hadd heuristic with greedy best first search or
hill climbing for satisficing planning. In the following IPC in 2000, the Fast-Forward
planning system (FF) [Hoffmann and Nebel, 2001] uses a new heuristic hFF during search
and other heuristic search planners significantly outperformed the SAT and Graphplan
based planners. In the 2002 IPC similar conclusions were made with heuristic search
providing the best performance. The 2004 IPC introduced optimal planning tracks and
although the heuristic search methods performed best in the satisficing track, SAT based
planners such as SATPLAN [Kautz et al., 2006] and BlackBox [Kautz and Selman, 1998]
won the optimal track. Similar conclusions about heuristic search and planning as SAT
was made in the 2006 IPC. The 2008 IPC had updated scoring for optimal planning and
the baseline which consisted of A∗ with the zero heuristic won. The winning sequential
track planner was LAMA [Richter and Westphal, 2010] which combines the hFF with
a heuristic for counting unachieved landmarks. Heuristic search began to dominate in
the 2011 IPC and continued to do so in the 2014 and 2018 IPC. We refer to [Torralba
and Croitoru, 2019] for a more detailed overview of the history of the IPC. Nevertheless,
we do note that there has been a resurgence of planning as SAT as a complementary
method to heuristic search with works [Höller and Behnke, 2022] showing where lifted
SAT planning outperforms heuristic search.

Heuristic search is not constrained primarily to classical planning and can also be ap-
plied to all sorts of planning extensions. It has been applied to deal with probabilistic
planning where actions may have multiple sets of effects and associated probabilities.
Heuristic search algorithms for these problems include LAO∗ [Hansen and Zilberstein,
2001] and LRTDP [Bonet and Geffner, 2003]. There also exist refined heuristic functions
which do not simply consider the all outcome determinisation relaxation of the prob-
lem [Trevizan et al., 2017b, 2018, Klößner and Hoffmann, 2021]. Heuristic search can
also be used on constrained stochastic planning by considering the dual space [Trevizan
et al., 2017a]. NAMOA∗ [Mandow and Pérez-de-la-Cruz, 2010] is the de-facto heuristic
search algorithm for planning with multiple objectives and there exist recent work on
heuristic functions which account for the interactions between multiple objectives [Geißer
et al., 2022]. Finally we also have heuristic search algorithms MOLAO∗ and MOLRTDP
and corresponding heuristic functions for planning which combine both probabilities and
multiple objectives [Chen et al., 2023].

21

2 Background

2.2.4 Taxonomy of learning heuristic functions

In this section we had primarily focused on domain-independent algorithms for com-
puting heuristic functions, which we named domain-independent heuristic functions.
However, it is more difficult to classify heuristic function learning methods as either
domain-dependent or domain-independent. This is because learning domain-dependent
heuristic functions, heuristic functions which are learned to do well only on problems for
a specific domain, can be made an automated process as long as we have an automated
method for generating useful training samples and a domain-independent learning algo-
rithm. We name this category of methods for learning domain-dependent heuristics as
domain-independent learning algorithms of domain-dependent heuristics.

This is in contrast to learning methods which are designed to work for only specific
domains. An example of this is learning policies, a function which returns an action
to take in any state, for the Sokoban and travelling salesman problem (TSP) domains
framed as planning with hand coded translators for problems in each domain [Groshev
et al., 2018]. More specifically, the method converts Sokoban states into images for inputs
into convolutional neural networks, and TSP states into graphs for inputs into graph
neural networks. However, it is possible adapt learning policies to learning heuristic
functions. Methods of this category are rare in planning but we name them domain-
dependent learning algorithms of heuristics.

Lastly, it is possible to learn domain-independent heuristic functions, heuristic functions
that are learned with the aim of working well on any domain, even on domains unseen in
the training data. We name this category of methods for learning domain-independent
functions as learning algorithms of domain-independent heuristics and are the most
general methods as we only have to train a model once for use in any number of domains,
whereas the aforementioned methods require training for each domain.

Tab. 2.1 summarises the taxonomies of classical computation and learning of heuristic
functions. Note that learning methods with higher levels of generality subsume methods
with lower levels of generality. Furthermore, generality is usually inversely proportional
to heuristic informedness for search. Our work belongs to the class of learning algorithms
of domain-independent heuristics. Later in Ch. 8, we provide a comprehensive survey of
related work in learning for planning to classify works with the described taxonomy and
emphasise the various contributions of our work.

Table 2.1: Levels of generality of different heuristic function algorithm taxonomies.

high
domain-independent heuristics

learning algorithms of domain-independent heuristics

medium domain-independent learning algorithms of domain-dependent heuristics

low
domain-dependent heuristics

domain-dependent learning algorithms of heuristics

22

2.3 Graph neural networks

2.3 Graph neural networks

Graph neural networks (GNNs) are a neural network framework which can operate on
non-Euclidean data in the form of graphs. Their rise in popularity can be attributed to
the concurrent interest on neural networks due to massively increased compute power,
and the great wealth of graph theory developed throughout history. Moreover, they
are highly applicable given that almost anything can be represented as a graph, with
examples ranging from tangible real life applications such as social networks, molecule
structures, and knowledge graphs, to abstract applications such as helping in solving
combinatorial optimisation and NP-hard problems [Khalil et al., 2017, Li et al., 2018,
Cappart et al., 2021]. We will assume that readers are familiar with mainstream deep
learning concepts such as neural networks and how they can be trained by optimising a
loss function with derivative information which can be computed via backpropagation.

Before looking into GNNs, we first introduce some terminology. In the context of learning
tasks, we define a directed graph to be a tuple ⟨V,E,X,E⟩ where V is a set of nodes,
E ⊆ V ×V is a set of edges, X : V → Rd to be a function representing the node features
of the graph and E : E → Re representing the edge features of the graph. Let n be
the number of nodes of a graph and m the number of edges. In practice, V is a set of
integers, E is represented by a (dense or sparse) matrix, X is represented by a dense
matrix in Rn×d where n is the number of nodes and X[i] is the feature of the node i, and
E is represented by a matrix in Rm×e where E[i] is the feature of the edge with index i
in the sparse representation of E. A graph is undirected if instead we have E ⊆

(
V
2

)
. A

multigraph is the same as a graph except that we may have more than one copy of an
edge. To differentiate unique edges with the same endpoint vertices and to make E well
defined, edges in E now have the form ((u, v), a) where a is an identifier, or in the case
of undirected graphs, ({u, v} , a). Furthermore, for graphs without edge features (e.g. if
the image of E is a singleton set), we may simply notate a graph as ⟨V,E,X⟩.

The neighbourhood of a node u in a graph G is given by N (u) = {v | (v, u) ∈ E}.
Note in the context of directed graphs, this is the set of in-neighbours. The reasoning
for this is because in implementations of graph neural networks, aggregation steps of
neighbourhoods are defined in this way. In other words, information flows in the direction
of the arrows. A graph G′ = ⟨V ′, E′,X′,E′⟩ is a subgraph of a graph G = ⟨V,E,X,E⟩ if
V ′ ⊆ V , E′ ⊆ (V ′ × V ′) ∩ E, X|V ′ = X′ and E|E′ = E′ where f |X denotes the function
f restricted to the domain X.

We first introduce graph neural networks by the message passing neural network (MPNN)
framework [Gilmer et al., 2017] and later discuss extensions of GNNs in the literature.
Note that we do not focus on traditional graph representation learning (GRL) methods
such as spectral methods or graph kernels and refer the interested reader to [Hamilton,
2020] for some of these methods.

23

2 Background

2.3.1 Message passing neural networks

A message passing neural network iteratively updates node embeddings of a graph locally
in one-hop neighbourhoods with the general message passing equation

h(t+1)
u = φ(t)

(
h(t)
u ,□(t)

v∈N (u)f
(t)
(
h(t)
u ,h(t)

v , e(t)v,u

))
(2.5)

where in the t-th iteration or layer of the network, h
(t)
u ∈ RF (t)

is the embedding of node

u, with h
(0)
u = X[u], and e

(t)
v,u ∈ RD(t)

is the feature of the edge which points from v to
u. We have that φ(t) and f (t) are arbitrary almost everywhere differentiable functions
and □(t) usually a differentiable permutation invariant function acting on sets of vectors
such as sum, mean or component wise max.

In the case where we operate on graphs without edge features as will be the case for the
majority of our work, the equation can be simplified to be

h(t+1)
u = φ(t)

(
h(t)
u ,□(t)

v∈N (u)f
(t)
(
h(t)
u ,h(t)

v

))
. (2.6)

In order to satisfy the ‘neural network’ component of an MPNN, it is common that φ
or f has learnable parameters, for example φ can be given by a feed forward network.

In order for an MPNN to produce a graph representation for an input, it is then common
to pool all the node embeddings after a number of message passing updates with a graph
readout function Φ which is again usually given by a differentiable permutation invariant
function. Alg. 5 outlines the general MPNN framework for graphs which exhibit only
node features.

Algorithm 5: Message Passing Neural Network

Data: Graph G = (V,E), node features X, number of layers L, graph readout
function Φ, aggregation functions □(t) and multi-variable functions φ(t), f (t)

for t = 1, . . . , L.
Result: Graph embedding hG.

1 h
(0)
u ← X[u], ∀u ∈ V

2 for t = 0, . . . , L− 1 do

3 h
(t+1)
u = φ(t)

(
h
(t)
u ,□(t)

v∈N (u)f
(t)
(
h
(t)
u ,h

(t)
v

))
, ∀u ∈ V

4 hG ← Φu∈V
(
h
(L)
u

)
5 return hG

A canonical example of an MPNN is the Graph Convolutional Network (GCN) [Kipf
and Welling, 2017] with update equation given by

h(t+1)
u = σ

(
W(t)

∑
v∈N (u)∪{u}

h
(t)
v√

|N (u)| |N (v)|

)
(2.7)

24

2.3 Graph neural networks

where if h
(t)
v ∈ Rd2 and h

(t+1)
u ∈ Rd1 , then W(t) ∈ Rd1×d2 is a matrix with learnable

parameters, and σ : R → R is a nonlinear activation function usually given by the
sigmoid or ReLU function. The GCN update equation is motivated by graph spectral
theory and uses the normalised graph Laplacian to update node embeddings by local
averages. GCN performs well on transductive tasks where the graph structure is fixed,
for example by predicting hidden node labels using other shown node labels on the same
graph as training. However, they only tend to perform well on homogeneous graphs,
graphs where neighbouring nodes share similar labels. The class of graph neural networks
which are motivated by spectral methods such as GCN and ChebNet [Defferrard et al.,
2016] are commonly referred to as spectral GNNs.

Another example is the Graph Attention Network (GAT) [Velickovic et al., 2017] which
leverages the multi-head attention mechanism [Vaswani et al., 2017] for dealing with
variable size inputs and is one of the foundations for the state-of-the-art models for NLP
tasks. In the case of graphs, node neighbourhoods are the variable size inputs. The
update equation is given by

h(t+1)
u =

K∥∥∥
k=1

σ

(∑
v∈N (u)

α(k,t)
u,v W(t)h(t)

v

)
(2.8)

where as previously, h
(t)
u ∈ Rd2 ,h

(t+1)
u ∈ Rd1 ,W(t) ∈ Rd1×d2 , σ : R → R a nonlinear

activation function,
∥∥ denotes vector concatenation, and α

(k,t)
u,v ∈ R are attention weights

given by

α(k,t)
u,v = softmaxv(e

(k,t)
u,v) =

exp(e
(k,t)
u,v)∑

w∈N (u) exp(e
(k,t)
u,w)

(2.9)

which normalises with the softmax function the attention coefficients e
(k,t)
u,w ∈ R of neigh-

bouring nodes defined by

e(k,t)u,w = σ(a(k,t)
T
[W(t)hu∥W(t)hw]) (2.10)

which in turn are each parameterised by a scoring vector a(k,t) ∈ R2d2 . Intuitively, GAT
is able to perform better in learning tasks with more heterogenous graphs in which
node neighbours are diverse in their features and labels due to the multi-head attention
mechanism for selecting which features of neighbouring nodes are useful for updating
embeddings, as opposed to the smoothing done by normalisation in GCN. However, they
take significantly more time to train.

The final MPNN we cover is the Graph Isomorphism Network (GIN) [Xu et al., 2019]
whose update equation is defined by

h(t+1)
u = MLP(t)

((
1 + ε(t)

)
h(t)
u +

∑
v∈N (u)

h(t)
v

)
(2.11)

25

2 Background

where again h
(t)
u ∈ Rd2 ,h

(t+1)
u ∈ Rd1 , ε(t) ∈ R is a learnable parameter, and MLP(t) :

Rd2 7→ Rd1 denotes a multi-layer network generally implemented with one hidden layer.
GIN belongs to the class of GNNs known as spatial GNNs which are motivated by local
graph algorithms and convolutions, alongside GAT and GraphSage [Hamilton et al.,
2017]. Spatial GNNs perform better on inductive tasks such as graph classification
where input data have varying graph structure and size. The motivation for GIN is
based on the Weisfeiler-Lehman algorithm for the graph isomorphism problem as we
shall now discuss.

2.3.2 MPNNs and the Weisfeiler-Lehman algorithm

The graph isomorphism problem asks whether two given graphs are isomorphic. In other
words, given G = (V,E), H = (V ′, E′), does there exist a bijection φ : V → V ′ such that
(u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E′? The problem is in NP but it is not known
whether it is NP-complete or whether there is a polynomial time algorithm for solving
it. Thus, it usually belongs to its own complexity class GI.

The colour refinement algorithm or WL algorithm is an approximation for solving the
problem by computing invariants for the graph. We refer the reader to [Cai et al., 1992]
for a survey of approximation bounds. The algorithm is described in Alg. 6 and takes in
a graph and returns a graph invariant with a multiset of integers representing colours.
The main idea of the algorithm is to iteratively update the colour of each node by hashing
the colours of the node itself and the multiset of nodes in its neighbourhood until the
colours stabilise. This occurs in at most |V |− 1 iterations and the bound is tight [Kiefer
and McKay, 2020].

Algorithm 6: Colour Refinement

Data: Graph G = (V,E) and an injective hashing function φ which maps a tuple
of an integer and multiset of integers to an integer.

Result: Multiset of integers.
1 c(0)(v)← 0,∀v ∈ V
2 for i = 1, . . . do

3 c(i)(v)← φ
(
c(i−1)(v),

{{
c(i−1)(u) | u ∈ N (v)

}})
, ∀v ∈ V

4 if c(i) = c(i−1) then

5 return
{{
c(i)(v) | v ∈ V

}}

An example of a set of graphs which the colour refinement algorithm cannot distinguish
are k-regular graphs whose nodes share the same degree k where the algorithm converges
in one step. Fig. 2.2 illustrates the canonical pair of graphs which the WL algorithm
cannot distinguish given that the algorithm sees the neighbourhood of each node in one
graph as isomorphic to a node in the other.

So how does the WL algorithm relate to MPNNs and why does it matter? Firstly, one

26

2.3 Graph neural networks

Figure 2.2: A pair of graphs which WL assigns the same output to.

can notice that the core ideas of the WL algorithm and MPNN are the same: both
algorithms perform iterative updates on the information of each node on the graph
based on its neighbours. Lem. 1 provides us a formal statement which tells us that the
expressiveness of an MPNN is upper bounded by the WL algorithm. This in turn gives
us a tool to measure what graphs that MPNNs cannot learn.

Lemma 1 (MPNNs are as most as powerful as colour refinement [Xu et al., 2019]). Let
G1 and G2 be any two non-isomorphic graphs. If an MPNN maps G1 and G2 to two
different embeddings, colour refinement assigns different invariants for G1 and G2.

Colour refinement is known as a unique case of the general class of Weisfeiler-Lehman
algorithms or k-WL algorithms [Cai et al., 1992] which iteratively update the colours
of k-tuples of nodes i = (i1, . . . , ik) ∈ V k. Thus, colour refinement is otherwise known
as the 1-WL algorithm. In the learning community, the k-WL algorithm usually known
as the k-FWL algorithm [Morris et al., 2019, 2020] and the k-WL algorithm refers to
a different procedure. Neighbourhoods for the k-FWL and k-WL algorithm are defined
by

NWL
j (i) =

{
(i1, . . . , ij−1, u, ij+1, . . . , ik) | u ∈ [n]

}
(2.12)

NFWL
u (i) =

(
(u, i2, . . . , ik), (i1, u, . . . , ik), . . . , (i1, . . . , ik, u)

)
(2.13)

and corresponding colour refinement updates are given by

WL : c(l)(i)← φ
(
c(l−1)(i),

(
{{ζ l−1(j) | j ∈ NWL

j (i)}} | j ∈ [k]
))

(2.14)

FWL : c(l)(i)← φ
(
c(l−1)(i),

{{
(ζ l−1(j) | j ∈ NFWL

u (i)) | u ∈ [n]
}})

. (2.15)

We also know that 1-WL distinguishes the same graphs as 2-WL, and that for k > 1,
k-FWL distinguishes the same graphs as k− 1-WL. Furthermore, the k-FWL algorithm
is able to count substructures representable by k variable first order logics [Cai et al.,

27

2 Background

1992]. The result has been extended to GNNs [Barceló et al., 2020] and has been used to
prove that it is possible to learn optimal policies for certain tractable planning domains
which can be described using 2-variable counting logic [Staahlberg et al., 2022b].

2.3.3 Beyond MPNNs

One factor limiting the expressive power of MPNNs as we saw in Lem. 1 is their local
update equation which means that a node’s features rely only on the nodes in its k-hop
neighbourhood in a k-layer MPNN which in turn prevents models from learning overall
topological features of input graphs.

We are interested in expressive GNNs given that we are focused on applying them
to learn methods for solving hard problems, such as planning whose simplest form in
the propositional representation is PSPACE-complete [Bylander, 1994]. Specifically as
we will see later, some graph representations and properties of planning problems are
indistinguishable by simple MPNNs, i.e. an MPNN may output the same embedding for
two semantically different planning problems.

Thus for the remainder of this subsection, we briefly discuss directions for building
expressive GNNs whose models are founded on both theoretical and empirical results
for graph representation learning.

Higher order GNNs

As discussed previously, there exists a generalisation of the colour refinement algorithm
known as the k-WL algorithm which performs colour refinement on k-tuples of nodes
as opposed to single nodes. There have been several works focused on building GNNs
motivated by the k-WL algorithm [Morris et al., 2019, Maron et al., 2019, Morris et al.,
2020, 2021a,b] but these generally come at a large computational and memory cost,
exponential in k (i.e. O(nk)), and may not offer significant or even negative performance
benefits on specific datasets [Dwivedi et al., 2020].

Injecting additional features

We may inject some additional precomputed information from the structure of the
graph that a GNN cannot implicitly learn to aid in prediction. For example, it is
known that cycles in molecular graphs are correlated to the outputs such as in the
ZINC dataset where cycle counts are correlated with the target constrained solubility
attribute of molecules [Irwin et al., 2012]. This motivates works which inject graph sub-
structures [Bouritsas et al., 2022] and patterns [Barceló et al., 2021] into nodes. Overlap
subgraph information can also be injected as edge features [Wijesinghe and Wang, 2022].

A complementary method is to inject random features [Sato et al., 2021, Abboud et al.,
2021], with the intuition [Sato, 2020] being that nodes are able to distinguish other
nodes in the receptive fields of the message passing scheme of a GNN and thus are able
to distinguish substructures such as cycles that MPNNs cannot. Although this is a

28

2.3 Graph neural networks

simple method to implement with no computational overhead, generalisation to unseen
graphs is poor.

Another method is to add distance encoding or positional encodings to nodes, similarly
to what is done for Transformers [Vaswani et al., 2017]. One motivation for this is that
graph neural networks may see the receptive field of two nodes in a graph as isomorphic
but the two nodes may have different contributions to the overall graph. The method
of considering distance or positional encodings of nodes has been done in the context of
extending transformers to graphs [Dwivedi and Bresson, 2020] and encoding distances
of nodes to a given set of target nodes in a graph [Li et al., 2020]. There have also
been methods for learning distance information [You et al., 2019, Dwivedi et al., 2022].
Another natural method which generalises positional encoding of Transformers is by
using graph Laplacian eigenvectors [Belkin and Niyogi, 2003] which has been shown to
improve performance on various benchmarks [Dwivedi et al., 2020].

Improving neighbourhood expressivity

A weakness of MPNNs is their simple local updates in which structure of node neighbour-
hoods are lost when they are aggregated and compressed with a permutation invariant
function. The individualisation of nodes as done in ID-GNNs [You et al., 2021] is mo-
tivated by the fact that the computation tree of an MPNN cannot detect when the
same node appears again and hence prevents us from detecting cycles. However, the
method incurs an overhead by running a MPNN on each node of the graph such that
the authors provide a fast version with the same complexity as MPNNs by injecting
additional node information. This idea is not new in the GNN literature and has been
used before to construct fast graph isomorphism solvers [McKay and Piperno, 2014].
GNN-AK [Zhao et al., 2022] and Nested GNN [Zhang and Li, 2021] propose to run
an additional MPNN on the neighbourhood of each node instead of a shallow update
and aggregate function. Again, this results in additional computation overhead so the
authors of GNN-AK propose dropout on subgraphs. G3N [Wang et al., 2023] takes an
orthogonal approach to k-WL algorithms by aggregating higher order objects within
each node’s neighbourhood to better compute local structural information without the
prohibitive computation overhead of k-WL algorithms.

29

30

Chapter 3

Graph representations

In this chapter, we begin our journey of constructing our GOOSE architecture by devel-
oping various novel graph representations of planning tasks. The graphs are constructed
with domain-independent heuristic function learning in mind, with the motivation that
we want our learning models to generalise over diverse tasks. In order to do so, we
require encoding the full structure of planning tasks into our graphs.

This is in contrast to what is done in various other works in the learning for planning
literature. More specifically, virtually all works which use graph representation learning
focus on domain-dependent learning and do not encode the action schema into the
structure of the graphs. They either implicitly learn the transition structure of planning
tasks through the optimisation of a loss function or construct different set of weights
and parameters corresponding to different various action schema. Tab. 3.1 summarises
the graph representations for domain-independent learning that we study.

Table 3.1: Various graph representations of planning problems. Deletes indicate whether
the graph representation encodes delete effects or not.

Graph New in this work Lifted Deletes Edge labels Undirected

DRG ✓ ✗ ✗ ✗ ✗

DRGE ✓ ✗ ✗ ✓ ✓

SDG ✗ [Shleyfman et al., 2015] ✗ ✓ ✗ ✗

SDGE ✓ ✗ ✓ ✓ ✓

FDG ✗ [Pochter et al., 2011] ✗ ✓ ✗ ✓

FDGE ✓ ✗ ✓ ✓ ✓

ASG ✗ [Sievers et al., 2019] ✓ ✓ ✗ ✗

LDG ✓ ✓ ✓ ✗ ✓

LDGE ✓ ✓ ✓ ✓ ✓

31

3 Graph representations

We will use the definition and notation of a graph defined in Sec. 2.3 and further define
a hypergraph in order to theoretically compare our work to STRIPS-HGN [Shen et al.,
2020]. A hypergraph is a tuple ⟨V,E,X,E⟩ where again V is a set of nodes, E is a set
of hyperedges (A,B) where A,B ⊆ V are non-empty subsets of nodes, X : V → Rd are
the node features and E : E → Re are the hyperedge features.

For simplicity, we assume the planning tasks we work with have unit action costs. This
can also be done via compilation schemes which may introduce many additional actions
and predicates relative to the action cost. However, we may also extend our framework
to deal with general action costs by appending the action cost to features of action nodes.
Encoding conditional action costs is not as straightforward or obvious.

3.1 Grounded graphs

In this section, we will look at graph representations of grounded STRIPS problems.
This will be done in two steps. Firstly we will construct a representation analogous
to the delete relaxation hypergraph constructed for STRIPS-HGN [Shen et al., 2020]
and show that there exists a MPNN which can theoretically match the performance of
STRIPS-HGN. The main motivation for doing this is so that we can shift our attention
to graphs rather than hypergraphs, given that graphs are notationally and intuitively
simpler to work with and do not have any clear disadvantage compared to hypergraphs
for our setting. Following this we then move on to construct more expressive graphs
which subsume the hypergraph definition from STRIPS-HGN.

3.1.1 STRIPS-HGN hypergraphs as graphs

To begin, let us define a natural graph representation of delete relaxed grounded STRIPS
problems. The idea is that directions of edges represent information flow of action
application and proposition activation. Features encode whether nodes represent either
propositions or actions, and also whether a proposition is activated in the input state
and/or is a goal condition.

Definition 7 (Delete relaxation graph). The delete relaxation graph (DRG) of a propo-
sitional STRIPS problem Π = ⟨P,A, s0, G⟩ is the graph DRG(Π) = ⟨V,E,X⟩ with

• nodes V = P ∪A

• edges E = {(p, a) ∈ P ×A | p ∈ pre(a)} ∪ {(a, p) ∈ A× P | p ∈ add(a)}, and

• feature map X : V → R4 defined by

p 7→ OH(proposition) + OH(activated?)(p) + OH(goal?)(p) if p ∈ P

a 7→ OH(action). if a ∈ A

We define OH(desc) as a one hot encoding of an enumeration of the description
desc. For example for this definition we have the set of descriptions {proposition,

32

3.1 Grounded graphs

activated, goal, action} which we enumerate such that proposition is assigned 0,
activated is assigned 1 and so on. Then OH(proposition) is a vector of size equal
to the number of descriptions and is given by [1, 0, 0, 0] with the 0-th coordinate
assigned to 1.

We further define conditional one hot encoding functions as follows:

OH(activated?)(p) =

{
OH(activated), if p ∈ s0,

0⃗, otherwise,

OH(goal)(p) =

{
OH(goal), if p ∈ G,

0⃗, otherwise.

Note that (u, v) ∈ E ⇐⇒ (v, u) /∈ E as we assume pre(a) ∩ add(a) = ∅ which we can
enforce with a preprocessing step. ■

We can view the DRG as the unrolled planning graph of the Graphplan algorithm for the
delete relaxation of a problem where facts point to actions they are a precondition of,
and actions point to its add effects. However, one drawback of the above representation
is that we have directed edges which limit the flow of information when used with an
MPNN. The next chapter in Ch. 4 provides an illustrative example of the importance of
information flow.

If we allow ourselves to define edge labels and use MPNNs which account for edge features
or labels, we can construct a slightly more expressive graph for the task of inference.
The idea is that we no longer require edge directions to encode whether a proposition is
a precondition or add effect of an action as this can be done with edge labels instead.

Definition 8 (Edge labelled delete relaxation graph). The edge labelled delete relaxation
graph (DRGE) of a propositional STRIPS problem Π = ⟨P,A, s0, G⟩ is the undirected
graph DRGE(Π) = ⟨V ′, E′,X′,E′⟩ where

• V ′ = V ,

• E′ = {{u, v} | (u, v) ∈ E},

• X′ = X,

• E′ : E′ → {pre, add} where E′(e) = pre if e = {p, a} with p ∈ pre(a) otherwise
E′(e) = add,

and V , E, and X are the objects defined in the delete relaxation graph DRG(Π) =
⟨V,E,X⟩. ■

To understand how our definitions so far are related to the STRIPS-HGN framework,
we define the underlying hypergraph structure used for STRIPS-HGN. We refer to their
implementation for the features1. However, Shen et al. [2020] mentioned in their paper

1Found at https://github.com/williamshen-nz/STRIPS-HGN.

33

https://github.com/williamshen-nz/STRIPS-HGN

3 Graph representations

that additional precomputed features can be appended such as encoding whether a
proposition or action node is a landmark which may also be done similarly in our context.

Definition 9 (Delete relaxation hypergraph [Shen et al., 2020]). The delete relaxation
hypergraph (DRH) of a propositional STRIPS problem Π = ⟨P,A, s0, G⟩ is the hyper-
graph DRH(Π) = ⟨V,E,X,E⟩ with

• V = P ,

• E = {(pre(a), add(a)) | a ∈ A},

• X : V → R2 defined by X(p) = [i, j] where i = 1 if p ∈ s0 else 0, and j = 1 if j ∈ G
else 0,

• E : E → R2 defined by2 X(a) = [|pre(a)| , |add(a)|]. ■

Next, we briefly describe the update function of the hypergraph network architecture.
In each iteration, we keep track of 3 sets of vectors: a global feature vector u which is
analogous to a virtual node, a set of node feature vectors vi for each node i ∈ V , and
a set of hyperedge feature vectors ek for each hyperedge k ∈ E. Then these features
are iteratively updated L times with the same HGN-block (message passing layer) with
update functions φe, φv and φu by

e
(t+1)
k = φe(e

(t)
k ,R

(t)
k ,S

(t)
k ,u(t)) (3.1)

v
(t+1)
i = φe(e

(t+1)
i ,v

(t)
i ,u(t))

u(t+1) = φe(e(t+1),v(t+1),u(t))

where Rk = {vj | j ∈ Rk} denotes the vectors of the receivers3 Rk of hyperedge k and
Sk = {vj | j ∈ Sk} the senders4 Sk. The vectors with bars over them denote aggregated
vectors given by

e
(t+1)
i = □e→v({e(t)k | i ∈ Rk}) (3.2)

e(t+1) = □e→u({ek | k ∈ E})
v(t+1) = □v→u({vi | i ∈ V })

where □α are permutation aggregation functions with subscripts α marking possibly
different functions. An important point to recognise in the definition of the STRIPS-
HGN block is that the update function φe takes in two sets Rk and Sk. However, φ

e is
defined by ordering the vectors in Rk and Sk by their corresponding proposition names
and concatenating them alongside ek and u before feeding them into an MLP. To deal
with variable sized sets, STRIPS-HGN assumes an upper bound on the size of Rk and
Sk and deals with smaller sets by padding with zeros. The main takeaways from this
construction are that STRIPS-HGN:
2The cost of actions is also encoded but this is excluded due to our assumption of unit action costs,
which also the case for STRIPS-HGN.

3Add effects of the action corresponding to the hyperedge.
4Preconditions of the action corresponding to the hyperedge.

34

3.1 Grounded graphs

a

pre1

pre2

pre3

add1

add2

(a) DRG & MPNN

a

pre1

pre2

pre3

add1

add2

(b) STRIPS-HGN

a

pre1

pre2

pre3

add1

add2

(c) DRGE & MPNN

Figure 3.1: Information flow of delete relaxation representations DRG and DRGE with
MPNNs and STRIPS-HGNs represented with arrows. Information flow from
global graph features or virtual nodes are omitted.

• is not permutation invariant to renaming of propositions, which may increase
domain dependent heuristic performance but limits its generalisation power over
multiple domains, and

• assumes a maximum size of action preconditions and effects, meaning that it
may discard information of certain domains when performing domain-independent
training and evaluation.

Fig. 3.1 illustrates the direction of information flow of STRIPS-HGN (with global fea-
tures omitted) compared to MPNNs acting on DRG and DRGE, where we note that
Eq. 3.1 provides additional information flow in STRIPS-HGN over DRG while Eq. 3.2 is
the cause for restricted information flow in comparison to DRGE.

With the definition of the core components of the STRIPS-HGN architecture complete,
we can formalise how it is possible to compile STRIPS-HGN into a simpler framework
acting on graphs and not hypergraphs. Given a set of parameters ΘH , we denote
FSTRIPS-HGN
ΘH

a STRIPS-HGN model initialised with these parameters which takes in
as input a planning task and outputs a heuristic value.

Proposition 1. Given a STRIPS-HGN instantiation FSTRIPS-HGN
ΘH

, there exists a set of
parameters ΘG for a non permutation-invariant MPNN with a virtual node FΘG

such
that for all planning tasks Π = ⟨P,A, s0, G⟩ we have FΘG

(DRGE(Π)) = FSTRIPS-HGN
ΘH

(Π).

Proof sketch. The main idea of the proof is that the information flow in STRIPS-HGN
is weaker than that of an MPNN operating on DRGE as illustrated in Fig. 3.1. The
virtual node is required for an MPNN to emulate the global feature u in STRIPS-HGN.
We note that the MPNN will require double the number of layers of STRIPS-HGN to
mimic the hypergraph message passing architecture in this way. We can also encode an
aggregation function for the MPNN which mimics the one in STRIPS-HGN, noting that
it is not permutation-invariant due to the sorting and concatenation of neighbouring
nodes. The aggregation function can also be crafted to encode node degrees to mimic
the encoded node features of STRIPS-HGN. Thus, we have that an MPNN acting on
DRGE can mimic any initialisation of STRIPS-HGN due to its stronger information flow
and equivalent feature information.

35

3 Graph representations

3.1.2 Grounded STRIPS graphs with full information

One caveat of the STRIPS-HGN architecture is that it doesn’t encode the full informa-
tion of the input planning problems. Namely, it ignores delete lists. This is restrictive
in both its expressivity and generalisation capabilities given that it discards useful in-
formation of the structure of the problems. Furthermore, since it is trained on optimal
heuristic values, it may overfit on unnecessary structure of the hypergraphs to account
for the missing information. Thus in this section we look at graphs which do not discard
information of our planning problems, some which we modify from the literature and
others which we construct to better fit our learning task.

A graph representation for grounded STRIPS problems already exists, namely the
STRIPS problem description graph [Shleyfman et al., 2015]. It was originally used
to study which classical heuristics were invariant under symmetries in the planning task.
We modify the definition of the STRIPS problem description graph with node features
and additional edges marked bold below to better fit our learning framework and theory
but name it in the same way. We also note that there is a different problem description
graph for FDR problems [Pochter et al., 2011] which we will explore shortly.

Definition 10 (STRIPS problem description graph [Shleyfman et al., 2015]). The prob-
lem description graph (SDG) of a propositional STRIPS problem Π = ⟨P,A, s0, G⟩ is the
graph G = ⟨V,E,X⟩ with

• V = A ∪
⋃

p∈P {p, pT , pF }

• E =
⋃

p∈P {(p, pT), (p, pF), (pF,pT)} ∪
⋃

a∈A(E
pre
a ∪ Eadd

a ∪ Edel
a) with

– Epre
a =

{
(pT , a) | p ∈ pre(a)

}
,

– Eadd
a =

{
(a, pT) | p ∈ add(a)

}
,

– Edel
a =

{
(a, pF) | p ∈ del(a)

}
• X : V → R5 defined by

p 7→ OH(activated?)(p) + OH(goal?)(p) if p ∈ P

pT 7→ OH(T) if p ∈ P

pF 7→ OH(F) if p ∈ P

a 7→ OH(action) if a ∈ A.

■

We note that SDG encodes information about delete lists with auxiliary proposition
nodes and additional edges connecting how the actions interact with the propositions.
Without the additional edges marked in bold, MPNNs would be blind to such delete
effects. It is possible to make a description graph which uses auxiliary action nodes
instead of auxiliary proposition nodes, representing the add and delete effects, but note

36

3.1 Grounded graphs

a

pre1

pre2

pre3

add1

add2

del1

del2

del3

Figure 3.2: SDGE subgraph of an action a with pre(a) = {pre1, pre2,pre3}, add(a) =
{add1, add2} and del(a) = {del1, del2, del3}. In the case where a proposition
is a precondition and also in the delete effect, we will have a multiedge
between the proposition and action node.

that this may not be preferred given that in practice the number of actions in a planning
problem is greater than the number of propositions.

A limiting problem of this encoding is that it takes several message passing steps for
an MPNN to understand the semantics of adding or deleting a proposition and thus
limits their expressivity as MPNNs have a fixed number of layers and receptive field.
Furthermore, the directed edges further limit the information flow and expressivity when
used with MPNNs. If we allow for edge features, we may remove the need for such
auxiliary nodes, reduce the size of the graph and allow for undirected graphs. Fig. 3.2
illustrates the following definition with the subgraph induced by a single action.

Definition 11 (Edge-labelled STRIPS problem description graph). The edge-labelled
problem description graph (SDGE) of a propositional STRIPS problem Π = ⟨P,A, s0, G⟩
is the undirected multigraph G = ⟨V,E,X,E⟩ with

• V = A ∪ P

• E = Epre ∪ Eadd ∪ Edel with

– Epre = {({p, a} ,pre) | p ∈ pre(a), a ∈ A},

– Eadd = {({a, p} , add) | p ∈ add(a), a ∈ A},

– Edel = {({a, p} ,del) | p ∈ del(a), a ∈ A}

• X : V → R4 defined by

p 7→ OH(proposition) + OH(activated?)(p) + OH(goal?)(p) if p ∈ P

a 7→ OH(action) if a ∈ A.

• E : E → {pre, add, del} defined by e = ({u, v} , i) 7→ i for i = pre, add,del. ■

37

3 Graph representations

3.1.3 FDR graphs

As we have discussed in Sec. 2.1, planners usually translate planning tasks to FDR
problems which compute mutexes in the problem. We start with the problem description
graph for FDR problems [Pochter et al., 2011] which was originally utilised for computing
symmetries in order to speed up search by pruning symmetrical states. We modify the
original definition to better fit our learning task again by introducing node features
by taking one hot encodings of the node types and encoding the current state and goal
condition. We assume for ease of notation that the Dv for any FDR problem are pairwise
disjoint which can be enforced by prefixing values in Dv with the variable v.

Definition 12 (FDR problem description graph [Pochter et al., 2011]). The problem
description graph (FDG) of an FDR problem Π = ⟨V, A, s0, s⋆⟩ is the undirected graph
G = ⟨V,E,X⟩ with

• V = V ∪
⋃

v∈V Dv ∪
⋃

a∈A {apre, aeff}

• E = Evar:val ∪ Epre ∪ Eeff ∪ Eact where

– Evar:val =
⋃

v∈V {{v, d} | d ∈ Dv}

– Epre =
⋃

a∈A {{d, apre} | (v, d) ∈ pre(a)}

– Eeff =
⋃

a∈A {{d, aeff} | (v, d) ∈ eff(a)}

– Eact = {{apre, aeff}}

• X : V → R6 defined by

v 7→ OH(var) if v ∈ V
d 7→ OH(val) + OH(activated?)(v) + OH(goal?)(v) if ∃v ∈ V, d ∈ Dv

apre 7→ OH(pre) if a ∈ A

aeff 7→ OH(eff) if a ∈ A.

■

Similarly to what we have done for the grounded STRIPS graphs, we construct a variant
of FDG with edge labels in order the better aid the GNN understand the semantics of the
problem and to reduce the size of the graph. The main difference we introduce is that
each action now has only one associated node, instead of two in FDG, to represent the
difference between preconditions and effects, as this is encoded in the edge labels. We
may assume that preconditions are disjoint from effects for FDR problems such that we
do not require a multigraph as with SDGE. Fig. 3.3 illustrates the edge labelled variant
FDGE.

Definition 13 (Edge-labelled FDR problem description graph). The edge-labelled prob-
lem description graph (FDGE) of an FDR problem Π = ⟨V, A, s0, s⋆⟩ is the undirected
graph G = ⟨V,E,X,E⟩ with

38

3.2 Lifted graphs

a

v1 v2 v3

d1,1 d1,2 d1,3 d2,2 d2,3 d3,1 d3,2

Figure 3.3: FDGE subgraph of an action a with pre(a) = {⟨v2, d2,1⟩ , ⟨v3, d3,2⟩} and
eff(a) = {⟨v1, d1,1⟩ , ⟨v2, d2,2⟩ , ⟨v3, d3,1⟩}.

• V = V ∪
⋃

v∈V Dv ∪A

• E = Evar:val ∪ Epre ∪ Eeff where

– Evar:val =
⋃

v∈V {{v, d} | d ∈ Dv}

– Epre =
⋃

a∈A {{d, a} | (v, d) ∈ pre(a)}

– Eeff =
⋃

a∈A {{d, a} | (v, d) ∈ eff(a)}

• X : V → R5 defined by

v 7→ OH(var) if v ∈ V
d 7→ OH(val) + OH(activated?)(v) + OH(goal?)(v) if ∃v ∈ V, d ∈ Dv

a 7→ OH(action) if a ∈ A

• E : E → {var:val,pre, eff} where e→ i if e ∈ Ei for i ∈ {var:val, pre, eff}. ■

3.2 Lifted graphs

As we have discussed previously, there is much motivation to construct algorithms that
can perform planning based on the lifted representation without the need for grounding
all predicates and action schema in order to save memory. Constructing a sensible graph
representation for a lifted task for the objective of learning is not as easy as in the
grounded case as there are more relations to encode, namely the interactions between
predicates, action schema, propositions true in the current state, the goal condition and
objects, in comparison to simply propositions and actions in grounded tasks.

The only graph representation encoding all the information of a planning task in its
lifted form is the abstract structure graph (ASG) [Sievers et al., 2019] which is defined
by first defining a coloured graph on abstract structures, a recursive structure defined
with sets, tuples, and the input objects, and then defining a lifted planning task as an

39

3 Graph representations

P x1

x2

...

xn−1

xn

. . .

. . .

. . .

. . .

(a) ASG encoding of predicate arguments

P

x1

x2

...

xn−1

xn

. . .

. . .

. . .

. . .

(b) LDG encoding of predicate arguments

Figure 3.4: Encodings of predicate arguments with different lifted graph representations.

abstract structure. The original intent of the ASG was to compute symmetries, similarly
to FDG, but it has also been used for learning planning portfolios [Katz et al., 2018].

Now we discuss the main limitations of ASGs for MPNNs. Firstly, the encoding of
predicate and action schema arguments is done via a sequence or directed path, where
to encode n arguments the graph consists of a directed path of length n, as illustrated in
Fig. 3.4a. There are also many more auxiliary nodes to encode the abstract structures.
Both these issues cause problems for MPNNs as we have seen before for the grounded
graph representations in the literature: larger receptive field required for MPNNs to
learn the structure and semantics of the planning problem, and directed edges which
limit information flow and expressivity.

Thus, we attempt to construct our own graph representations for lifted planning tasks
with the objective of learning in conjunction with GNNs. We first provide a verbose
description and illustration of the edge-labelled variant of the lifted graphs in Fig. 3.5
before providing the full formal definition. The graph can be divided into two main
subgraphs, the first of which encodes the current state and the goal condition of a lifted
planning task, and the second encodes the underlying action schema of the task. In both
subgraphs, we require encoding predicate or action schema arguments which we solve
by using node features rather than using the structure of the graph to encode argument
indexes, allowing us to represent predicates with trees rather than paths as illustrated
in Fig. 3.4b.

The first subgraph contains nodes representing the predicates and objects of the prob-
lem. We introduce additional nodes of the form described in Fig. 3.4b for encoding the
grounded propositions that are true in the current state and the goal condition. Various
edges are used to associate the corresponding objects and predicates for each grounded
proposition as seen in Fig. 3.5a.

40

3.2 Lifted graphs

on

on(a,b) on(b,c)

1 2 1 2

a b c objects

ground arguments

state and goal

predicates

(a) LDGE subgraph of a ground on(a,b) predicate activated in the current state and an on(b,c)

goal predicate in the Blocksworld domain.

holding on handempty clear

1 1 1 2 1 1 1

x y

stack

predicates

schema predicates

predicate arguments

schema arguments

action schema

(b) LDGE subgraph of the stack(x,y) action schema in the Blocksworld domain.

Figure 3.5: LDGE subgraph of ground predicates (a) and an action schema (b) with graph
layer descriptions. The underlying graph structure of LDGE is isomorphic to
that of LDG.

The second subgraph contains the same aforementioned predicate nodes and a node for
each action schema. We then use auxiliary nodes to act as duplicates of predicates seen
in the precondition and effects of each action schema, given that action schema can have
several uses of a predicate in its definition. We also make use of the above argument
encodings and various edges to match action schema arguments with predicate arguments
as seen in Fig. 3.5b for the stack(x,y) schema in the Blocksworld domain.

Now we move onto the formal definition. We will assume that action schema precondi-
tions and effect lists only contain parameter variables and no objects for simplicity. In
other words, we do not have partially instantiated action schema, and this is generally
the case for most PDDL files. We also assume no negative preconditions and negated
atoms in the goal state, but we implemented this feature in the code which requires an
additional node feature dimension and edge label.

41

3 Graph representations

Definition 14 (Lifted description graph). Let T ∈ N. The lifted problem description
graph (LDG) of a lifted problem Π = ⟨P,O,A, s0, G⟩ is the undirected graph G =
⟨V,E,X⟩ with5

• V = P ∪ O ∪N(A) ∪N(s0) ∪N(G) where

– N(A) provides all the nodes corresponding to the action schema, schema argu-
ments, predicate arguments and schema predicates layers as depicted in Fig. 3.5b
and is defined by

N(A) =
⋃
a∈A

(
{a} ∪ {(δ, a) | δ ∈ ∆(a)}∪ (3.3)

⋃
f∈{pre,add,del}

{
(p, a, f), (1, p, a, f), . . . , (nP , p, a, f) |

p = P (δ1, . . . , δnP) ∈ f(a)

})

– N(s0) and N(G) provide nodes corresponding to the state and goal, and ground
arguments layer as in Fig. 3.4b and is defined by

N(s0) =
⋃

p=P (o1,...,onP
)∈s0

{(p, 0), (1, p, 0), . . . , (nP , p, 0)} (3.4)

N(G) =
⋃

p=P (o1,...,onP
)∈G

{(p, g), (1, p, g), . . . , (nP , p, g)} (3.5)

• E = Eneutral ∪ Eground ∪
⋃

f∈{pre,add,del}Ef where

– Eneutral connects objects to predicates and actions to schema arguments, indi-
cated by gray edges in Fig. 3.5 and is defined by

Eneutral =
{
{o, P} | o ∈ O, P ∈ P

}
∪
{
{a, (δ, a)} | δ ∈ ∆(a), a ∈ A

}
(3.6)

– Eground connects nodes in P, O, N(s0) and N(G) in order to represent proposi-
tions in the goal and true in the state as instantiated predicates with objects in
the correct arguments. This set of edges is defined by

5The definition is slightly different when handling negative preconditions where we have an additional
node feature and edge label for the edge labelled version of the graph.

42

3.2 Lifted graphs

Eground =
⋃

p=P (o1,...,onP
)∈s0

({
{(p, 0), (i, p, 0)} | i = 1, . . . , nP

}
∪ (3.7)

{
{(i, p, 0), oi} | i = 1, . . . , nP

}
∪ {(p, 0), P}

)
∪⋃

p=P (o1,...,onP
)∈G

({
{(p, g), (i, p, g)} | i = 1, . . . , nP

}
∪

{
{(i, p, g), oi} | i = 1, . . . , nP

}
∪ {(p, g), P}

)
–
⋃

f∈{pre,add,del}Ef provides the set of edges connecting nodes in P and N(A)
to encode the semantics of action schema in the graph. The individual Ef

components are defined by

Ef =
⋃

p=P ()∈f(a)

{
{P, (p, a, f)} , {(p, a, f), a}

}
∪ (3.8)

⋃
p=P (δ1,...,δnP

)∈f(a),nP≥1

({
{P, (p, a, f)}

}
∪
{
{(p, a, f), (i, p, a, f)} ,

{(i, p, a, f), (δi, a)} | i = 1, . . . , nP

})
for f ∈ {pre, add,del},

• X : V → R8+T defined by

P 7→ OH(predicate) ∥ 0⃗ for P ∈ P
o 7→ OH(object) ∥ 0⃗ for o ∈ O
a 7→ OH(action) ∥ 0⃗ for a ∈ A

(p, a, f) 7→ OH(f) ∥ 0⃗
for f ∈ {pre, add,del} , p = P (δ1, . . . , δnP) ∈ f(a)

(i, p, a, f) 7→ 0⃗ ∥PE(i) i = 1, . . . , nP

(p, g) 7→ OH(goal) ∥ 0⃗ for p = P (o1, . . . , onp) ∈ G

(i, p, g) 7→ 0⃗ ∥PE(i) for i = 1, . . . , nP

(p, 0) 7→ OH(activated) ∥ 0⃗ for p = P (o1, . . . , onp) ∈ s0

(i, p, 0) 7→ 0⃗ ∥PE(i) for i = 1, . . . , nP

and v 7→ 0⃗ for any remaining nodes, i.e. nodes of the form (δ, a) for a ∈ A, δ ∈ ∆(a).
We define PE : N → RT by a fixed randomly chosen injective map from N to the
sphere ST−1 =

{
x ∈ RT | ∥x∥ = 1

}
. ■

43

3 Graph representations

3

6

1

. . .
2

5

4

Figure 3.6: An example of a PE function for T = 2.

The function PE is constructed with domain-independence in mind, meaning that we
cannot use information about domains to construct our graphs as this allows us to
incorporate domain-independent or multi-domain learning. We can contrast this to
Neural Logic Machines [Dong et al., 2019] which were designed for use on specified
domains and thus can encode argument indices in a more structured way. The domain-
independence motivations we used to guide the construction of PE are:

1. we cannot assume a bound on predicate and action schema argument sizes, and

2. the argument indices should be independent from one another

The first motivation rules out using a one hot encoding of indices as otherwise we will
have infinite dimensional feature vectors. The second motivation makes it difficult to
construct a well defined deterministic feature map such as the sinusoidal positional en-
codings used in Transformers [Vaswani et al., 2017]. Thus, we opted with nondetermin-
istically constructing such an injective function PE which is fixed for all domains and
instances. Besides satisfying the 2 motivations we described, it is unclear if there exists
a better method of encoding argument indices via graphs. We now present the edge
labelled variant of LDG.

Definition 15 (Edge-labelled lifted description graph). The edge-labelled lifted problem
description graph (LDGE) of a lifted problem Π = ⟨P,O,A, s0, G⟩ is the undirected graph
G = ⟨V,E,X,E⟩ with V and E the same as in LDG and

• X : V → R5+T with the same definition as in LDG except now we have (p, a, f) 7→ 0
for a ∈ A, f ∈ {pre, add, del} , p ∈ f(a).

• E : E → {neutral, ground,pre, add,del} defined by e 7→ α for e ∈ Eα with α ∈
{neutral, ground,pre, add, del}. ■

We conclude this chapter with complete illustrations in Fig. 3.7 of some of the defined
graph representations for a Blocksworld problem with PPDL definition in Lst. 3.1 and
3.2. We also refer to the Appendix for boxplots of graph sizes of the individual graph
representations in Sec. A.1.

44

3.2 Lifted graphs

Listing 3.1: Blocksworld PDDL domain.

(define (domain blocks)

(:requirements :strips :typing)

(:types block)

(:predicates

(on ?x - block ?y - block)

(ontable ?x - block)

(clear ?x - block)

(handempty)

(holding ?x - block)

)

(:action pick-up

:parameters (?x - block)

:precondition (and (clear ?x)

(ontable ?x)

(handempty))

:effect (and (not (ontable ?x))

(not (clear ?x))

(not (handempty))

(holding ?x))

)

(:action put-down

:parameters (?x - block)

:precondition (holding ?x)

:effect (and (not (holding ?x))

(clear ?x)

(handempty)

(ontable ?x))

)

(:action stack

:parameters (?x - block ?y - block)

:precondition (and (holding ?x)

(clear ?y))

:effect (and (not (holding ?x))

(not (clear ?y))

(clear ?x)

(handempty)

(on ?x ?y))

)

(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y)

(clear ?x)

(handempty))

:effect (and (holding ?x)

(clear ?y)

(not (clear ?x))

(not (handempty))

(not (on ?x ?y)))

)

)

Listing 3.2: Blocksworld PDDL instance.

(define (problem blocks-6-2)

(:domain blocks)

(:objects a b c d e f - block)

(:init

(clear a)

(ontable c)

(on a d)

(on d b)

(on b f)

(on f e)

(on e c)

(handempty)

)

(:goal (and (on e f)

(on f a)

(on a b)

(on b c)

(on c d))

)

)

45

3 Graph representations

(a) SDG (b) SDGE

(c) FDG (d) FDGE

(e) ASG

handemptyclearon =ontable

put-down

f b de

holding

pick-up stack unstack

c a

(f) LDGE

Figure 3.7: Graph representations of the Blocksworld instance described in Lst. 3.1 and
3.2. LDG is omitted as it is structurally the same as LDGE but without edge
labels. Graphs on the right have edge labels. Green nodes correspond to facts
true in the current state. Yellow nodes correspond to goal facts. Orange
nodes correspond to grounded or lifted actions. Purple nodes correspond
to predicates. Black, blue and red edges correspond to preconditions, add
effects and delete effects respectively.

46

Chapter 4

What can we learn?

We have defined a whole zoo of graphs for representing planning problems in Ch. 3
with a focus on learning domain-independent heuristics when combined with graph rep-
resentation learning methods. In this chapter we aim to study them theoretically by
answering the question proposed by the chapter title. More specifically, we will identify
what domain-independent heuristics we can or can not learn with them.

Sec. 4.1 and 4.2 encapsulate our main theoretical results for categorising the hierarchy
of expressivity with MPNNs acting upon our graphs. The first section focuses on lower
bounds, namely which domain-independent heuristics we are able to learn, while the
second section focuses on upper bounds, namely which domain-independent heuristics
we are not able to learn. Fig. 4.1 summarises the results from these two sections. Sec. 4.3
provides a discussion about the shortcomings and future directions of the results from
the first two sections.

max add

Figure 4.1: Hierarchy of expressivity with graphs from Ch. 3 combined with MPNNs.

47

4 What can we learn?

4.1 Lower bounds

We will introduce some notation for classes of graphs that we have defined so far, with

• grounded graphs Gground = {DRG,DRGE, SDG,SDGE,FDG,FDGE},

• lifted graphs Glifted = {ASG, LDG, LDGE}, and

• all the defined graphs Gall = Gground ∪Glifted.

As stated above, most of our theoretical results will be concerned with using the graph
representations of planning problems in conjunction with only an MPNN. The reason
for only considering MPNNs over other GRL models is because they are the most theo-
retically intuitive and the most computationally practical models for our setting.

In this subsection we focus on lower bounds, namely what domain-independent heuristics
can we learn. The first result is that MPNNs can learn the hadd and hmax heuristic on
grounded graphs. The main idea of the proof is that MPNNs can imitate the dynamic
programming approach to computing the heuristics by making use of approximation
theorem for neural networks.

Theorem 1 (MPNNs can learn hadd and hmax on grounded graphs). Let L,B ∈ N,
G ∈ Gground, ε > 0 and h ∈ {hadd, hmax}. Then there exists a set of parameters Θ for
an MPNN FΘ such that for all planning tasks Π, if Alg. 4 in the case of h = hmax or
Alg. 3 when h = hadd converges within L iterations for Π, and h(s0) ≤ B, then we have
|h(s0)−FΘ(G(Π))| < ε.

Proof. The main idea of the proof is that we can encode Alg. 4 if h = hmax or Alg. 3
if h = hadd into the MPNN framework in Alg. 5 using a correct choice of continuous
bounded functions and aggregation operators and using the approximation theorem to
find parameters in order to achieve the desired function. We will assume unitary cost
actions and note that the below proof can be generalised to account for general cost
actions. We first deal with the case where h = hmax and G = DRG.

Let x(u) be the feature of node u. By definition of DRG, we can define the features by

x
(u)
0 = 1 if u corresponds to a proposition node, else x

(u)
1 = 1 when u corresponds to

an action node a. Furthermore, x
(u)
2 = 1 if u is a goal proposition, and x

(u)
3 = 1 if u is

a proposition in the initial state. Note that it is possible that x
(u)
2 = x

(u)
3 = 1 when a

proposition is both a goal condition and in the initial state. If not mentioned, we have

that x
(u)
i = 0 everywhere else.

Then we will construct a MPNN with 2L + 2 layers. For the first layer we have an
embedding layer which ignores neighbourhood nodes with □(0) = 0⃗ and φ(0)(hu,hN) =
femb(hu). Let K be the finite set of possible node features in a DRG representation of a
planning task. Then femb : K → R3 is defined by

48

4.1 Lower bounds

femb([1, 0, 0, 0]
⊤) = [B, 0, 1]⊤ (4.1)

femb([0, 1, 0, 0]
⊤) = [0, 0, 0]⊤ (4.2)

femb([1, 0, 1, 0]
⊤) = [B, 1, 1]⊤ (4.3)

femb([1, 0, 0, 1]
⊤) = [0, 0, 1]⊤ (4.4)

femb([1, 0, 1, 1]
⊤) = [0, 0, 1]⊤. (4.5)

This first round of message passing updates corresponds to the initialisation step of the
heuristic algorithm with B representing infinity values. We also note that after applying
□(0) and φ(0) and throughout the remaining forward pass of the MPNN, node embed-
dings will have the form [x0, x1, x2] which encode information about their corresponding
proposition or action during the execution of the hmax algorithm where

• x0 corresponds to the intermediate h values computed in the hmax algorithm,

• x1 signifies whether the node corresponds to a goal node, and

• x2 determines if the node is a proposition or action node.

The next 2L layers use the component wise max aggregation function □ = max and alter-
nates between setting φ(l)(hu,hN) = fa([hu

∥∥hN]) and φ(l+1)(hu,hN) = fp([hu

∥∥hN])
where fa : R6 → R3 and fp : R6 → R3 are defined by

fa

x0
x1
x2
y0
y1
y2

 =

x0x2 − (1− x2)y0
x1x2
x22

 , fp

x0
x1
x2
y0
y1
y2

 =

min(x0,−y0 + 1)x2
x1x2
x22

 . (4.6)

These functions correspond to the iterative updates of h(l)[a] and h(l)[p] in Alg. 4, re-
calling that L is the number of iterations it takes for the algorithm converges. More
specifically, suppose we have a node u with embedding hu = [x0, x1, x2] and aggregated
embedding from its neighbours hN = [y0, y1, y2]. Then we have two cases.

• If x2 = 0, indicating that the node u corresponds to a n action, then we get

fa([hu

∥∥∥hN]) = [−y0, 0, 0] (4.7)

fp([hu

∥∥∥hN]) = [0, 0, 0]. (4.8)

Eq. 4.7 corresponds to Line 5 in Alg. 4 where −y0 contains the negative of h[a].
We take the negative since we are restricted to using max aggregators only1 which

1As min aggregators conflict with ReLU activation functions commonly seen in neural networks.

49

4 What can we learn?

in turn means we require taking maximums of negatives in order to mimic the
minimum aggregator later in Line 7 of the same algorithm. Eq. 4.8 corresponds to
Line 7 but since this line only affects propositions and h[a] values do not need to
be stored after execution of this line, we set hu to zero.

• If x2 = 1, indicating that the node u corresponds to a proposition, then we get

fa([hu

∥∥∥hN]) = [x0, x1, x2] (4.9)

fp([hu

∥∥∥hN]) = [min(x0,−y0 + 1), x1, x2]. (4.10)

We recall fa corresponds to Line 5 which only affects h[a] values. Given that we
require storing h[p] values throughout the whole algorithm, fa acts as the identity
function on hu for proposition nodes as seen in Eq. 4.9. This is in contrast to fp
which acts as the zero function on hu for action nodes. Eq. 4.10 corresponds to
Line 7 where −y0 is equivalent to the mina∈A,p∈add(a) h[a] = maxa∈A,p∈add(a)−h[a]
term by definition of DRG, □ and fa acting on action node embeddings.

We append a final layer to the network where we ignore neighbourhood nodes with
□(2L+1) = 0⃗ and φ(2L+1)([x0, x1, x2]

⊤,hN) = x0x1. In combination with a max readout
function Φ, this corresponds to computing the final heuristic value. The above encoding
of Alg. 4 has also been experimentally verified to be correct.

In order to satisfy the neural network component of the MPNN, we replace the φ(i) for
i = 0, . . . , 2L + 1 with feedforward networks. Noting that we have finitely many layers
we can choose small enough fractions of ε for the universal approximation theorem for
neural networks [Hornik et al., 1989, Cybenko, 1989] to approximate the continuous
functions φ(i) whose domain is bounded in the ball of radius B in order to achieve our
result.

The encoding for hadd is the same except we use a sum aggregator □ =
∑

and readout.

For the case of the other grounded graphs, we note that they capture at least the same
amount of information as DRG such that we can find similar MPNN encodings to rep-
resent approximations of hmax and hadd with the given assumptions. Furthermore, we
note that the hmax and hadd algorithm for FDR problems and hence FDG graph repre-
sentations work in the obvious way by compiling FDR planning tasks into propositional
STRIPS planning task by treating variable-value pairs in FDR problems as propositional
facts.

We note that we can set ε = 0.49 and append a rounding module to the output of an
MPNN to get perfect computations of hmax and hadd for integer valued cost functions
as usually is the case for planning. It is also possible to extend the theorem to STRIPS-
HGN by using additional assumptions accounting for their non-permutation invariant
aggregation function.

50

4.2 Upper bounds

Whether this is a useful theorem in practice is questionable given that we can compute
hmax and hadd using known algorithms such as Alg. 4 and 3. Furthermore, the theorem
does not say anything about generalisation outside what the model has been trained on,
as is usually the case with approximation theorem results. However, we may expect that
MPNNs can generalise hmax and hadd more efficiently by considering ideas of algorithmic
alignment for improving sample complexity [Xu et al., 2020]. We note that their main
theorems are concerned with approximating nice polynomial functions which is not the
case in our encoding as we require an additional min function in Eq. 4.6.

Using our result, we can also learn hm if we allow for a polynomial time transformation
of our task. Given a propositional STRIPS planning problem Π = ⟨P,A, s0, G⟩, Haslum
defines a transformation Πm = ⟨Pm, Am, sm0 , Gm⟩ whose propositions are subsets of P
of at most size m with the property that hm(s0) for Π is equivalent to hmax(sm0) for
Πm [Haslum, 2009, Thm. 5]. We can leverage this fact for the following statement.

Corollary 1 (MPNNs can learn hm on grounded graphs for Πm). Let L,B ∈ N, G ∈
Gground and ε > 0. Then there exists a set of parameters Θ for an MPNN FΘ such that
for all planning tasks Π, if Alg. 4 converges within L iterations for Π, and h(s0) ≤ B,
then we have |hm(s0)−FΘ(G(Πm))| < ε.

Proof. Given L,B ∈ N, G ∈ Gground and ε > 0, Thm. 1 gives us that there exists some
Θ such that |hmax(sm0)−FΘ(G(Πm))| < ε for all planning tasks Π for which Alg. 4
converges with L iterations on Πm. Then the result is immediate since hmax(sm0) =
hm(s0) [Haslum, 2009, Thm. 5].

4.2 Upper bounds

Next we move on to negative results by constructing planning tasks in order to show
what heuristics we cannot learn with our graphs and vanilla MPNNs. The keen reader
might have noticed that we did not mention lifted graphs in the previous section. This
is because as we see in the following result, they cannot learn hadd or hmax.

Theorem 2 (MPNNs cannot learn hadd and hmax on lifted graphs). Given G ∈ Glifted,
there does not exist any parameters Θ for an MPNN such that it can correctly compute
hadd or hmax on all planning problems represented by G.

Proof. Consider the two (delete free) lifted STRIPS problems P1 = ⟨P,O,A, s(1)0 , G⟩
and P2 = ⟨P,O,A, s(2)0 , G⟩ with P = {Q(x1, x2),W (x1, x2)}, O = {o1, o2}, s

(1)
0 =

{Q(o1, o2), Q(o2, o1)}, s(2)0 = {Q(o1, o1), Q(o2, o2)}, G = {W (o1, o2),W (o2, o1)} and one
action schemaA = {a} with ∆(a) = {δ1, δ2}, pre(a) = {Q(δ1, δ2)}, add(a) = {W (δ1, δ2)}
and del(a) = ∅.

By definition P1 can be solved with a plan consisting of a(o1, o2) and a(o2, o1) in either

order and the corresponding heuristic values are hmax(s
(1)
0) = hadd(s

(1)
0) = 1. On the

51

4 What can we learn?

o1 o2

1 2 1 2 1 2 1 2

Q(o1, o2) Q(o2, o1) W (o1, o2) W (o2, o1)

Q W

pre add

1 2 1 2

1 2

a

o1 o2

1 2 1 2 1 2 1 2

Q(o1, o1) Q(o2, o2) W (o1, o2) W (o2, o1)

Q W

pre add

1 2 1 2

1 2

a

Figure 4.2: LDG of P1 and P2 (edges between objects and predicates omitted). Only
colours are known to the WL algorithm, not the node descriptions in the
figure. The only difference between the two graphs lies in the different edges
between the top two layers of the graph. However, they are indistinguishable
by the WL algorithm.

other hand P2 is unsolvable in which case we have hmax(s
(2)
0) = hadd(s

(2)
0) =∞.

The graphs are indistinguishable by theWL algorithm where we colour nodes by mapping
their features to the set of natural numbers for the LDG graphs, given that the set of
possible node features is countable. Fig. 4.2 illustrates the graph representations for LDG.
Then the result follows by the contrapositive of Lem. 1 as WL assigns the same output for
both graphs, and hence any MPNN also assigns the same output. We can modify Lem. 1
to account for WL algorithms and MPNNs which deal with edge labels by compiling an
edge coloured graph to a node coloured graph in the obvious way by replacing each edge
with a node. Then this also gives us the result for LDGE. The same pair of problems
also applies for ASG as their ASG representations are also indistinguishable by the WL
algorithm.

The intuition of requiring symmetric goals for generating the counterexample is to con-
struct a graph that is symmetric and regular enough for the pair to be indistinguishable
by WL. Otherwise, we have asymmetries introduced by the action and predicate argu-
ment index features. Next, we show the importance of constructing graph representations

52

4.2 Upper bounds

a1

a2

g1

g2

p3

a1

a2

g1

g2

p3

Figure 4.3: DRG of P1 and P2

without directed edges.

Theorem 3 (MPNNs cannot learn {hm(m > 1), hSA, hFF, h+} on DRGs). There does
not exist any parameters Θ for an MPNN (Alg. 5) such that it can correctly compute
{hm(m > 1), hSA, hFF, h+} on all planning problems represented by DRGs2.

Proof. Consider the two (delete free) planning problems P1 = ⟨P,A1, s0, G⟩ and P2 =

⟨P,A2, s0, G⟩ with P = {g1, g2, p3}, G = {g1, g2}, s0 = ∅ and action sets A1 = {a(1)1 , a
(1)
2 },

A2 = {a(2)1 , a
(2)
2 } where all the actions have empty preconditions and delete effects and

add(a
(1)
1) = {g1, g2}, add(a

(2)
1) = {g1},

add(a
(1)
2) = {p3}, add(a

(2)
2) = {g2, p3}.

We have that the minimum plan cost for P1 is 1 by applying action a
(1)
1 whereas the

minimum plan cost for P2 is 2 as both actions need to be applied, as seen in Fig. 4.3.
All the heuristics in the set {hm(m > 1), hSA, hFF, h+} return 1 for P1 and 2 for P2.

Colour refinement assigns the same invariant to the DRG representations of P1 and P2

and thus by the contrapositive of Lem. 1, any MPNN assigns the same embedding to
both graphs.

As we can see, when we limit ourselves to forward flow of information we intuitively
lose information of half of the structure of the graph. This can be seen in the ASG
graph representation and also with the precondition nodes of STRIPS-HGN as seen in
Fig. 3.1, although with STRIPS-HGN this is slightly alleviated with the recurrent global
graph feature. It is easy to test and see that WL can distinguish these two planning
graphs represented as DRGE. However, our next result shows that MPNNs still cannot
learn h+ or any of the delete relaxation heuristics mentioned in Thm. 3 even if we have
information flowing in both directions.

2Both hFF and hSA are only well defined with a specified tie breaking strategy but the proof of the
theorem below works for any tie breaking strategy.

53

4 What can we learn?

a1

a2

p1

p2

a3

a4

a5

a6

g3

g4

a1

a2

p1

p2

a3

a4

a5

a6

g3

g4

Figure 4.4: DRGE of P1 (left) and P2 (right). Black edges indicate preconditions and
blue edges indicate add effects.

Theorem 4 (MPNNs cannot learn {hm(m > 1), hSA, hFF, h+} on DRGEs). Let h ∈
{hm(m > 1), hSA, hFF, h+}. There does not exist any parameters Θ for an MPNN
(Alg. 5) such that it can correctly compute h on all planning problems represented by
DRGEs.

Proof. Consider the two (delete free) planning problems P1 = ⟨P,A1, s0, G⟩ and P2 =

⟨P,A2, s0, G⟩ with P = {p1, p2, g3, g4}, G = {g3, g4}, s0 = ∅ and action sets A1 = {a(1)i |
i = 1, . . . , 6}, A2 = {a(2)i | i = 1, . . . , 6} where actions have no delete effects and are
defined by

pre(a
(1)
1) = ∅, add(a

(1)
1) = {p1}, pre(a

(2)
1) = ∅, add(a

(2)
1) = {p1},

pre(a
(1)
2) = ∅, add(a

(1)
2) = {p2}, pre(a

(2)
2) = ∅, add(a

(2)
2) = {p2},

pre(a
(1)
3) = {p1}, add(a

(1)
3) = {g3}, pre(a

(2)
3) = {p1}, add(a

(2)
3) = {g3},

pre(a
(1)
4) = {p1}, add(a

(1)
4) = {g3}, pre(a

(2)
4) = {p1}, add(a

(2)
4) = {g4},

pre(a
(1)
5) = {p2}, add(a

(1)
5) = {g4}, pre(a

(2)
5) = {p2}, add(a

(2)
5) = {g3},

pre(a
(1)
6) = {p2}, add(a

(1)
6) = {g4}, pre(a

(2)
6) = {p2}, add(a

(2)
6) = {g4}.

We have that the minimum plan cost for P1 is 4 by applying actions a
(1)
1 , a

(1)
2 , a

(1)
3 , a

(1)
5

whereas the minimum plan cost for P2 is 3 with actions a
(1)
1 , a

(1)
3 , a

(1)
5 . All the heuristics

in the set {hm(m > 1), hSA, hFF, h+, h∗} return 4 for P1 and 3 for P2.

Colour refinement modified to account for edge labels assigns the same invariant to the
DRGE representations of P1 and P2 as seen in Fig. 4.4. Thus by the contrapositive of
Lem. 1 any MPNN assigns the same embedding to both graphs.

54

4.2 Upper bounds

It is also possible to extend the result to STRIPS-HGN with additional assumptions and
variables to account for their aggregation function which limits the size of aggregated
neighbour nodes. In order words, it is also true that STRIPS-HGN cannot learn h+

regardless of the number of their parameters, which can be noticed by their restrictive
information flow and the fact that global graph features do not help in distinguishing
the graphs in Fig. 4.4.

Corollary 2 (STRIPS-HGN cannot learn {hm(m > 1), hSA, hFF, h+}). Let h ∈ {hm(m >
1), hSA, hFF, h+}. There does not exist any parameters Θ for STRIPS-HGN such that
it can correctly compute h.

The counterexample can be used to provide a strict upper bound on what MPNNs can
learn in conjunction with any of our defined graphs with the following corollary.

Corollary 3 (MPNNs cannot learn h∗). There does not exist any parameters Θ for an
MPNN such that it can correctly compute h∗ on all planning problems represented by
any graph representation G ∈ Gall.

Proof. For G ∈ {DRG,DRGE} this follows directly from Thm. 4 since h∗ = h+ for the
delete free problems in the proofs. The case is similar for G = SDGE where the graph
representation for the problems are the same as for DRGE. For G = SDG, the graphs are
similar except for the addition of auxiliary nodes but the graphs are still indistinguishable
by colour refinement.

For FDG and FDGE, if we use the naive compilation3 of STRIPS to FDR by converting
each proposition into a variable with a domain of size 2 representing whether the propo-
sition is true or false in the current state, then we again get indistinguishable graphs
with the WL algorithm.

For lifted graphs ASG, LDG, and LDGE, we note that the problems specified earlier
are grounded and the corresponding graphs do not leverage any additional information
which makes them easier to distinguish. One can alternatively refer to Thm. 2.

Even if it is not possible to learn the perfect heuristic, one may ask if it is possible to learn
an approximation. We define an heuristic h to be c-absolutely approximately perfect if
|h∗(s)− h(s)| < c for any state s in any planning problem. An heuristic h is c-relatively
approximately perfect if |1− h(s)/h∗(s)| < c for any state s in any planning problem.
Note that we can define admissible versions of approximate heuristics by enforcing the
admissibility criterion. This is done with ε-admissible heuristics [Pearl, 1984] which
are defined to be heuristics satisfying h(s) ≤ (1 + ε)h∗(s) for all states s which can
be seen as one sided ε-relatively approximately perfect heuristics. We also note that
these definitions of approximations are different than those which consist of a constant
absolute error [Pohl, 1975, Helmert and Röger, 2008] parameterised by an integer c ∈ N
and defined by h∗− c := max(h∗− c, 0). We do not consider these approximations since

3In fact, the more sophisticated translator used in Fast Downward provides the same compilation given
that there are no mutually exclusive propositions here.

55

4 What can we learn?

a(1, 1) p(1, 1) a(2, 1) p(2, 1) a1(1, 2)

a1(1, 1)

a1(1, 3)

p(3, 1)

a(1, 2) p(1, 2) a(2, 2) p(2, 2) a1(2, 2)

a1(2, 1)

a1(2, 3)

p(3, 2)

a(1, 3) p(1, 3) a(2, 3) p(2, 3) a1(3, 2)

a1(3, 1)

a1(3, 3)

p(3, 3)

(a) DRGE of P1 for n = 3.

a(1, 1) p(1, 1) a(2, 1) p(2, 1) a2(1, 2)

a2(1, 1)

a2(1, 3)

p(3, 1)

a(1, 2) p(1, 2) a(2, 2) p(2, 2) a2(2, 2)

a2(2, 1)

a2(2, 3)

p(3, 2)

a(1, 3) p(1, 3) a(2, 3) p(2, 3) a2(3, 2)

a2(3, 1)

a2(3, 3)

p(3, 3)

(b) DRGE of P2 for n = 3.

Figure 4.5: DRGEs of problems used in the proof of Thm. 5 where black edges indicate
preconditions and blue edges indicate add effects.

in practice, if we were able to construct heuristic of this form and know c in advance,
then we can easily reconstruct h∗ by most states by adding c.

We see next that we can extend the counterexample graphs above to show that MPNNs
cannot learn any approximation of the perfect heuristic. In other words, MPNNs can
have arbitrarily bad predictions of the perfect heuristic.

Theorem 5 (MPNNs cannot learn any approximation of h∗). There does not exist
any parameters Θ for an MPNN such that it can correctly compute c-absolutely approxi-
mately perfect or c-relatively approximately perfect heuristics for all c ≥ 0 on all planning
problems represented by any graph representation G ∈ Gall.

Proof. Let us fix n ∈ N with n > 2. Then we will construct a pair of planning problems
whose optimal plan costs are 2n − 1 and n2 respectively but are indistinguishable by
MPNNs by any graph representations G ∈ Gall of the problems. Thus, we can make our
absolute and relative errors, given by n2− 2n+1 and n2

2n−1 respectively, arbitrary large.

Consider the two (delete free) planning problems given by P1 = ⟨P,A1, s0, G⟩ and P2 =
⟨O,A2, s0, G⟩ with P = {p(x, y) | x, y ∈ [n]}, G = {p(n, y) | y ∈ [n]} ⊂ P , s0 = ∅ and
actions A1 = {a1(y, z) | y, z ∈ [n]} ∪ A and A2 = {a2(y, z) | y, z ∈ [n]} ∪ A where A =
{a(x, y) | x ∈ [n− 1], y ∈ [n]}. All actions have no delete effects and their preconditions

56

4.3 Further discussion

and add effects are given as follows

pre(a(1, y)) = ∅, add(a(1, y)) = {p(1, y)} , ∀y ∈ [n]

pre(a(x, y)) = {p(x− 1, y)} , add(a(x, y)) = {p(x, y)} , ∀x ∈ [2..n− 1], y ∈ [n]

pre(a1(y, z)) = {p(n− 1, y)} , add(a1(y, z)) = {p(n, y)} , ∀y, z ∈ [n]

pre(a2(y, z)) = {p(n− 1, z)} , add(a2(y, z)) = {p(n, y)} , ∀y, z ∈ [n]

where we note that the case n = 2 is given in the proof of Thm. 4. We refer to Fig. 4.5
for the case of n = 3. An optimal plan for P1 consists of executing all actions a ∈ A and
a1(y, 1) for y ∈ [n]. On the other hand, an optimal plan for P2 consists only of executing
a(x, 1) for x ∈ [n − 1] followed by a2(y, 1) for all y ∈ [n]. Thus, the optimal plan costs
for P1 and P2 are n

2 and 2n−1 respectively. Furthermore as in the proof of Thm. 4, any
graph representations of the pair of problems for any n are indistinguishable by colour
refinement and hence by MPNNs.

4.3 Further discussion

In the previous two sections, we have classified what heuristic functions we can or cannot
learn with MPNNs applied on our graphs. One might think the upper bounds we
proved may be concerning as they state that we cannot learn any of the strong domain-
independent heuristics accurately, and in the case of the lifted graphs, not even the
hmax and hadd heuristics. Thus the reader might ask, why even bother learning domain-
independent heuristics? We can answer this in two ways.

4.3.1 A more refined hierarchy

The proofs only show the worst possible case where we have carefully constructed con-
trived planning task examples whose graph representations are indistinguishable by
MPNNs. In practice, the graph representations of most planning tasks may be dis-
tinguished by MPNNs as will also observe in our first set of experiments later in Ch. 5.
In other words, it is possible to learn the optimal heuristic on certain subclasses of all
possible planning tasks. Given the scope of this thesis, it may be left for future work how
we may identify classes of planning tasks where we can learn the optimal heuristic with
MPNNs acting on the defined graph representations, and the probabilities on how often
planning tasks lie in such classes. An analogy to this is hierarchical task network (HTN)
planning where we introduce hierarchical actions in order to provide control knowledge
to solve planning tasks more efficiently. The most general case is undecidable [Erol et al.,
1996] but we may identify subclasses of problems with specific features and structures
which are decidable and easier to solve [Alford et al., 2015, Chen and Bercher, 2021,
2022]. One may take an orthogonal approach and identify specific planning domains
where we can learn the optimal heuristic [Staahlberg et al., 2022b]. We note that a
subclass is more general than a planning domain, as the former may identify features
that can generalise many planning domains.

57

4 What can we learn?

U(Π)

Gα

N

α Oα

h∗

Figure 4.6: Instead of computing h∗, we can compute or learn Oα instead.

4.3.2 More powerful GRL techniques

Our theory focuses on using MPNNs, but it is possible to rely on research progress on
more powerful GRL models and techniques that allow us to learn h∗. To define this idea
formally, let α ∈ Gall be any graph representation, U(Π) denote the set of all possible
planning tasks defined in the formalism associated with α, and denote Gα as the set of
α graph representations from U(Π). Then our goal is to compute or learn an oracle
function Oα : Gα → N that corresponds to the perfect heuristic h∗ operating on all
possible planning tasks.

For example, one may apply a universal theorem for MPNNs with random node initial-
isation in order to approximate Oα with given bounds. Following the framework from
Abboud et al., let ε, δ > 0, G be a set of graphs and f : G → R be a function. Then we
say that a randomised function R that associates every graph G ∈ G a random variable
R(G) is an (ε, δ)-approximation of f if for all G ∈ G, Pr(|f(G)−X(G)| ≤ ε) ≥ 1 − δ.
Next, given n ∈ N and a ∈ Gall, denote G≤n

α as the subset of Gα with at most n nodes.

Then directly applying the main theorem from the paper, we can derive the following
powerful fact which states that we can approximate the optimal heuristic within a given
confidence interval using MPNNs and partial random node initialisation (RNI) which
consists of concatenating a random feature vector of any size to each node embedding
of the graph. If we set ε = 0.49 and round the output of our MPNNs to the nearest
integer, we can focus our attention entirely achieving perfect estimates under a certain
probability. The main constraint is that the size of the model parameters scale with a
specified number of arguments. If we fix the confidence δ, the number of nodes n of the
graphs, and the maximum H of computing h∗, then our embedding dimensions are given
by O(n2δ−1H). If we relax the assumption that we can compute any h∗, the dimension

is given by O(n2δ−12(
n
2)).

Theorem 6 (MPNNs with partial RNI can approximate h∗). Let ε, δ > 0, n,H ∈ N
and a ∈ Gall. Then for all ε, δ > 0, there exists a set of parameters for an MPNN with
partial RNI that (ε, δ)-approximates Oα : G≤n

α → N restricted to graphs G ∈ G≤n
α where

Oα(G) ≤ H.

Proof sketch. The proof follows the proof of Thm. 1 from [Abboud et al., 2021]. The
main modifications we have to make to account for our graphs with node features are to

58

4.3 Further discussion

Lem. A.1. and A.3. from the appendix [Abboud et al., 2020]. In fact, the modification
of the proofs apply to any graphs with a finite set of node features as suggested by
the authors. The modification of Lem. A.3. involves additional encoding of our finite
number of node feature vectors to encode individualised graphs with finite number of
node features. We note that all our graph representations α ∈ Gall have a finite number
of node feature configurations when their size is bounded by n. The size limit prevents
LDG and LDGE from having infinitely many node features due to the injective PE func-
tion. The proof of Lem. A.1. requires modifying the MPNN to preserve the initial node
features after the first local message passing layer.

The result may appear very appealing as the only overhead for approximating h∗ is
in the additional model parameters given that random node initialisation can be done
in constant time. However, its practicality is limited by the absence of any results
concerning whether deep learning optimisers can yield parameters which find the correct
MPNN parameters, and generalisability beyond the training set. We will see that this
is the case when we apply RNI with MPNNs that we overfit and are able to achieve
significant predictive performance boost on the training set at the cost of performance
on unseen data.

There also exist many other feature augmentation techniques with empirical success for
improving the expressivity and generalisability of MPNNs as we also observe in our first
set of experiments in Ch. 5. One may also consider trying out more advanced GRL
models over MPNNs such as the methods briefly surveyed in Sec. 2.3.3, although most
of the methods come at a higher computational cost when considered in our setting.

59

60

Chapter 5

Experiments 1: expressivity and generalisability

In Ch. 3 we defined new graph representations of planning problems for use with graph
representation learning models as learned heuristic functions. In Ch. 4 we identified some
lower and upper bounds in response to the question what can we learn? In this chapter,
we conduct our first set of experiments in order to answer the following questions as to
continue the conversation from our theoretical study, and discussion in Sec. 4.3:

Does our theory match reality?

We constructed novel graph representations of planning problems with an aim to improve
on existing graphs with the goal of learning domain-independent heuristics. We also
developed a hierarchy of expressivity of such graphs illustrated in Fig. 4.1 through our
detailed theoretical discussion in the previous section. It is thus reasonable to perform
some experiments to observe whether the results and ideas also hold in practice for a
diverse set of planning tasks.

What are the empirical upper bounds?

Thm. 3 and Thm. 5 show that we cannot learn any approximation of the perfect heuristic
accurately. However, the proofs of the theorems consider the worst case scenarios of
contrived planning tasks and we suggested in Sec. 4.3.1 to relax our question and ask for
what classes of planning problems can we still learn a good approximation of the perfect
heuristic. Our experiments show that it is still possible to learn approximations of h∗

with our stronger graph representations and generalise to unseen data.

Can more powerful GRL techniques aid us?

In Sec. 4.3.2 we emphasised that our theoretical results only consider the most basic
graph neural network models, namely MPNNs. It is possible to boost expressivity of
our models with various GRL techniques from Sec. 2.3.3. In our experiments, we focus
on techniques which accrue minimal computational overhead.

61

5 Experiments 1: expressivity and generalisability

5.1 Setup

In a nutshell, our experiments perform the task of regression where the inputs are the
graph representations of planning problems and the targets are the scalar value of the
optimal cost to the goal. In this section we describe all the specifics of our experimental
setup with all the details regarding the construction of the dataset, the training splits,
model configurations and hyperparameters, the training pipeline and evaluation.

5.1.1 Dataset

In order to provide a comprehensive evaluation on the quality of our methods for the
predicting heuristic values, we require a diverse set of planning tasks and their optimal
costs from various domains. This is because a focus of our work is on learning domain-
independent heuristics as opposed to domain-dependent heuristics with the motivation
that we only have to train our model once and be able to apply it on any arbitrary
planning task. Thus by providing a variety of domains, we may prevent our model from
learning biases existent in domains as certain problems may have features dependent on
their domain which makes learning easier.

Our dataset is the subset of all planning tasks from IPC 1998 to 2018 with unit costs
where we are able to compute their optimal costs using the state-of-the-art scorpion

planner1 [Seipp et al., 2020]. We ran the solver on a cluster with Intel Xeon 3.2 GHz
CPUs, a single core, 4GB memory and a timeout of 1800 seconds. We note that it is
possible to generate more data by attempting to run other optimal planners on problems
which scorpion cannot solve with the given resources. For each optimal plan of length
n, we are able to generate n + 1 initial states s0, s1, . . . , sn−1, sn from the optimal plan
with target values n, n− 1, . . . , 1, 02 respectively. We note that it is unlikely that there
is an efficient method to randomly generate good data with labels, as it has been shown
that if we assume that NP ̸= coNP3, then there is no sample generator that can generate
good labelled data for NP-hard problems [Yehuda et al., 2020]. We refer to Sec. A.2 in
the appendix for additional details about the dataset used.

Our training and test data is a partition of this dataset. We construct our training set
to consist of 80% of the planning tasks whose target value is less than or equal to 32, and
the test set to be the remaining 20% of the planning tasks with target value h∗ ≤ 32 and
all the planning tasks with target value h∗ > 32. We may further construct a validation
set within our training set as we will describe later. Fig. 5.1 illustrates this partitioning.
Performing this train and test split allows us to measure generalisability within and also
outside our trained regression values.

1Available from https://github.com/jendrikseipp/scorpion
2Usually definitions of planning instances do not allow the initial state to be a goal. However this does
not matter for the context of learning, as providing more samples with zero h∗ labels may help our
models learn better.

3It is unknown whether these two complexity classes are equal or not.

62

https://github.com/jendrikseipp/scorpion

5.1 Setup

Train Val Test

h∗ ≤ 32 h∗ > 32

Figure 5.1: Training and test split of the IPC dataset. We further construct a validation
set from the training set for scheduling the number of training epochs.

5.1.2 Model configurations

We construct one MPNN model for each of the 7 graph representations from {SDG,
SDGE, FDG, FDGE, ASG, LDG, LDGE} as defined in Ch. 3. We omit the delete relaxation
graphs since it does not make sense to train them to learn the perfect heuristic h∗ as they
have no information about delete effects of actions. Thus, given a planning task with a
domain, initial state and goal, we can make a prediction on its optimal heuristic value
for search by converting the task into our choice of graph representation and passing it
through our MPNN.

Representations without edge labels (SDG, FDG, ASG, LDG) use the following MPNN
with update function

h(t+1)
u = σ

(
W

(t)
0 h(t)

u + max
v∈N (u)

W
(t)
1 h(t)

v

)
(5.1)

where the max is performed component wise over neighbour node representations. The
motivation for the max aggregator arises from [Velickovic et al., 2020] which empirically
shows its success in learning to imitate graph algorithms. This is also the case as
in learning value functions by [Staahlberg et al., 2022b]. Furthermore, our informal
experiments with using the sum and max aggregator show that the max aggregator is
more robust to train and generalise despite losing information [Xu et al., 2019].

Representations with edge labels (SDGE, FDGE, LDGE) on the other hand used the
relational graph convolutional networks (RGCN) [Schlichtkrull et al., 2018] modified
with a max aggregator. Given a graph representation with edge labels R, its update
function is given by

h(t+1)
u = σ

(
W

(t)
0 h(t)

u +
∑
r∈R

max
v∈Nr(u)

W(t)
r h(t)

v

)
(5.2)

where Nr(u) = {v ∈ N (u) | E((u, v)) = r} denotes the neighbours of a node induced by
edge label r.

We set the hidden dimension to be 64 across all update layers, such that W0,W1,Wr ∈
R64×64. Additional computing resources and hyperparameter search may be able to
provide better hidden dimension values depending on our task. Furthermore, both of
the MPNN models we use consist of an initial linear embedding layer W ∈ R64×n

63

5 Experiments 1: expressivity and generalisability

where n is the dimension of node embeddings of our input graph representations, and
a readout layer consisting of a mean pooling over all nodes in the graph and a two
layer MLP with 64 hidden dimension and an output dimension of 1. We further use
residual layers [He et al., 2015] to improve gradient updates during backpropagation in
the training procedure.

5.1.3 Feature augmentations

We also experiment with different feature and model augmentations to provide some in-
sight into GRL techniques which can help us in our goal of learning good approximations
of h∗ tractably. Specifically, we try

• concatenating Laplacian Positional Encodings (LPE) [Belkin and Niyogi, 2003,
Dwivedi et al., 2020] of sizes 1 and 4 to the original node features,

• concatenating Random Node Initialisation (RNI) [Abboud et al., 2021] sampled
from a normal distribution of sizes 1 and 4 to the original node features and this
is done at every iteration of training or evaluation,

• adding a Virtual Node (VN) or global graph feature through each message passing
step [Hu et al., 2020], and

• using a sum readout (SUM) for generating graph embeddings as opposed to mean.

LPE features are known to boost both expressivity and generalisation capabilities of
models on molecular datasets and graph property detection tasks. They are computed
as eigenvectors of the graph Laplacian which encode additional information about the
structure of the graph. Random node initialisation may be used to break symmetries
in the graph to improve expressivity and comes with universal theorems as discussed in
Ch. 4. One may alternatively view RNI as a method for injecting noise to the dataset
which is a common procedure done in machine learning tasks. Virtual nodes with dif-
ferent update functions are also known to improve predictive performance on molecular
and syntax tree graph datasets [Hu et al., 2020] and allow MPNNs to learn first order
predicate logic formulas with two variables and counting quantifiers [Barceló et al., 2020],
a stronger result than Lem. 1 which does not mention learning a classifier.

5.1.4 Training pipeline and hyperparameters

We perform the following training pipeline for each graph representation and correspond-
ing MPNN model described in Sec. 5.1.2 5 times to account for variance in the training
procedure. Each model has a fixed number of 16 independent message passing layers
and hidden dimension of 64. A model is trained with the Adam optimiser [Kingma
and Ba, 2015] with the default parameters described in the paper, batch size of 16 and
initial learning rate of 0.001. Our loss function is the mean squared error loss without
regularisation on the weights of the model. We schedule our learning rate by construct-
ing a validation set using 25% of the training data (or equivalently 20% of the whole

64

5.2 Results

dataset with target ≤ 32) and reducing the learning rate by a factor of 10 if the loss on
the validation set did not decrease in the last 10 epochs. Training is stopped when the
learning rate becomes less than 10−5. The model with the best weighted training and
validation loss computed by

weighted loss = (train loss+ 2× val loss)/3 (5.3)

is saved, with the idea that we do not want to overfit to either the training or vali-
dation set. After training our models, we append a rounding module such that their
outputs are integer and we can evaluate them using classification metrics. Due to the
costly training time and number of model configurations (graph representations + fea-
ture augmentations), we do not perform any hyperparameter search for the described
parameters.

5.2 Results

We recall that we have partitioned our dataset into four sections as described in Fig. 5.1.
We will evaluate our models on three of the sections: (1) the training set, (2) the test
set with h∗ ≤ 32 and (3) the test set with h∗ > 32. The motivation for evaluating on
set (1) is to provide additional insight into the expressivity of our models for learning
domain-independent heuristics. More specifically, we aim to empirically measure how
good of an approximation of h∗ we can achieve in practice. This is to fill in the gap
between the lower and upper bounds we derived in Ch. 4 and to show that Thm. 3 and
5 are not as bad as they seem. By evaluating on set (2), we test in typical machine
learning fashion how well our models generalise to data not seen from the training set
but are still from a similar distribution. The evaluation on set (3) is done to test how
well our models extrapolate to data from outside the training distribution and whether
they are actually learning to compute h∗, or selecting certain features that may help
them associate graphs with their corresponding label.

5.2.1 Expressivity

We refer to the first major row of Tab. 5.1 for macro F1 scores4 on set (1) with various
graph representation and feature augmentation configurations. We observe that with no
feature augmentations, the grounded graphs with edge labels (FDGE and SDGE) perform
best, followed by FDG and then SDG, recalling that SDG has directed edges while FDG
has undirected edges. The three worst performing graphs are the lifted graphs which
encode planning tasks more compactly and thus are more difficult to learn with. From
the lifted graphs, LDGE performs best, followed by LDG and then ASG with significantly

4The F1 score is the harmonic mean of precision and recall for binary classification. The harmonic mean
punishes extreme values of precision and recall. The macro F1 score for multiclass classification is the
average of F1 scores over each class, integer h∗ values in our case. The average is taken to account
for class imbalance.

65

5 Experiments 1: expressivity and generalisability

Table 5.1: Mean and standard deviation of macro F1 scores (scaled betweeen 0 and 100)
for different configurations of graph representations and feature augmenta-
tions on subsets of the training and testing datasets. Cells are shaded blue if
the score is greater than 50.0, with higher intensities for higher values, and
shaded red if the score is less than 50.0, with higher intensities for lower val-
ues.

Train Grounded Lifted

Augmentation SDG SDGE FDG FDGE ASG LDG LDGE

none 54.1± 8.5 99.3± 0.3 90.5± 4.1 98.6± 0.3 16.5± 3.0 47.1± 4.1 50.4± 2.3
LPE1 73.8± 1.5 99.8± 0.2 93.1± 2.8 98.8± 0.1 17.2± 1.4 43.2± 4.8 50.7± 3.3
LPE4 80.0±13.1 99.9± 0.1 96.3± 3.4 99.9± 0.1 15.6± 2.6 39.0± 2.7 46.9± 3.3
RNI1 76.9± 3.3 100.0±0.0 97.5± 2.2 99.2± 0.4 15.6± 3.2 65.3±11.3 88.4±11.5
RNI4 82.4± 6.0 99.9± 0.2 99.7± 0.2 100.0±0.1 58.3±22.1 65.2±22.5 98.7± 2.1
VN 72.7± 3.9 99.2± 1.5 95.6± 2.2 98.8± 0.1 35.7± 1.4 50.5± 6.2 51.6± 3.1
SUM 35.3± 6.9 3.4± 1.6 30.0±29.4 36.4±23.8 14.3± 4.3 32.2± 8.3 41.8± 3.8

Test (h∗ ≤ 32) Grounded Lifted

Augmentation SDG SDGE FDG FDGE ASG LDG LDGE

none 37.0± 5.4 69.4± 2.5 65.1± 3.9 71.8± 2.7 16.6± 2.9 33.3± 2.0 35.8± 0.6
LPE1 39.2± 1.9 62.7± 2.6 51.6± 4.0 72.4± 2.9 16.7± 1.1 32.2± 1.9 33.8± 1.5
LPE4 33.2± 2.6 49.8± 1.6 40.3± 2.8 61.7± 4.2 13.7± 1.9 29.4± 0.8 29.5± 1.3
RNI1 31.1± 0.6 55.1± 7.4 40.8± 9.0 55.6± 6.7 12.8± 1.7 18.0± 1.6 18.9± 0.9
RNI4 28.1± 1.4 47.6± 8.3 36.4± 3.3 52.0± 3.8 10.1± 1.8 17.5± 1.1 18.7± 1.4
VN 48.8± 2.5 71.9± 1.8 70.9± 1.9 77.4± 1.5 31.8± 1.0 36.3± 1.9 37.2± 1.2
SUM 32.1± 4.6 3.6± 2.0 25.0±23.5 31.4±18.9 13.6± 3.6 27.4± 5.9 32.7± 2.2

Test (h∗ > 32) Grounded Lifted

Augmentation SDG SDGE FDG FDGE ASG LDG LDGE

none 0.7± 0.1 1.6± 0.3 2.6± 0.7 2.7± 0.4 0.6± 0.4 1.3± 0.8 0.8± 0.2
LPE1 1.3± 0.5 1.8± 0.6 1.6± 0.8 2.4± 0.3 0.9± 0.9 1.0± 0.5 1.0± 0.3
LPE4 1.3± 0.1 1.1± 0.1 0.7± 0.1 1.6± 0.4 0.3± 0.3 1.6± 0.5 1.1± 0.2
RNI1 0.5± 0.1 1.1± 0.4 0.7± 0.6 1.4± 0.4 0.6± 0.5 0.4± 0.1 0.4± 0.1
RNI4 0.4± 0.1 1.0± 1.0 0.3± 0.1 1.1± 0.3 0.4± 0.4 0.3± 0.0 0.2± 0.0
VN 0.3± 0.1 1.4± 0.3 3.0± 2.3 1.9± 0.5 0.1± 0.0 0.4± 0.1 0.3± 0.0
SUM 13.2±13.6 0.3± 0.6 11.8±14.0 7.3± 3.0 0.3± 0.1 4.8± 1.9 7.4± 7.1

worse performance. We also note that LDGE and LDG have performance close to the
grounded SDG graph.

The ranking of the graph representations stays consistent with different feature augmen-
tations. The one exception is the case where SDGE performs significantly worse with
a sum readout. When we look into the logs, we see that the training is more unstable
than usual and our scheduler decays the learning rate too quickly, resulting in very early
stopping during training. It is possible that increasing the patience of our scheduler may
allow SDGE to achieve much better performance akin to the other grounded graphs with
sum readout.

With regards to feature augmentations, we see that concatenating node features with
random features (RNI1 and RNI4) provides a large boost to expressivity in training

66

5.2 Results

32
0

20

40

60

80

100
None

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
LPE1

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
RNI1

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
VN

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
LPE4

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
RNI4

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
SUM

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

Figure 5.2: Mean and standard deviation of accuracy per target h∗ value for test sets
with various graph representations and feature augmentations over 5 exper-
iment repeats. The y-axes indicate accuracy (%) and the x-axes target h∗

value. The vertical red line indicates the interval of the h∗ values which the
model was exposed to during training. Shaded regions indicate one standard
deviation from the mean.

scores. The added noise makes the graphs easier to distinguish as discussed in Thm. 6.
However its generalisation capabilities are limited by the fixed choice of hyperparameters,
namely due to the short patience introduced by the learning rate scheduler. Informal
experiments with greater patience provides much longer training times but better gener-
alisation capabilities, similarly to results described in the original paper [Abboud et al.,
2021]. Laplacian positional encodings (LPE1 and LPE4) also improve expressivity given
that they inject graph structure information that MPNNs may not be able to detect by
themselves. Increasing the size of RNI and LPE features generally leads to improved
performance. Virtual nodes also aid with expressivity by allowing nodes to access infor-
mation about the global graph feature during each layer. We notice that a sum readout
results in significantly worse scores due to the difficulty of training with them. We note

67

5 Experiments 1: expressivity and generalisability

that in theory sum readouts are more expressive than mean readouts [Xu et al., 2019]
and lead to better generalisation as we will discuss below.

5.2.2 Generalisability

We refer to the second and third major rows of Tab. 5.1 for a quick numerical summary
of generalisation performance, corresponding to sets (2) and (3). Fig. 5.2 provides plots
of prediction accuracy conditioned on true h∗ values, and Fig. 5.3 provides confusion
matrices to illustrate the actual predictions made by our models on the two test sets,
with entries aggregated from all 5 repeats of the experiment.

The i-th row of a confusion matrix corresponds to samples with label h∗ = i, while
the j-th column correspond to samples which the model predicts h∗ = j. The i, j-th
entry of the matrix counts the number of samples with label i which the model makes
a prediction of j. Thus, higher counts on the diagonal of the matrix indicate better
performance, counts on the bottom left of the matrix indicate underapproximations of
h∗, and counts on the bottom right of the matrix indicate overapproximations.

Performance on seen class of labels (h∗ ≤ 32)

For generalisation performance on set (2), the ranking of graph representations remain
the same as when we evaluate them on the training sets, with order from best to worst
FDGE, SDGE, FDG, SDG, LDGE, LDG, ASG. Again, we see that the main indicators of
performance are whether the graph representations have edge labels, and whether they
are grounded or not. We also note that FDR representations provide more information
than grounded STRIPS representations as they explicitly encode mutex variables which
MPNNs may not be able to learn. Furthermore, generalisation performance when we
consider a sum readout is significantly worse when we measure with F1 or accuracy
metrics and that their variance over several experiments is high which suggest that
training them is more difficult. However, F1 and accuracy scores may not be a useful
metric for evaluating learned heuristic functions, as we see in Fig. 5.3 that almost all
configurations learn a reasonable approximation of h∗ on set (2) as the confusion matrices
exhibit straight lines down the diagonal for samples with h∗ ≤ 32. We note that the
accuracy of the approximations are given by the intensities of the lines where higher
intensities correspond with higher confidence of our predictions.

Performance on unseen class of labels (h∗ > 32)

Now we look at whether our models can extrapolate to samples in set (3). By referring
to Fig. 5.2, we see that most of our models witness a sharp decline in performance as
we increase the true labels of the samples. The exceptions to this are an instance of an
MPNN with FDG and a virtual node, and the mean of the models with a sum readout
which are able to extrapolate with a lower decline in performance as we increase the
true labels. To illustrate the outlier FDG model, we refer the reader to Fig. B.1 in the
appendix where we plot the maximum accuracies over the 5 experiment repeats.

68

5.2 Results

None LPE1 LPE4 RNI1 RNI4 VN SUM

SDG

SDGE

FDG

FDGE

ASG

LDG

LDGE

Figure 5.3: Confusion matrices of predicted and true heuristic values with various model
configurations. Training was done on data with target heuristic value h∗ ≤ 32
(one third of the way down the rows and columns of the matrices). The y-axes
correspond to the true label, and the x-axes the predicated label. Both axes
are in the range [0, 96] where values increase down the y-axes and increase
from left to right of the x-axes.

The reasoning for steeper decline in performance of mean readout models lose informa-
tion during the average of node features in its readout which tend to cause overfitting
to the seen labels. Taking averages usually also lead to underestimating values as illus-
trated by the following example. Consider two graph representations G1 and G2 of the
same planning problem where G1 is a subgraph of G2. We have that the nodes that
are in G2 but not in G1 are all redundant isolated nodes. A mean readout graph will
assign different embeddings to both graphs as they take the average of the node features,

69

5 Experiments 1: expressivity and generalisability

whereas a sum readout graph will be able to assign the same embeddings if it learns to
assign zero features to the isolated nodes. This intuition is illustrated in Fig. 5.3 where
the predictions of the mean readout models underestimate h∗ outside the h∗ it has seen
during its training. On the other hand, sum readout models are able to extrapolate
reasonably well, illustrated by the straight line down the diagonal.

Furthermore, we point out that edge labelled graphs tend to extrapolate worse than
their non edge labelled counterparts in some cases. This may be attributed to their
higher expressivity and weight parameters which cause them to overfit to the set of seen
h∗ values, and suggests that a hyperparameter search may improve their generalisation
performance.

Lastly, we recall that sum readout graphs are less robust during training as seen with
their high variance over several experiments. When viewing the confusion matrices, we
note that SDG and certain instances of FDG train poorly and is stopped by the learning
rate scheduler prematurely. This is indicated by the vertical beams in the corresponding
confusion matrices as the models predict a small range of values for all samples.

5.2.3 Discussion

We now return to answer the questions we asked at the beginning of the chapter in order
to complete the empirical analysis of our graphs:

Does our theory match reality?

Our theory was concerned with studying the expressivity of our graph representations in
combination with MPNNs by focusing on the question what can we learn? The results
do not explicitly say anything about the expected performance and generalisation capa-
bilities of our models after the process of training on a dataset through the optimisation
of a loss function. However, we do note that the experimental results align well with the
information proposed by our theorems. Namely, the hierarchy of expressivity in Fig. 4.1
is observed in the evaluation of the trained models on both the training and unseen
data on the same range of h∗ labels. Since our theorems do not mention anything about
generalisation, the results on the unseen data with unseen h∗ labels do not contradict
the theory.

What are the empirical upper bounds?

The high evaluation scores of the grounded graphs SDGE, FDG, and FDGE on the training
set highlighted in Fig. 5.1 suggest that it is still possible to learn good approximators of
h∗. Referring to the evaluation of the models on unseen data with h∗ ≤ 32 in Fig. 5.3,
we also see that the approximations almost always differ from h∗ by 2. When we use a
sum readout, the models extrapolate to h∗ values of up to at least 96 with reasonable
approximation as indicated by the diagonal lines in the confusion matrices.

70

5.2 Results

We do note that the empirical results of these sets of experiments have its limitations.
More specifically, the dataset may not be a good representation of all possible planning
tasks since it only contains problems which were able to be solved optimally under given
resource constraints, and the models were all trained and evaluated using the same set
of hyperparameters. The picture may differ if we allow for hyperparameter tuning of
our models which could improve the results, or conversely if we solved more difficult
planning tasks to use as training samples the results may look worse. Furthermore, with
more computational resources we can perform domain-independent heuristic evaluation
in which we train on a specific set of planning domains and evaluate on unseen domains.
Instead, we used our computational resources to evaluate domain-independent heuristics
for search directly later in Ch. 7.

Can more powerful GRL techniques aid us?

Our results suggest that more powerful GRL techniques may aid us in improving the
expressivity of our models as highlighted with the improved performance on the training
set. However, with the exception of virtual nodes, they do not aid us in generalisation
to unseen data, suggesting that they are causing our models to overfit to features rather
than learning how to compute h∗ for arbitrary planning instances. It could be worth
examining more advanced general case GNNs from the literature although we note that
their evaluation is typically done on such as molecules or social networks which may
easier to identify features correlated with their target labels, in contrast to our graph
representations of planning domains which require long range reasoning over graphs in
order to learn how to compute h∗.

71

72

Chapter 6

The GOOSE framework

In Ch. 3, we have constructed graph representations of planning tasks with which we
can use to learn heuristics. Following from this, in Ch. 4 and 5 we theoretically and
empirically studied the capabilities and limits of using our graphs alongside MPNNs
as learned heuristic functions. In this chapter, we introduce the GOOSE framework in
Sec. 6.1 and then describe practical optimisations we have to consider to make learned
heuristic functions feasible for search in Sec. 6.2.

6.1 Learning and planning

Our general GOOSE framework for solving satisficing planning problems consists of two
core components:

1. a learner which constructs graph representations of planning instances for use with
a corresponding learning method which accepts graph inputs, and

2. a planner which uses our learner component as a heuristic function to guide a
heuristic search algorithm.

Given a graph representation G chosen from Ch. 3 and a graph representation learning
model such as an MPNN FΘ with parameters Θ, we have a heuristic function h(s) =
FΘ(G(Π)) where Π = ⟨S,A, s,G⟩ is the planning task associated with s. The graph
representation should match the corresponding planning formalism it is defined over.
The MPNN in h can be trained such that we are learning either domain-dependent or
domain-independent heuristics as discussed in Sec. 2.2.4.

Then we can use our learned heuristic function h in any heuristic search algorithm
specified by our planner component. We also note that the planner component should
transform the planning problem into a formalism compatible with G. In the remainder

73

6 The GOOSE framework

of the chapter, we discuss modifications of existing heuristic search algorithms in order
to better suit GOOSE.

6.2 Optimising heuristic evaluation

One of the main weaknesses of neural network methods for learning heuristic functions
is their slow evaluation time. This sometimes outweighs the speedups gained from the
increased informativeness of the learned heuristics and fewer expansions and evaluations
during search. Although GPUs are often used to massively parallelise and speedup the
training of neural networks and their evaluations on objects with large vector represen-
tations such as images, this is not the case for previous works on constructing neural
networks to estimate heuristic functions. The main reason for this is that neural net-
work GPU utilisation is low when evaluating on states sequentially and since there is
a nontrivial cost of transferring data between the CPU and GPU, works [Shen et al.,
2020, Toyer et al., 2020] have noted that evaluating neural networks with GPUs does
not result in a speedup and may even slow down evaluation.

6.2.1 Background of GPU usage and parallelisation in search

A natural remedy to the slow evaluation is to batch as many evaluations with the GPU as
seen with Batch Weighted A* Search (BWAS) [Agostinelli et al., 2019]. The authors used
batched neural network heuristic evaluations for the Rubik’s cube problem in Weighted
A∗ by expanding the front N nodes of the search queue at every iteration at once as
opposed to 1. This idea is not new and was first studied for general best first search
algorithms with k-best first search (k-BFS) [Felner et al., 2003]. Although this reduces
the average time spent per heuristic evaluation, most of the evaluations may be wasted
as it is possible that the next 2nd to Nth nodes in the queue may never be expanded in
the sequential version of the algorithm. To give an extreme example, with the perfect
heuristic h∗, the number of expansions performed by GBFS is exactly equal to the
length of the plan. Thus, increasing N naively may not be the best use of parallelisation
in search as there are costs in parallelisation such as the sequential cost of expanding
the nodes and moving data to and from the GPU. Furthermore, we note that batching
expansions produces outputs different to the corresponding sequential algorithm. Thus,
the same batching method employed in A∗ with admissible heuristics no longer return
plans with optimality guarantees.

Nevertheless, for an inconsistent heuristic it is possible to view N as an exploration
parameter, since a node further back in the queue may be useful but will not be expanded
in sequential search for a while due to reliance on the heuristic to guide search. This
in turn means we can view sequential search as a purely exploitative method in the
exploration vs. exploration framework commonly discussed in RL but also leveraged in
the search community [Xie et al., 2014, Lipovetzky and Geffner, 2017]. Thus instead of
viewing batching as a method to speed up heuristic evaluation, we also can view it as a
regulariser during search when we have an unreliable heuristic. This coincidentally better

74

6.2 Optimising heuristic evaluation

benefits learned heuristics which do not have any theoretical guarantees and which also
profit greatly from the speedup of parallelisation via GPUs in comparison to classical
heuristic methods whose parallelisation is usually much more limited, namely by the
number of available threads and cores.

However, for the sake of this thesis and constraints on computational resources and
evaluation time, we focus on parallel optimisations for search algorithms which have
the same expected output as the sequential versions of the algorithms. We note that
our parallelisation methods for search are intended for speeding up evaluation of neural
network heuristics by optimising ‘useful’ GPU utilisation as opposed to parallelisation
for multi-core processors for which there is a much more extensive literature.

Multi-core processor parallelisation methods focus on distributing the search space over
different processors and communicating information about local open and closed lists.
A main bottleneck with such parallelisation methods is the need to communicate search
information between processors. Abstractions can be used to aid in detecting duplicate
states and reduce the number of synchronisation points [Zhou and Hansen, 2007, Burns
et al., 2010]. Hashing nodes to decide which processor’s closed list one should go to can
help with load balancing and asynchronous communication [Evett et al., 1995, Kishimoto
et al., 2013]. We do note that there exist parallel heuristic search algorithms using hand
crafted domain-specific heuristics for single [Zhou and Zeng, 2015] and multiple [He
et al., 2021] GPUs with several shared open lists.

6.2.2 Parallelised lazy search

We first provide a parallel algorithm for lazy search with a focus on maximising ‘useful’
GPU utilisation. As we recall from Sec. 2.2.1, lazy GBFS is similar to the canonical
eager GBFS but with delayed heuristic evaluation: we evaluate the heuristic of a node
when it is popped from the queue rather than at the moment it was generated. In turn,
the priority value of a state in the queue is given by the heuristic value of its parent
node rather than its own heuristic value as in eager GBFS.

One way to parallelise lazy search is to batch heuristic evaluation of nodes in the queue.
For example, once we pop a node from the queue we have to compute its heuristic value,
but we may also do so with a few other states at the front of the queue whose heuristic
has not been evaluated yet. However, batching as many heuristic evaluations as we can
may not contribute to any speedups since a state evaluated in the queue may never
be popped from the queue. Fig. 6.1 illustrates this case. Given that there are costs
to parallelisation such as synchronisation, converting states to graphs, and moving the
corresponding graph data into the GPU, naive batching may result in slower performance
than sequential evaluation. To help with notation, we thus define an evaluation to be
useful if the state which was evaluated will eventually be popped from the queue and
expanded, and useless otherwise. For example in the sequential case where the batch
size is always 1, every evaluation is useful.

One method to alleviate this issue is to change the batch size in real time to maximise the

75

6 The GOOSE framework

(1) (A,?,5) (B,?,6) (C,?,6) (D,?,7) (E,?,9)

(2) (A,3,5) (B,1,6) (C,9,6) (D,1,7) (E,?,9)

(3) (F,?,3) (G,?,3) (H,?,3) (I,?,3) (B,1,6) (C,9,6) (D,1,7) (E,?,9)

Figure 6.1: Greedy batched heuristic evaluation is not always useful. Each box represents
a node in the queue of the form (α, h, h′) where α is the name of the state, h
is the heuristic of the state and ? if not evaluated yet, and h′ is the heuristic
of the parent node’s state. The priority of the queue is defined by h′.
(1) The current state of the queue. (2) Batch evaluate the first 4 nodes in
the queue. (3) The successors of node A are inserted into the front of the
queue as their priority is given by h(A) = 3 which is lower than the priority
of any other node in the queue.

number of useful evaluations. The case illustrated in Fig. 6.1 does not necessarily happen
all the time and one usually encounters plateaus or local minima during search depending
on the heuristic. These are known as uninformative heuristic regions (UHRs) [Xie et al.,
2014]. In this case, batching is extremely helpful as it speeds up the process of getting
out of such UHRs as all evaluations are useful. Thus, we present Alg. 7 for detecting
when increasing batch size does not significantly increase useless evaluations.

The main component for detecting when to increase the batch size is in Lines 10 to 19
which keeps count of the number of nodes popped from the queue since the last time
we performed batched heuristic evaluation. Then we either increase or decrease the
batch size depending on whether all previously batched heuristic evaluations were useful
or not, which occurs when all evaluated states were popped from the queue before an
unevaluated state gets popped. One assumption we make for this method is that the tie
breaking method for ordering nodes with the same heuristic values in the priority queue
is by considering the order which nodes enter the queue.

In practice, we may create and tune additional parameters to modify the rate of change
of batch sizes, and relax the condition that all batched heuristic evaluations were useful
to some percentage being useful.

76

6.2 Optimising heuristic evaluation

Algorithm 7: Adaptive Batched Lazy GBFS

Data: Planning problem ⟨S,A, s0, G⟩; heuristic function h; max batch size U .
1 OPEN← ∅
2 s.closed← ⊥, ∀s ∈ S
3 s0.h← h(s0)
4 OPEN.push(s0, h(s0))
5 n← 1
6 iters← 0
7 while OPEN ̸= ∅ do
8 s← OPEN.popFront()
9 s.closed← ⊤

10 if s.h = ? then
11 if iters ≥ n then
12 n← n · 2
13 else
14 n← ⌊n / 2⌋
15 n← max(1,min(n,U))
16 iters← 0
17 s′.h← h(s′) in parallel, ∀s′ ∈ {s} ∪ {front n nodes in OPEN with s.h = ?}
18 else
19 iters← iters + 1

20 for a ∈ A do
21 t← a(s)
22 if t ̸= ⊥ and t.closed = ⊥ then
23 if t ∈ G then
24 return Extract plan from t

25 t.h← ?
26 OPEN.push(t, s.h)

27 return No solution

77

6 The GOOSE framework

6.2.3 Parallelised eager search

The most obvious method to perform parallelisation of heuristic evaluations for eager
search is by parallelising the heuristic evaluation of successor nodes whenever we expand
a node as outlined in Alg. 8 for GBFS. The main drawback to this method is that the
parallelisation is bounded by the branching factor of our problem. For example in the
n2 − 1 sliding puzzle or a grid based path finding problem, we have at most 4 actions
to perform at any state, meaning that the maximum theoretical speedup we gain from
batching evaluations is 4.

Algorithm 8: Batched Eager GBFS

Data: Planning problem ⟨S,A, s0, G⟩; heuristic function h.
1 OPEN← ∅
2 s.closed← ⊥, ∀s ∈ S
3 OPEN.push(s0, h(s0))
4 while OPEN ̸= ∅ do
5 s← OPEN.popFront()
6 s.closed← ⊤
7 T ← {a(s) ̸= ⊥ | a ∈ A, a(s).closed = ⊥}
8 for t ∈ T do
9 if t ∈ G then

10 return Extract plan from t

11 t.h← h(t) in parallel, ∀t ∈ T
12 for t ∈ T do
13 OPEN.push(t, t.h)

14 return No solution

We could alleviate this issue by incorporating the adaptive batch size method used for
batched lazy search to the eager case in combination with k-BFS. More specifically, we
would keep a variable integer k and in each iteration of the while loop, we would expand
the first k nodes in the queue and batch their successors’ heuristic evaluation. Then we
would increase or decrease k by observing the local topology of the current search space
in order to maximise useful evaluations. For example, if many nodes from the previous
batch evaluation were added to the back of the queue then this is an indicator that we
are in or approaching an UHR, in which case we would want to increase k. On the other
hand if some nodes are added to the front of the queue, the heuristic may still seem to
be informative so increasing k may lead to useless evaluations.

78

Chapter 7

Experiments 2: inference for search

In Ch. 3 we constructed a set of novel graph representations for planning tasks and eval-
uated the predictive capabilities of such graphs via MPNNs theoretically and empirically
in Ch. 4 and 5 respectively. We then introduced the GOOSE framework and discussed
intelligent methods for speeding up neural network heuristic evaluations during search
in Ch. 6 with GPUs that go beyond naive methods discussed in the literature.

In this chapter we put together everything we have explored and perform a comprehen-
sive set of experiments to evaluate how effective GOOSE is at learning to solve planning
tasks quickly. We further perform a comprehensive evaluation of our models in compari-
son to classical heuristics in different learning settings and over a diverse set of domains,
with results suggesting that our model is the state-of-the-art learner for planning in both
domain-dependent and domain-independent learning settings.

Table 7.1: Summary of domains considered, objects whose number can vary, optimal plan
cost if it can be computed in polynomial time or complexity for computing
the optimal plan, and minimal and maximal branching factor during search.

Domain Objects
Opt. plan length/ Branching
Opt. complexity Min. Max.

Blocksworld b blocks NP 1 b+ 1
Ferry c cars, l locations 4c l − 1 c+ l − 1
Gripper b balls 3b 1 b+ 1
Hanoi d discs 2d − 1 2 3
n-puzzle grid size n NP 2 4
Sokoban b boxes, w walls, grid size n PSPACE 1 4
Spanner s spanners, n nuts, l locations 2n+ l + 1 0 sn
VisitAll grid size n n2 − 1 2 4
VisitSome grid size n NP 2 4

79

7 Experiments 2: inference for search

7.1 Benchmark domains

We begin the chapter by describing the benchmark domains we use in our experiments. It
is important to understand the semantics of the domains in order to better understand
how and why our models and the baselines perform in a certain way. We use the
benchmarks used in the evaluation of STRIPS-HGN [Shen et al., 2020] which could be
parsed by our planner with some additional benchmarks. Key information about the
considered domains are summarised in Tab. 7.1.

7.1.1 Blocksworld

The Blocksworld domain consists of a set of blocks stacked to form one or more towers
on top of a table and the objective of a planner is to stack and unstack blocks to achieve
a target configuration of towers. There are many variants of the Blocksworld domain
and we consider the canonical deterministic 4-operation Blocksworld domain where the
possible moves for an agent is to

1. stack a block on top of another block,

2. unstack a block from another block,

3. pick-up a block from the table, or

4. put-down a block onto the table.

It is simple to solve any Blocksworld problem by unstacking and putting down all the
blocks in the initial state onto the table and then picking up and stacking them in order
to achieve the goal configuration. This provides us an upper bound on the optimal plan
length as 4b where b is the number of blocks in the instance where each block goes through
a sequence of unstack, put-down, pick-up and stack. On the other hand, finding an
optimal plan is NP-hard [Chenoweth, 1991, Gupta and Nau, 1991, 1992]. We refer
to [Slaney and Thiébaux, 2001] for a comprehensive survey of the Blocksworld domain,
including efficient algorithms for satisficing and optimal Blocksworld and generating1

difficult Blocksworld instances.

Figure 7.1: A Blocksworld instance with a description of the optimal plan, from [Slaney
and Thiébaux, 2001]. The move action encapsulates some sequence of actions
from {unstack, put-down, pick-up, stack}.

1The generator is available at https://gitlab.com/thiebaux/blocks-world-generator-and-planner

80

https://gitlab.com/thiebaux/blocks-world-generator-and-planner

7.1 Benchmark domains

7.1.2 Ferry

Ferry is a simple transportation domain where a planner has to move c cars each from
their initial location to a specified location with a single ferry in a world containing l
locations. The possible moves for a planner to execute are

1. sail the ferry which may or may not carry a car from one location to another,

2. board a single car onto the ferry, and

3. debark a loaded car at the current location.

It is possible to see in general a tight upper bound on the optimal plan length of any
Ferry instance is 4c since for each car the ferry has to sail to the location of the car,
board it, sail to the goal location, and then debark the loaded car. The exact plan
length varies with whether the cars are already at the goal location and if the ferry is
initially next to a car.

7.1.3 Gripper

Gripper can be viewed as another transportation problem involving n balls and 2 rooms
where all the balls are located in Room A and the goal is to move all the balls into room
B. The main difference to Ferry is that the number of locations is fixed and that we have
two grippers meaning that we can pick up 2 objects before moving. The possible moves
for a planner to execute are

1. move the agent from one room to another,

2. pick up a ball in the current room with one of the two grippers, and

3. drop a ball in the current room in one of the grippers.

The optimal plan length for an even number of balls is 3n−1 and 3n for an odd number
of balls.

Figure 7.2: A gripper instance with two balls and a description of the optimal plan,
from [Shen et al., 2020].

81

7 Experiments 2: inference for search

7.1.4 Hanoi

The Tower of Hanoi, or simply Hanoi, is a simple puzzle game consisting of three pegs
and a set of d discs all with different diameters. In the initial state, the discs are stacked
onto the first peg with decreasing diameter size and the objective of the problem is to
move the discs such that they are all stacked onto the last peg again with decreasing
diameter size. However, in any move, we cannot have a disc stacked on another disc
with a smaller diameter. The optimal plan for an instance with d discs described in this
way has length 2d − 1 and can be computed in a recursive manner. In practice, one can
construct more than one problem for any fixed d such that the difficulty of the problems
does not grow too quickly (exponentially).

Figure 7.3: A real life Tower of Hanoi instance, from https://en.wikipedia.org/wik

i/Tower_of_Hanoi.

7.1.5 n-puzzle

The 15 puzzle is another real life puzzle game consisting of 15 tiles on a 4 by 4 grid
where the goal is to slide the tiles using the single empty space to achieve a certain
configuration, usually with all the numbered tiles in order. We can generalise the puzzle
by using an n by n grid and refer to it as the (n2 − 1)-puzzle domain. It is NP-hard
to solve optimally [Ratner and Warmuth, 1986] and an upper bound for the optimal
plan is given by O(n3) [Parberry, 1995]. We note that the n-puzzle can be seen as
a special case of undirected multi-agent pathfinding (MAPF) which itself is a special
case of directed multi-agent pathfinding (diMAPF) which has recently been shown to be
NP-complete [Nebel, 2022].

Figure 7.4: A 15 puzzle instance, from https://en.wikipedia.org/wiki/15_puzzle.

82

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://en.wikipedia.org/wiki/15_puzzle

7.1 Benchmark domains

7.1.6 Sokoban

Sokoban is based on a video game where a player has to push b boxes around a warehouse
to their target locations. The warehouse is represented by an n by n grid and there are
some walls representing untraversable regions. A player can either move one step in
a cardinal direction to an unoccupied location or push a box one step, again to an
unoccupied location. Since we cannot pull boxes, it is possible for Sokoban instances
to have dead ends such as when a box gets pushed into a corner. The problem is
PSPACE-complete [Culberson, 1997], even in the case where there are no walls [Hearn
and Demaine, 2005].

7.1.7 Spanner

Spanner consists of a one way corridor with l locations excluding the start (shed) and
end (gate), littered with s spanners on the ground and n nuts at the gate. An agent
is initially at the shed and has to pick up spanners to fix the nuts at the gate, where
a spanner can only be used to fix one nut before it breaks. Thus instances are only
solvable for s ≥ n. The three possible types of actions a planner can perform are

1. walk, move the agent one step,

2. pickup-spanner which picks up one spanner, and

3. tighten-nut which fixes a nut but exhausts one spanner.

The domain was constructed for the learning track of the 2011 IPC and was constructed
such that delete relaxation heuristics perform poorly as they do not account for the
directed search space and breakable spanners. The optimal plan, if one exists, has
length 2n + l + 1, with n pickup-spanner and tighten-nut actions, and l + 1 walk

actions. The maximum branching factor is sn in the case we picked up all the spanners
and are beginning to fix the nuts. For large s and n, this branching factor becomes a
large bottleneck for eager search where we have to evaluate all sn successor nodes even
though they are all symmetric in the sense that it does not matter what spanner you
use to fix which nut.

Figure 7.5: A spanner instance with 5 spanners, 3 nuts and 3 locations.

7.1.8 VisitAll

VisitAll is a domain in the classical tracks of IPC 2011 and 2014 which consists of an n
by n grid and the goal of the problem is to visit all the locations of the grid, given some
random starting point. VisitAll is another domain in which delete relaxation heuristics

83

7 Experiments 2: inference for search

Figure 7.6: VisitAll (left) vs VisitSome (right). You have to either visit all or some of
the goal locations marked in yellow, starting from some initial state marked
in green.

perform poorly due to large uninformative heuristic regions (UHRs). The optimal plan
cost is n2 − 1 and is trivially solved by the goal count heuristic with GBFS.

7.1.9 VisitSome

We name VisitSome as the variant of VisitAll where we only have to visit a fraction of the
locations on the grid. It is equally difficult for delete relaxation heuristics, and slightly
harder for the goal count heuristic as it requires some searching due to goal locations
not being adjacent to one another. One should note that this is a special case of the
Hamiltonian path problem which is NP-hard to solve optimally [Garey and Johnson,
1979].

7.2 GOOSE setup

We recall that GOOSE consists of a learner component which constructs graph represen-
tations of planning instances for use with corresponding learning method which accepts
graph inputs, and a planner which uses our learner component as a heuristic function
to guide a heuristic search algorithm. We outline the implementation details of the two
components for our experiments below.

7.2.1 Learner

We use the MPNN models described in Ch. 5 in conjunction with the graph represen-
tations from {SDG,SDGE,FDG,FDGE, LDG, LDGE} from Ch. 3 as the first component
of our GOOSE framework. We recall the update equations of the MPNNs for graph
representations without and with edge labels respectively by

h(t+1)
u = σ

(
W

(t)
0 h(t)

u + max
v∈N (u)

W
(t)
1 h(t)

v

)
(5.1)

h(t+1)
u = σ

(
W

(t)
0 h(t)

u +
∑
r∈R

max
v∈Nr(u)

W(t)
r h(t)

v

)
. (5.2)

We also experiment with both mean and sum readouts but do not use feature augmen-
tations. We describe our training setup later in Sec. 7.3.

84

7.3 Experimental setup

7.2.2 Planner

The search algorithm is the second component of GOOSE. We use our trained MPNN
models to provide heuristic estimates for both eager and lazy GBFS search in the C++
Powerlifted planner (PWL)2 [Corrêa et al., 2020]. The models are implemented using
the PyTorch Geometric 11.3 library [Fey and Lenssen, 2019] and called from the planner
with pybind11 [Jakob et al., 2017].

We leverage GPUs alongside the batched heuristic evaluation algorithms described in
Alg. 8 and Alg. 7. We note that problems with higher branching factors for the eager
case or heuristics with large UHRs for the lazy case are expected to see a greater speedup
from utilising GPUs. All experiments are run on a cluster with single AMD EPYC 7282
2.8GHz CPU cores and single NVIDIA GeForce RTX 3090 GPU within a Singularity
container with CUDA 11.6.

7.3 Experimental setup

Our goal is to construct learned heuristic functions to aid speed up search in unseen
settings. We can evaluate our GOOSE framework in two dimensions of difficulty, noting
that solving more difficult tasks allows greater usage of such models. The first dimension
of difficulty is learning either domain-dependent and domain-independent heuristics as
discussed in Sec. 2.2.4. The second dimension is evaluating on instances with the same
range of sizes as seen in the training samples when considering domain-dependent heuris-
tics, in comparison to evaluating on instances of arbitrarily large sizes. In the learning
domain-independent heuristics setting, this amounts to difficulty varying in the sizes of
the problems. Tab. 7.2 summarises the degrees of difficulty of various taxonomies of
learning heuristics.

Table 7.2: Varying degrees of difficulty of learning for planning evaluation ranked from
easiest to hardest.

difficulty
−−−−−−−→

Domain-dependent Domain-independent

d
iffi

cu
lt
y

←
−−
−−
−−
− Seen/small sizes 1 3

Unseen/large sizes 2 4

Domain-dependent vs domain-independent training

The first dimension is by performing either domain-dependent or domain-independent
training. Domain-dependent training consists of learning heuristic functions for a specific
domain and testing on unseen instances from the same domain. Domain-independent

2Available at https://github.com/abcorrea/powerlifted

85

https://github.com/abcorrea/powerlifted

7 Experiments 2: inference for search

training consists of learning heuristic functions from a set of domains but testing on
instances from a domain not seen in the training set. The former case is generally what
is done in the learning for planning community and is also the norm for reinforcement
learning as it is an easier problem to solve and methods in this direction are competitive
in the number of expanded nodes with classical heuristics for some domains, although not
so much the case with runtime. Domain-independent training is a difficult task as models
have to learn about the semantics of planning problems instead of ‘tricks’ in specific
domains in order to generalise effectively. To the best of our knowledge, STRIPS-HGN
is the only model which was extensively evaluated with domain-independent training,
but we note that the underlying model is limited by the a priori fixed size of action
preconditions and effects.

A motivation to consider research in domain-independent training is that (1) compute
and (hence) data is becoming cheaper and more accessible, and (2) there exist domain-
independent training, termed domain adaptation, in other fields of learning such as
computer vision. We note that methods and ideas from domain adaptation and zero
shot learning may be applied for our setting but may require further thought due to the
more abstract and unstructured setting of planning problems compared to images.

Seen/small vs unseen/large problem sizes

The second dimension, assuming domain-dependent training, is testing on the sizes of
the problem. For example, with seen size evaluation, we train on small Blocksworld
instances of up to 10 blocks and test on unseen Blocksworld instances again of only up
to 10 blocks. The reinforcement learning analogy is learning specifically to play or solve
board or video games such as Go [Silver et al., 2016] or Starcraft [Vinyals et al., 2019]
really well. However, it may be the case that training data for large problems is difficult
to achieve and it might be easier to get training data for smaller problems and then
generalise to solve the larger instances. By being able to generalise to larger instances,
we may also be able to handle unexpected cases not seen in the training data. As a
concrete example, we again train on Blocksworld instances of up to 10 blocks but now
test on unseen Blocksworld instances with more than 10 blocks.

7.3.1 Testing instances

The testing instances are different for the seen/small sizes and unseen/large sizes cat-
egories, described in Tab. 7.3 for each domain. We do not differentiate the instances
based on whether we performed domain-dependent or domain-independent training.

7.3.2 Training pipeline and model selection

We want to train one MPNN model for each graph representation in order to evaluate
with search. We will describe how we train a model for each of the 4 evaluation methods.

For each benchmark domain, we specify the training set described in Tab. 7.3 for

86

7.3 Experimental setup

Table 7.3: Planning domains used for our evaluation with training, validation and test
set splits. We note that the validation and test sets do not have any associated
ground truth values such as an optimal plan or h∗. The symbol ∗ indicates
overlap with training set, † indicates not all problems were solved from the
description.

Domain Split Instances Description

Blocksworld

Train 480 60 × {3, . . . , 10 blocks}
Val 3 3 × {11 blocks}
Test (small) 40 5 × {3, . . . , 10 blocks}
Test (large) 90 5 × {15, 20, . . . , 100 blocks}

Ferry

Train 810 10 × {2, . . . , 10 locations} × {2, . . . , 10 cars}
Val 3 3 × {(11, 11) (locations, cars)}
Test (small) 125 5 × {2, 4, . . . , 8, 10 locations} × {2, 4, . . . , 8, 10 cars}
Test (large) 90 5 × {(15, 15), (20, 20), . . . , (100, 100) (locations, cars)}

Gripper

Train 10 {1, . . . , 10 balls}
Val 1 {11 balls}
Test (small) 10∗ {1, . . . , 10 balls}
Test (large) 18 {15, 20, . . . , 100 balls}

Hanoi

Train 8 {3, . . . , 10 discs}
Val 1 {11 discs}
Test (small) 8∗ {3, . . . , 10 discs}
Test (large) 18 {15, 20, . . . , 100 discs}

n-puzzle

Train 127† 10 × {2 grid size} , 60 × {3, 4 grid size}
Val 3 3 × {5 grid size}
Test (small) 20 10 × {3, 4 grid size}
Test (large) 50 10 × {5, 6, 7, 8, 9 grid size}

Sokoban

Train 300 50 × {5, 7 grid size} × {2 boxes} × {3, 4, 5 walls}
Val 3 3 × {8 grid size} × {2 boxes} × {3 walls}
Test (small) 30 5 × {5, 7 grid size} × {2 boxes} × {3, 4, 5 walls}
Test (large) 90 3 × {8, 9, 10, 11, 12 grid size} × {2, 3 boxes} × {3, 4, 5 walls}

Spanner

Train 810 10 ×
⋃

n=1,...,10{(s, n) (spanners, nuts) | s = n, . . . , 10}
Val 3 3 × {(11, 11) (spanners, nuts)}
Test (small) 75 5 ×

⋃
n=2,4,...,8,10{(s, n) (spanners, nuts) | s = n, n + 2, . . . , 8, 10}

Test (large) 90 5 × {(15, 15), (20, 20), . . . , (100, 100) (spanners, nuts)}

VisitAll

Train 160 20 × {3, . . . , 10 grid size}
Val 3 3 × {11 grid size}
Test (small) 40 5 × {3, . . . , 10 grid size}
Test (large) 90 5 × {15, 20, . . . , 100 grid size}

VisitSome

Train 160 20 × {3, . . . , 10 grid size}; goals = 1
10

(grid size)2

Val 3 3 × {11 grid size}; goals = 1
10

(grid size)2

Test (small) 40 5 × {3, . . . , 10 grid size}; goals = 1
10

(grid size)2

Test (large) 90 5 × {15, 20, . . . , 100 grid size}; goals = 1
10

(grid size)2

both seen and unseen size testing in the domain-dependent training case. For the
domain-independent training case, for each testing domain, we use the same train-
ing dataset consisting of the dataset from Sec. 5.1 excluding all testing domains, i.e.
{Sec. 5.1 domains} \ {Blocksworld, . . . ,VisitSome}. The training pipeline and hy-
perparameters are fixed and the same for all evaluation methodologies as described in
Sec. 5.1. More specifically, training time depends on the learning rate scheduler with
termination once learning rate becomes too small. However, in a majority of the exper-
iments, training takes no longer than 10 minutes. We reiterate that no hyperparameter
tuning is performed on the models or the optimiser.

Given that training a model is a stochastic process and generalisation performance may

87

7 Experiments 2: inference for search

vary significantly based on the seed of the training pipeline, we train each model 5 times
and select the best one. If we are evaluating for the unseen/large size category, we use
a validation set of problems to evaluate and choose the best model by whichever model
solves the most validation problems when applied to GBFS search, similarly to [Ferber
et al., 2022]. The validation of models is done on a cluster with a single Intel Xeon
3.2 GHz CPU core and no GPUs and a 600 second timeout and 8GB memory. The
validation problems are again outlined in Tab. 7.3, noting that they have size unseen in
the training set. We break ties with the average expanded number of nodes on solved
validation problems, and on the weighted loss from Eq. 5.3 if no problems were solved
for all models. For the seen/small size category, we simply take the model with the best
weighted loss. Validation metrics from our experiments for unseen/large size categories
are reported in Sec. C in the appendix.

7.3.3 Baselines

The baselines we compare against are blind search, and both eager and lazy GBFS with
hgc, hmax, hadd and hFF. All of these heuristics are also implemented in PWL. They are
all run with a 600 second timeout and 8GB memory on a cluster with a single Intel Xeon
3.2 GHz CPU core.

Note that the hardware used for the baselines is different from the hardware for evalu-
ating GOOSE due to resource constraints. The same constraints mean that we are not
able to compare against the state-of-the-art heuristic learner STRIPS-HGN which will
be left as future work. Our theoretical work suggests that GOOSE can learn more accu-
rate heuristic functions which can generalise better. We also note that there are several
planners which incorporate learning but their evaluation criteria are not as extensive or
robust. Without mentioning specific works, the learning for planning solvers that are
focused on performance usually have suboptimal evaluation criteria and exhibit one or
both of the following traits.

• Solvers are not implemented efficiently and thus, termination of solvers is not
done with runtime but instead on the number of expanded nodes. This is not an
informative method to evaluate planners given that this method of evaluation does
not prevent us from solving for h∗ on every state directly.

• In the learning domain-dependent heuristics setting, the size of unseen problems
are not significantly larger than the sizes of training problems, up to at most 2 times
their size. It may be the case that models can generalise well only up to a certain
size before beginning to exhibit poor performance relative to classical planners but
this information cannot be extrapolated from having small test problems.

Our set of experiments do not exhibit such traits. The search component of GOOSE is
implemented in C++ and we have constructed search algorithms which effectively utilise
GPUs to reduce overhead of evaluating neural network heuristic functions. Our com-
parison against classical planners is over the same runtime and we report three metrics:
runtime, number of node expansions and plan quality. Furthermore, we constructed test

88

7.4 Results

Table 7.4: Qualitative summary of results on large/unseen problems. Model entries are
of the form α→β indicating that training was done on problems with up to
α objects and a model was able to solve problems with up to β objects in the
given 10 minute timeout. Domain-independent trained model entries have α =
0 since they have not seen the domain during training. - indicates no problems
could be solved. † indicates problems could be solved but performance is worse
than classical heuristics.

Domain-dependent Domain-independent

Domain Ground Lifted Ground Lifted

Blocksworld 10→50 blocks 10→35 blocks 0→35 blocks -
Ferry 10→60 ferries - 0→45 ferries -
Gripper 10→100 balls 10→85 balls 0→75 balls 0→65 balls
Hanoi - - - -

n-puzzle 4→6 grid size - 0→5 grid size -
Sokoban † † † †
Spanner 10→25 spanners 10→100 spanners - -
VisitAll 10→50 grid size 10→45 grid size 0→55 grid size 0→45 grid size
VisitSome 10→35 grid size 10→15 grid size 0→25 grid size 0→25 grid size

problems that are up to 10× the size of the training problems in order to find the limits
in generalisation performance. We note that increasing the problem size exponentially
increases the size of the search space. Hence the axes in plots corresponding to the
number of expanded nodes of a solver are in log scale.

7.4 Results

We present and interpret results per domain with reference to each of the experimental
configurations. The final section of the chapter comments on runtime using CPU and
GPU hardware. We recall the dimensions of experimental configurations are

• the graph representations (SDG, SDGE, FDG, FDGE, LDG, LDGE),

• the choice of GNN readout (sum or mean),

• the search algorithm (lazy or eager GBFS),

• the training setting (domain-dependent or domain-independent), and

• the evaluation setting (problems with seen/small or unseen/large sizes).

We refer to a GOOSE configuration, GOOSE model or just model as our GOOSE frame-
work with a choice of graph representation, readout and search algorithm. Tab. 7.4 pro-
vides a condensed summary of generalisation capabilities of GOOSE on large/unseen size
problems. Coverage tables of all the experiments, alongside cumulative coverage plots
of plan quality and runtime per domain are also provided in Sec. C in the appendix.

89

7 Experiments 2: inference for search

Table 7.5: Coverage of solved instances on Blocksworld. The top 3 performing plan-
ners for each row are highlighted, with the best planner in bold.

Seen/small size (40) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 33 40 40 40 40 40 40 40 40 40 40 40 40 40 40 33 34
lazy 33 40 40 40 40 40 40 40 40 40 40 40 37 31 40 32 23

mean
eager 33 40 40 40 40 40 40 40 40 40 40 40 40 40 40 33 34
lazy 33 40 40 40 40 40 40 40 40 40 40 40 40 40 40 33 36

Unseen/large size (90) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager - 15 - 20 10 18 22 13 10 9 6 16 - 4 6 - -
lazy - 13 - 21 10 17 23 14 10 8 7 15 - 7 8 - -

mean
eager - 15 - 20 10 25 26 32 31 19 8 6 4 9 10 - -
lazy - 13 - 21 10 26 32 33 32 20 7 5 4 10 9 - -

7.4.1 Blocksworld

In the large problem setting, we train on instances with up to 10 blocks and our test
set consists of problems ranging from 15 to 100 blocks. Fig. 7.7 and 7.8 illustrate the
cumulative coverage of solvers over number of expansions for problems of seen/small
size and unseen/large size respectively. Tab. 7.5 provides the coverage table. We refer
to Sec. C.5.1 in the appendix for additional cumulative coverage plots of solvers over
runtime and plan cost.

We note that GOOSE models with grounded graphs and a mean readout solve signifi-
cantly more difficult problems of up to 50 blocks and expand at least 1 and up to 2 orders
of magnitude fewer nodes than classical heuristics. GOOSE is able to solve medium sized
problems in a few seconds while classical planners require several minutes. GOOSE also
return plans with better quality, with costs of plans half of those returned by classical
heuristics.

Performance begins to drop at around 50 blocks where coverage is not as consistent.
This suggests that the learners are not able to generalise effectively beyond that point,
and may be limited by the receptive field (number of message passing layers) similarly
to ASNets. This almost matches the performance of ASNets which is able to solve
Blocksworld instances with 50 blocks consistently with training on instances with up
to at most 10 blocks. It is worth performing a hyperparameter search and additional
optimisations discussed later in Sec. 9.3 to see whether it is possible to match or go
beyond this performance of ASNets. We also note that ASNets has access to predicate
and schema information and uses different neural network weights for different schema.
This is the case for our lifted graph representations, LDG and LDGE but not our grounded
ones. Thus, it may also be possible to encode predicate information into graphs similarly
to LDG and LDGE which does not interfere with domain-independent training. Lastly,
ASNets leverages landmarks in its computation while GOOSE does not.

90

7.4 Results

We note that our sum readout models are still more informative than classical heuristics
as the best performing graph representation expands at least an order of magnitude fewer
nodes than classical heuristics. However, the instability of training the sum readout make
them less robust to larger problems as seen in their smaller coverage with respect to mean
readout models. We note that the best performing mean readout GOOSE configuration
solves blocks50-task04 with a plan cost of 152 with 1982 expansions, but computes
a heuristic of 50 at the initial state. In contrast, the best sum readout GOOSE model
provides a heuristic value of 178 for the same problem but does not solve it. This suggests
having higher heuristic estimates is not necessarily a good measure of heuristic quality
for GBFS, given that GBFS uses a heuristic to rank states.

Furthermore, we see that lifted models perform worse than their grounded counter-
parts which suggest that their more compact representation removes some information
when used with MPNNs which limits their expressivity on learning useful heuristics for
Blocksworld.

When we consider domain-independent training, only the grounded graphs are able to
solve the unseen problems. However, the learned heuristics are still informative as they
perform better than blind search or heuristic search with hmax which are not able to
solve any hard problems and in some cases match more informed classical heuristics hgc

and hFF.

We observe similar trends happening with the seen/small instances. Domain-dependent
trained heuristics with either mean or sum readout are more informative and expand
significantly fewer nodes than classical heuristics for almost all instances. Domain-
independent trained heuristics on grounded graphs have around the same informativeness
as classical heuristics with a mean readout. The informativeness is worse if we use lifted
graphs or a sum readout instead.

91

7 Experiments 2: inference for search

101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

mean readout + eager search

101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

mean readout + lazy search

101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure 7.7: Cumulative coverage over number of expanded states on seen/small size
Blocksworld instances. Total number of problems: 40.

102 103 104 105 106

expanded

0

5

10

15

20

25

30

35

so
lv

ed

mean readout + eager search

102 103 104 105 106

expanded

0

5

10

15

20

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

102 103 104 105 106

expanded

0

5

10

15

20

25

30

35

so
lv

ed

mean readout + lazy search

102 103 104 105 106

expanded

0

5

10

15

20

25

so
lv

ed

sum readout + lazy search

Figure 7.8: Cumulative coverage over number of expanded states on unseen/large size
Blocksworld instances. Total number of problems: 90.

92

7.4 Results

Table 7.6: Coverage of solved instances on Ferry. The top 3 performing planners for
each row are highlighted, with the best planner in bold.

Seen/small size (125) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 90 125 79 125 125 125 125 125 125 112 65 125 115 40 125 56 40
lazy 88 125 82 125 125 125 125 125 125 118 82 125 119 59 125 59 41

mean
eager 90 125 79 125 125 125 125 125 125 116 107 125 125 113 125 97 78
lazy 88 125 82 125 125 125 125 125 125 118 117 125 125 109 125 96 79

Unseen/large size (90) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager - 90 - 11 38 9 43 20 41 - - 44 - 1 17 - -
lazy - 90 - 16 69 11 40 19 40 - - 44 - - 13 - -

mean
eager - 90 - 11 38 35 40 39 40 - - 14 5 30 12 - -
lazy - 90 - 16 69 33 40 40 40 - - 13 5 28 12 - -

7.4.2 Ferry

In the large problem setting, we train on instances with up to 10 locations and cars, and
test on problems with between 15 to 100 locations and cars. Fig. 7.9 and 7.10 illustrate
the cumulative coverage of solvers over number of expansions for problems of seen/small
size and unseen/large size respectively. Tab. 7.6 provides the coverage table. We refer
to Sec. C.5.2 in the appendix for additional cumulative coverage plots of solvers over
runtime and plan cost.

For Ferry, the goal count heuristic hgc has the best coverage due to its fast evaluation. It
quickly and greedily searches the fastest way to get any remaining car not at its target
location to its goal which is a good strategy for this domain. It is able to solve any
instance in under 30 seconds with eager search and provides the best quality plans.

In terms of informativeness, GOOSE with edge labelled grounded graphs and sum read-
outs provides the most informative heuristics with the fewest expanded number of nodes
on problems of up to 60 ferries. We note that beyond 60 problems, we run into problems
where batched graphs do not fit into the memory of the GPU and the solver terminates.
This may be fixed in future work by detecting when the graph data becomes too large
to fit into the GPU and splitting the batches for evaluation. Runtime wise, GOOSE is
usually twice as fast as hFF with eager search but outperformed with lazy search where
lazy search does not benefit GOOSE for this domain. Furthermore, GOOSE returns
similar cost plans to hgc and hFF with eager search, but better plans than hFF with lazy
search.

Contrary to Blocksworld, sum readout models perform better than mean readout models.
For example, GOOSE with a sum readout, SDGE and eager search provides a heuristic
estimate of 189 for the instance ferry-l50-c50 and solves it with plan cost 190 and 894
expansions, whereas its mean readout counterpart also similarly provides a plan cost of
186, but provides a heuristic estimate of 186 and requires 5400 expansions. Thus, it

93

7 Experiments 2: inference for search

is desirable to have higher variance in the distribution of heuristic estimates when the
ranking is accurate.

We also note that some domain-independent trained heuristics have reasonable heuris-
tic estimates with informativeness greater than hmax or blind search. With regards to
seen/small instances, domain-dependent trained heuristics are marginally the most in-
formative heuristics on all instances. Lifted graphs underperform as they cannot learn
to solve both small or large instances.

94

7.4 Results

101 102 103 104 105 106

expanded

0

20

40

60

80

100

120

so
lv

ed
mean readout + eager search

101 102 103 104 105 106

expanded

0

20

40

60

80

100

120

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

101 102 103 104 105 106

expanded

0

20

40

60

80

100

120

so
lv

ed

mean readout + lazy search

101 102 103 104 105 106

expanded

0

20

40

60

80

100

120

so
lv

ed

sum readout + lazy search

Figure 7.9: Cumulative coverage over number of expanded states on seen/small size
Ferry instances. Total number of problems: 125.

102 103 104

expanded

0

20

40

60

80

so
lv

ed

mean readout + eager search

102 103 104

expanded

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

103 104 105

expanded

0

20

40

60

80

so
lv

ed

mean readout + lazy search

103 104 105

expanded

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure 7.10: Cumulative coverage over number of expanded states on unseen/large size
Ferry instances. Total number of problems: 90.

95

7 Experiments 2: inference for search

Table 7.7: Coverage of solved instances on Gripper. The top 3 performing planners for
each row are highlighted, with the best planner in bold.

Seen/small size (10) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10
lazy 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

mean
eager 10 10 10 10 10 10 10 10 10 10 10 10 8 10 10 9 10
lazy 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10

Unseen/large size (18) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 1 18 - 18 14 7 1 5 3 14 12 4 - - - 3 7
lazy 1 18 - 18 18 10 12 17 18 15 12 5 1 - 13 7 9

mean
eager 1 18 - 18 14 7 7 5 7 7 6 2 - 4 2 3 5
lazy 1 18 - 18 18 7 8 5 7 7 6 2 - 4 1 6 8

7.4.3 Gripper

In the large problem setting, we train on instances with up to 10 balls and cars, and test
on problems with between 15 to 100 balls. Fig. 7.11 and 7.12 illustrate the cumulative
coverage of solvers over number of expansions for problems of seen/small size and un-
seen/large size respectively. Tab. 7.7 provides the coverage table. We refer to Sec. C.5.3
in the appendix for additional cumulative coverage plots of solvers over runtime and
plan cost.

For Gripper, the hadd heuristic has the best coverage due to its almost perfect heuris-
tic estimates. This is because hadd assumes each goal is achieved independently from
each other and this is almost the case with Gripper. GOOSE models trained on small
instances have very accurate h∗ estimates but expand only marginally fewer nodes than
hadd on the same small instances.

We note that the GOOSE with lifted graphs and sum readout generalise the best with
eager search as they have the highest coverage and lowest number of expansions among
all GOOSE configurations. On the other hand, the grounded graphs perform worse which
may suggest that they overfit on the training set and were not learning the semantics of
the problem. We also note that domain-independent trained LDGE with mean readout
outperforms its domain-dependent trained grounded counterparts. This may also suggest
that knowing the predicates and objects of the problem may be useful for the grounded
graph representations.

We also see that lazy search significantly improves the performance of sum readout
models, allowing FDGE graphs to reach full coverage when its eager counterpart only
solves 3 problems. This may be due the regularising nature of lazy search which makes
heuristics less informed and in turn dampens the effects of incorrect heuristic estimates.
Nevertheless, classical heuristics tend to have significantly lower runtimes than GOOSE
in both eager and lazy search. Goal count can solve any gripper problem in a few seconds,

96

7.4 Results

while the best performing GOOSE model takes up to 250 seconds for the most difficult
problem.

Mean readout models appear to perform a blind search until a certain number of balls
have reached the other room, in which case the problems become similar to trained
instances where the model then rapidly reaches the goal.

97

7 Experiments 2: inference for search

101 102 103 104 105

expanded

0

2

4

6

8

10

so
lv

ed

mean readout + eager search

101 102 103 104 105

expanded

0

2

4

6

8

10

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

101 102 103 104 105

expanded

0

2

4

6

8

10

so
lv

ed

mean readout + lazy search

101 102 103 104 105

expanded

0

2

4

6

8

10

so
lv

ed

sum readout + lazy search

Figure 7.11: Cumulative coverage over number of expanded states on seen/small size
Gripper instances. Total number of problems: 10.

102 103 104 105 106

expanded

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + eager search

102 103 104 105 106

expanded

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

102 103 104 105 106

expanded

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + lazy search

102 103 104 105 106

expanded

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + lazy search

Figure 7.12: Cumulative coverage over number of expanded states on unseen/large size
Gripper instances. Total number of problems: 18.

98

7.4 Results

Table 7.8: Coverage of solved instances on Hanoi. The top 3 performing planners for
each row are highlighted, with the best planner in bold.

Seen/small size (8) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6
lazy 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7

mean
eager 8 8 8 8 8 8 8 8 8 7 7 8 6 8 7 7 6
lazy 8 8 8 8 8 8 8 8 7 8 7 8 7 8 8 8 6

Unseen/large size (18) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 1 1 - - - - - - - - - - - - - - -
lazy 1 1 - - - - - - - - - - - - - - -

mean
eager 1 1 - - - - - - - - - - - - - - -
lazy 1 1 - - - - - - - - - - - - - - -

7.4.4 Hanoi

In the large problem setting, we train on instances with up to 10 discs, and test on
problems with between 15 to 100 discs. Fig. 7.13 illustrates the cumulative coverage of
solvers over number of expansions for problems of seen/small size respectively. The plot
for unseen/large size problems is omitted due to only one instance being solved by two
planners. Tab. 7.8 provides the coverage table. We refer to Sec. C.5.4 in the appendix
for additional cumulative coverage plots of solvers over runtime and plan cost.

Unfortunately, the large problems we chose were too difficult for any planner to solve
except for blind search and search with goal count. This is because the optimal plan
length is 2d − 1 where d is the number of discs of the problem which suggests that
heuristics must be very well informed if they have a significant computational cost to be
able to find such exponentially long plans. It may be useful for future work to construct
Hanoi instances with initial states closer to the goal state.

When we observe the training loss of our GOOSE models in Sec. C.1, we see that it
struggles to learn even on the training set whose ground truth value range up to 1023.
This can be attributed to the small receptive field of MPNNs relative to the search space
of Hanoi problems and the difficulty of learning recursively defined plans.

However, we can observe some interesting results for smaller Hanoi instances. Some
configurations of domain-independent trained heuristics outperform the baseline heuris-
tics in terms of number of expanded nodes. For instance, we see that hgc is the most
informative heuristic out of all the classical heuristics we consider. However, it is not
by more than an order of magnitude better for any of the problems. Furthermore, hadd

expands more nodes than blind search on the Hanoi instance with 10 discs. Lastly de-
spite expanding many more nodes than GOOSE, blind search and hgc are able to solve
all small Hanoi instances in less than 3 seconds each while the best performing GOOSE
model takes up to 15 seconds.

99

7 Experiments 2: inference for search

101 102 103 104 105

expanded

0

2

4

6

8

so
lv

ed

mean readout + eager search

101 102 103 104 105

expanded

0

2

4

6

8

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

101 102 103 104 105

expanded

0

2

4

6

8

so
lv

ed

mean readout + lazy search

101 102 103 104 105

expanded

0

2

4

6

8

so
lv

ed

sum readout + lazy search

Figure 7.13: Cumulative coverage over number of expanded states on seen/small size
Hanoi instances. Total number of problems: 8.

100

7.4 Results

Table 7.9: Coverage of solved instances on n-puzzle. The top 3 performing planners for
each row are highlighted, with the best planner in bold.

Seen/small size (20) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 10 20 10 19 20 20 20 20 20 5 1 20 17 12 20 4 1
lazy 10 20 10 19 20 20 20 20 20 10 8 20 20 11 20 10 5

mean
eager 10 20 10 19 20 20 20 20 20 2 1 19 14 20 20 3 1
lazy 10 20 10 19 20 20 20 20 20 10 5 20 19 20 20 8 3

Unseen/large size (50) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager - 11 - - 11 10 8 - 10 - - 6 - - 5 - -
lazy - 11 - - 14 12 12 5 13 - - 7 - - 6 - -

mean
eager - 11 - - 11 5 8 8 6 - - 6 - 8 5 - -
lazy - 11 - - 14 8 8 9 9 - - 3 - 8 7 - -

7.4.5 n-puzzle

In the large problem setting, we train on instances with grid size up to 4, and test on
problems with between 5 and 9 grid size inclusive. Fig. 7.14 and 7.15 illustrate the
cumulative coverage of solvers over number of expansions for problems of seen/small
size and unseen/large size respectively. Tab. 7.9 provides the coverage table. We refer
to Sec. C.5.5 in the appendix for additional cumulative coverage plots of solvers over
runtime and plan cost.

We note that hFF and hgc are the best performing heuristics, although hFF expands
around 2 orders of magnitude fewer nodes than hgc. They are able to solve all puzzles
with grid size 5, and some puzzles with grid size 6. The case is similar for GOOSE models
with lazy search and sum readout. They are not as informative as hFF as they expand
more nodes but for almost all problems that both solve, the plan quality of GOOSE
models are better. We also note that some of domain-independent trained models with
SDG, FDG and FDGE provide useful heuristic estimates which allow them to solve some
hard problems, in contrary to hmax and hadd which do not solve any. Mean readout
models are less informative than their sum readout counterparts but still return better
quality plans. Unfortunately, lifted models perform poorly as they are unable to learn
from training data shown by their high training loss, see Sec. C.1.

On seen/small size test instances, hFF and grounded graph GOOSE models have similar
informedness and node expansions. However, learned heuristics still provide better qual-
ity plans with cost around 75% that of hFF plans. Lifted graph models have informedness
on the same level as blind search regardless of domain-dependent or independent train-
ing. Thus, they do not provide any meaningful guidance.

With regards to runtime, hgc and hFF are almost always faster than GOOSE for both
seen/small and unseen/large size problems. This is due to hgc’s fast heuristic evaluations
and hFF more informed heuristics.

101

7 Experiments 2: inference for search

101 102 103 104 105

expanded

0

5

10

15

20

so
lv

ed

mean readout + eager search

101 102 103 104 105

expanded

0

5

10

15

20

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

102 103 104 105

expanded

0

5

10

15

20

so
lv

ed

mean readout + lazy search

102 103 104 105

expanded

0

5

10

15

20

so
lv

ed

sum readout + lazy search

Figure 7.14: Cumulative coverage over number of expanded states on seen/small size
n-puzzle instances. Total number of problems: 20.

103 104 105 106

expanded

0

2

4

6

8

10

12

so
lv

ed

mean readout + eager search

104 105 106

expanded

0

2

4

6

8

10

12

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

104 105 106

expanded

0

2

4

6

8

10

12

14

so
lv

ed

mean readout + lazy search

103 104 105 106

expanded

0

2

4

6

8

10

12

14

so
lv

ed

sum readout + lazy search

Figure 7.15: Cumulative coverage over number of expanded states on unseen/large size
n-puzzle instances. Total number of problems: 50.

102

7.4 Results

Table 7.10: Coverage of solved instances on Sokoban. The top 3 performing planners
for each row are highlighted, with the best planner in bold.

Seen/small size (30) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 30 30 30 30 30 30 30 30 30 30 30 30 18 23 23 30 30
lazy 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

mean
eager 30 30 30 30 30 30 30 30 30 30 27 30 17 15 23 15 27
lazy 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

Unseen/large size (90) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 42 81 82 52 45 30 31 29 34 27 27 20 12 3 18 18 18
lazy 42 81 90 63 72 32 34 29 34 33 27 39 18 18 18 25 24

mean
eager 42 81 82 52 45 38 31 39 38 28 27 9 4 30 3 36 36
lazy 42 81 90 63 72 35 39 45 35 31 31 20 18 37 18 36 36

7.4.6 Sokoban

In the large problem setting, we train on instances with 2 boxes and grid size up to 7,
and test on problems with between 8 to 12 grid size and 2 or 3 boxes. Fig. 7.16 and
7.17 illustrate the cumulative coverage of solvers over number of expansions for problems
of seen/small size and unseen/large size respectively. Tab. 7.10 provides the coverage
table. We refer to Sec. C.5.6 in the appendix for additional cumulative coverage plots
of solvers over runtime and plan cost.

We note that hmax has the overall best performance. This may be attributed to its con-
servative estimates by only solving for the most difficult Sokoban goal which in turn does
not guide the search algorithm into incorrect search regions in the complex Sokoban do-
main. This is in contrast to hadd and hFF which are greedier delete relaxation heuristics.
These heuristics attempt to move all boxes to their goal location with no regard to the
interactions between boxes which in turn may provide poorly informed estimates and
guide the planner to unpromising search regions. Our learned heuristics provide better
informativeness for smaller test problems but are unable to generalise to larger problems
well where they expand significantly more nodes than delete relaxation heuristics.

For the set of unseen/large size problems, most GOOSE configurations perform worse
than blind search in terms of coverage due to the slow heuristic evaluations. Lazy
search slightly alleviates the limited batching performed in eager search as seen in the
improvement in coverage for some problems. The fewer number of expansions when
we using lazy search over eager search further suggests that GOOSE may provide poor
heuristic estimates that guide the solver to unpromising states during search, given that
lazy search can act as a regulariser. Furthermore, plan quality is not significantly better
to classical heuristics, and becomes poorer with sum readout for larger problems.

Domain-independent trained heuristics provide informedness similar to goal count. One
notable observation is that domain-independent trained heuristics on lifted graphs per-

103

7 Experiments 2: inference for search

form better than their domain-dependent trained counterparts when using mean read-
outs. Edge labelled grounded graphs provide the best informedness for seen size instances
and expand at most an order of magnitude fewer nodes than hmax for most instances.

104

7.4 Results

102 103 104 105

expanded

0

5

10

15

20

25

30

so
lv

ed
mean readout + eager search

102 103 104 105

expanded

0

5

10

15

20

25

30

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

102 103 104 105

expanded

0

5

10

15

20

25

30

so
lv

ed

mean readout + lazy search

102 103 104 105

expanded

0

5

10

15

20

25

30

so
lv

ed

sum readout + lazy search

Figure 7.16: Cumulative coverage over number of expanded states on seen/small size
Sokoban instances. Total number of problems: 30.

102 103 104 105 106

expanded

0

20

40

60

80

so
lv

ed

mean readout + eager search

102 103 104 105 106

expanded

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

102 103 104 105 106

expanded

0

20

40

60

80

so
lv

ed

mean readout + lazy search

102 103 104 105 106

expanded

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure 7.17: Cumulative coverage over number of expanded states on unseen/large size
Sokoban instances. Total number of problems: 90.

105

7 Experiments 2: inference for search

Table 7.11: Coverage of solved instances on Spanner. The top 3 performing planners
for each row are highlighted, with the best planner in bold.

Seen/small size (75) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 65 65 60 60 60 70 75 72 70 75 75 60 40 40 60 55 40
lazy 65 65 69 70 70 75 75 74 75 75 75 60 56 60 65 55 40

mean
eager 65 65 60 60 60 70 70 70 69 75 75 58 52 70 61 55 50
lazy 65 65 69 70 70 75 75 75 75 75 75 60 58 70 70 55 50

Unseen/large size (90) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager - - - - - - - 1 - 15 50 - - - - - -
lazy - - - - - 10 3 10 1 45 90 - - - - - -

mean
eager - - - - - - - - - 15 9 - - - - - -
lazy - - - - - 1 - 2 1 25 9 - - - - - -

7.4.7 Spanner

In the large problem setting, we train on instances with up to 10 spanners and nuts,
and test on problems with between 15 to 100 objects. Fig. 7.18 and 7.19 illustrate the
cumulative coverage of solvers over number of expansions for problems of seen/small
size and unseen/large size respectively. Tab. 7.11 provides the coverage table. We refer
to Sec. C.5.7 in the appendix for additional cumulative coverage plots of solvers over
runtime and plan cost.

Classical heuristics and domain-independent trained heuristics do not solve any large
Spanner problems. However lifted graphs have great performance with LDGE solving all
instances with sum readout and lazy search. It is able to solve any instance in under
30 seconds. The reason why the same model with eager search does not solve all the
instances is because at the end of the corridor, it evaluates up to sn states at a time
corresponding to all possible ways of using spanners to fix one nut. The number of
evaluations becomes a bottleneck even for the perfect heuristic. Lazy search does not
have this problem due to its deferred evaluation.

Similarly to Gripper, lifted graphs are able to generalise significantly better than their
grounded counterparts. This could be explained by either overfitting of the grounded
graph models as seen in their perfect training loss, or predicate and action schema
information helping with generalisation of lifted graphs and missing in grounded graphs.
The latter explanation may be more feasible given that it could be the case that the lifted
models are learning to count spanners with the aid of the spanner predicate, whereas
grounded models may not be able to learn which propositions correspond to spanners.

Grounded models generalise poorer even on seen and small size test instances if we
observe the number of expansions with eager search, with one exception of GOOSE with
SDGE and a sum readout. However, using lazy search reverses the story with grounded
graphs expanding fewer nodes. Viewing lazy search as a regulariser further supports the

106

7.4 Results

argument of grounded graphs overfitting. Lastly, we note that unlike the large instances,
some small instances contain more spanners than nuts where the sum readout graphs
may not learn to take only the required number of spanners instead of all the spanners.

107

7 Experiments 2: inference for search

101 102 103 104 105

expanded

0

20

40

60

80

so
lv

ed

mean readout + eager search

101 102 103 104 105

expanded

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

101 102 103 104 105 106

expanded

0

20

40

60

80

so
lv

ed

mean readout + lazy search

101 102 103 104 105 106

expanded

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure 7.18: Cumulative coverage over number of expanded states on seen/small size
Spanner instances. Total number of problems: 75.

102 103

expanded

0

20

40

60

80

so
lv

ed

mean readout + eager search

102 103

expanded

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

102 103

expanded

0

20

40

60

80

so
lv

ed

mean readout + lazy search

102 103 104

expanded

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure 7.19: Cumulative coverage over number of expanded states on unseen/large size
Spanner instances. Total number of problems: 90.

108

7.4 Results

Table 7.12: Coverage of solved instances on VisitAll. The top 3 performing planners
for each row are highlighted, with the best planner in bold.

Seen/small size (40) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 10 40 10 40 39 40 40 40 40 40 40 40 10 13 31 40 40
lazy 10 40 10 40 40 40 40 40 40 40 40 40 15 15 34 40 40

mean
eager 10 40 10 40 39 40 40 40 40 40 40 14 31 20 13 40 40
lazy 10 40 10 40 40 40 40 40 40 40 40 16 36 20 15 40 40

Unseen/large size (90) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager - 75 - 2 9 38 39 21 20 31 31 44 30 - 16 17 30
lazy - 73 - 4 14 40 30 24 17 30 25 40 28 - 17 15 25

mean
eager - 75 - 2 9 15 15 10 5 10 10 - - - - 12 12
lazy - 73 - 4 14 15 15 10 5 10 10 - - - - 15 15

7.4.8 VisitAll

In the large problem setting, we train on instances with grid size up to 10, and test on
problems with grid size between 15 and 100. Fig. 7.20 and 7.21 illustrate the cumulative
coverage of solvers over number of expansions for problems of seen/small size and un-
seen/large size respectively. Tab. 7.12 provides the coverage table. We refer to Sec. C.5.8
in the appendix for additional cumulative coverage plots of solvers over runtime and plan
cost.

VisitAll is another problem which the goal count heuristic excels at since it is close to
the perfect heuristic for the domain and is fast to compute. We observe that our sum
readout models generalise well, up to problems with grid size 50, given that it is easy to
learn the goal count heuristic as an approximation for h∗. All domain-dependent trained
GOOSE models have coverage greater than the remaining classical heuristics such as hFF

and hadd.

For this domain, the bottleneck of GOOSE is the time to evaluate heuristics, given
that the models are generalising well for large problems when observing the cumulative
coverage over expanded nodes with expansions similar to hgc. We also note that the
GOOSE’s plan quality also matches that of hgc. However, we reach the timeout at
smaller instances than hgc.

It is more difficult for mean readout models to generalise given that they are limited by
information loss through averaging features during readout. Nevertheless, they generalise
well to problems of the same size as the train set with high informedness. We further
note that the best GOOSE models are the domain-independent trained models with
marginally better coverage and fewer expansions than hgc with eager search. This may
suggest that GOOSE trained over a wide variety of domains in the domain-independent
setting learns a modification of goal count which is helpful for VisitAll.

Interestingly, FDR graph representations perform worst out of all GOOSE models com-

109

7 Experiments 2: inference for search

pared to STRIPS and lifted representations. This could be attributed to overfitting to
additional computed FDR structures not present in STRIPS and the lifted graphs. We
also see that FDR models have lower training loss than other models even after the
validation criteria.

110

7.4 Results

101 102 103 104

expanded

0

10

20

30

40

so
lv

ed
mean readout + eager search

101 102 103 104

expanded

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

101 102 103 104 105

expanded

0

10

20

30

40

so
lv

ed

mean readout + lazy search

101 102 103 104 105

expanded

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure 7.20: Cumulative coverage over number of expanded states on seen/small size
VisitAll instances. Total number of problems: 40.

103 104

expanded

0

20

40

60

80

so
lv

ed

mean readout + eager search

103 104

expanded

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

103 104 105

expanded

0

20

40

60

80

so
lv

ed

mean readout + lazy search

103 104 105

expanded

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure 7.21: Cumulative coverage over number of expanded states on unseen/large size
VisitAll instances. Total number of problems: 90.

111

7 Experiments 2: inference for search

Table 7.13: Coverage of solved instances on VisitSome. The top 3 performing planners
for each row are highlighted, with the best planner in bold.

Seen/small size (40) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager 22 40 16 33 30 39 40 40 40 36 37 39 23 29 35 39 37
lazy 22 40 16 35 33 40 40 40 40 34 34 40 25 32 37 38 40

mean
eager 22 40 16 33 30 40 40 40 40 38 37 19 29 38 29 39 40
lazy 22 40 16 35 33 40 40 40 40 40 39 23 35 39 34 39 40

Unseen/large size (90) Baseline Domain-dependent Domain-independent

Readout Search b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

sum
eager - 7 - - - 2 8 - 2 4 - 3 - 2 2 7 12
lazy - 5 - - - - 13 3 4 5 - 7 1 2 5 7 12

mean
eager - 7 - - - 7 6 - 1 6 3 - - - - 10 9
lazy - 5 - - - 7 4 - 1 3 3 - - - - 9 7

7.4.9 VisitSome

In the large problem setting, we train on instances with grid size up to 10, and test on
problems with grid size between 15 and 100. Fig. 7.23 and 7.24 illustrate the cumulative
coverage of solvers over number of expansions for problems of seen/small size and un-
seen/large size respectively. Tab. 7.13 provides the coverage table. We refer to Sec. C.5.9
in the appendix for additional cumulative coverage plots of solvers over runtime and plan
cost.

VisitSome is a more difficult variant of VisitAll to solve optimally, and also for the goal
count heuristic to solve in general as it is forced to search more states. We observe similar
patterns from VisitAll where in the domain-dependent trained setting, STRIPS graphs
perform best, followed by lifted graphs and lastly by FDR graphs. GOOSE with SDGE,
sum readout and lazy search is able to solve instance n35-s3 which consists of 1225 grid
locations and 119 goal locations with a plan cost of 437 and initial heuristic estimate
of 348. Fig. 7.22a illustrates the computed plan which consists of some unnecessary
movements such as with the orange section of the path. This may be due to inaccuracies
of heuristic estimates during lazy search.

The optimal heuristic for VisitSome is harder to learn than VisitAll, as a necessary
component is computing distances from the current state to goal locations. This is not
possible for larger problems using GOOSE as the computability of such distances is
limited by its receptive field and number of message passing layers.

Interestingly, we observe that domain-independent trained heuristics on lifted graphs
perform best on almost all configurations of readout and search algorithms. One pos-
sible explanation for this is that although we cannot learn the optimal heuristic due to
limited number of message passing layers, we can learn other methods to approximate it
which was exposed by training data outside of VisitSome. Domain-independent trained
GOOSE with LDGE, sum readout and eager search is able to solve instance n25-s0 which

112

7.4 Results

(a) Plan returned by domain-dependent
trained GOOSE with SDGE, sum read-
out and lazy search for n35-s3.

(b) Plan returned by domain-independent
trained GOOSE with LDGE, sum read-
out and eager search for n25-s0.

Figure 7.22: Visualisations of plans returned by GOOSE on VisitSome. The black circle
is the initial location, the green circles the goal locations, and the plan starts
from dark blue and ends at dark red.

consists of 625 grid locations and 62 goal locations with a plan cost of 447 and initial
heuristic estimate of 279. Fig. 7.22b illustrates the computed plan. We notice that the
plan makes many unnecessary actions and traverses a majority of the grid. This may
be due to an inaccurate heuristic leading the planner to incorrect search regions which
it commits to. We recall that the domain-independent training data does not contain
any problems from VisitAll which is a similar domain to VisitSome such that GOOSE
is not using knowledge from similar domains. We lastly note that the search space is
exponential in the number of grid locations.

In the seen and small size instance case, all domain-dependent trained GOOSE models
expand fewer nodes than classical heuristics which suggests strong generalisation to
problems with sizes seen during training.

113

7 Experiments 2: inference for search

101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

mean readout + eager search

101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

100 101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

mean readout + lazy search

100 101 102 103 104 105 106

expanded

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure 7.23: Cumulative coverage over number of expanded states on seen/small size
VisitSome instances. Total number of problems: 40.

103 104 105 106

expanded

0

2

4

6

8

10

so
lv

ed

mean readout + eager search

102 103 104 105 106

expanded

0

2

4

6

8

10

12

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

103 104 105 106

expanded

0

2

4

6

8

10

so
lv

ed

mean readout + lazy search

103 104 105 106

expanded

0

2

4

6

8

10

12

14

so
lv

ed

sum readout + lazy search

Figure 7.24: Cumulative coverage over number of expanded states on unseen/large size
VisitSome instances. Total number of problems: 90.

114

7.5 CPU vs GPU runtime

7.5 CPU vs GPU runtime

In this section we comment on the speedups gained by utilising GPUs for heuristic
evaluations. We measured the time to evaluate the heuristic value of the initial state
represented by FDG and LDG on a single AMD EPYC 7282 2.8GHz CPU core. We
also measured the time to evaluate a batch of n copies of the initial state with n ∈
{1, 2, 4, 8, 16, 32, 64, 128} on a single NVIDIA GeForce RTX 3090 GPU, including the
time for transferring memory between the host (CPU) and device (GPU).

CPU/1
GPU/1

GPU/2
GPU/4

GPU/8
GPU/16

GPU/32
GPU/64

GPU/128

0.01

0.1

1.0 FDG
LDG

device/batch size

tim
e

pe
r

ba
tc

h
(s

)

CPU/1
GPU/1

GPU/2
GPU/4

GPU/8
GPU/16

GPU/32
GPU/64

GPU/128

5

100μ
2

5

0.001
2

5

0.01
2

5

0.1
2

5

1 FDG
LDG

device/batch size

tim
e

pe
r

st
at

e
(s

)

Figure 7.25: Distributions of heuristic evaluation time per batch (left) and per sample
(right) on FDG and LDG on the CPU host and GPU device with various
batch sizes.

The time spent on heuristic evaluation with multiple configurations of hardware, batch
size and graph representations excluding time spent on memory transfers between the
CPU host and GPU device is illustrated in Fig. 7.25. We provide both the time for
evaluating various batch sizes and the averaged time for evaluating a single state within
a batch. We first note that heuristic evaluation of a single state on the GPU is always
faster than that on the CPU. However, we should note that the results may change
depending on the hardware setup and exclude the overhead of memory transfer.

Furthermore, speedups against the CPU are significantly noticeable once batch sizes are
greater than n = 4. A possible explanation for this is that the underlying PyTorch
Geometric CUDA3 code is optimised for larger data. For lifted graphs, the speedup by
increasing batch size when considering evaluation time per state levels out at around
n = 32. This may be due to data becoming large such that memory operations within
the GPU become the bottleneck for parallelisation. The same explanation can also
be applied to the grounded graphs which are much larger and do not exhibit a larger
speedup for batch sizes greater than n = 4. This also supports our argument in Sec. 6.2
that we should only batch the evaluation of states during heuristic search which are
useful, given that the effectiveness of batching evaluation decays with increasing batch

3An API for programming for NVIDIA GPUs.

115

7 Experiments 2: inference for search

size. We also note that with the optimal batch sizes, lifted graphs are almost an order
of magnitude faster to evaluate than grounded graphs. This is not surprising given that
they are also significantly smaller graphs as seen in Fig. A.1 in the appendix.

Fig. 7.26 illustrates the ratio of time spent on transferring memory between the CPU
host and GPU device to total heuristic evaluation and memory transfer runtime. We
note that for small batch sizes of 1 and 2, the transfer is minimal. However, for a
majority of cases with larger batch sizes, the ratio of time spent on memory transfers
between devices lies between 3% to 10% and decreases with larger batch sizes. This
suggests that the underlying implementation may be pipelining memory transfer and
computation.

GPU/1 GPU/2 GPU/4 GPU/8 GPU/16 GPU/32 GPU/64 GPU/128

0

5

10

15

20

25

FDG
LDG

device/batch size

ho
st

 d
ev

ic
e

ra
tio

 (%
)

Figure 7.26: Distributions of ratio of time spent on memory transfers between CPU host
and GPU device to total heuristic evaluation and memory transfer runtime
on FDG and LDG with various batch sizes. The CPU/1 configuration is
omitted as it transfers no data to the GPU.

Evaluation with different GPUs

We also compare evaluation times with different GPUs. The motivation for doing so
is that GPU hardware is still improving consistently at the time of writing this thesis,
in contrast to sequential processor hardware which has stagnated. Thus, GOOSE is
able to achieve passive performance increases due to hardware advancements over time
in contrast to classical planners. This heuristic evaluation time is performed on RTX
2080 Ti and RTX A6000 GPUs on a cluster with the same method described previously.
Heuristic evaluation results are reported in Fig. 7.27 and key GPU hardware statistics
in Tab. 7.14.

We notice that more recent GPUs offer speedups against older GPUs. In lower batch sizes
with n ≤ 4, the 3090 GPU offers a 2× speedup against the 2080 Ti GPUs. The speedup
from using the A6000 GPU over the 3090 GPU is still noticeable but less significant for
larger data. This is because the A6000 was designed to have more memory for large
scale applications rather than improved runtime performance. A more suitable GPU for

116

7.5 CPU vs GPU runtime

Table 7.14: Summary of GPU hardware statistics.

RTX 2080 Ti RTX 3090 RTX A6000

Release year 2018 2020 2022
Number of cores 4352 10496 10752

Boost clock (MHz) 1545 1695 1800
Bandwidth (GB/s) 616.0 936.2 768.0
Memory size (GB) 11 24 48

1 2 4 8 16 32 64 128
100μ

2

5

0.001

2

5

0.01

2

5

0.1

2

5 RTX 2080 Ti
RTX 3090
RTX A6000

batch size

tim
e

pe
r

st
at

e
(s

)

1 2 4 8 16 32 64 128
5

100μ

2

5

0.001

2

5

0.01

2

5

0.1

2

5 RTX 2080 Ti
RTX 3090
RTX A6000

batch size

tim
e

pe
r

st
at

e
(s

)

Figure 7.27: Distributions of heuristic evaluation time per sample on FDG (left) and LDG
(right) with different batch sizes and GPUs.

comparison against the 3090 GPU from the same year of the A6000 would be the 4090
GPU which has significantly more cores and higher boost clock.

In all comparisons, we observe that the speedups gained from newer versions of hard-
ware are more significant for smaller data such as with LDG and smaller batch sizes.
The issue is most likely due to unoptimised memory operations as discussed previously
and may alleviated by implementing CUDA code customised for our application. Fur-
thermore, graph neural networks have more unstable parallelisation costs due to sparse
matrix multiplication corresponding to message passing updates on graphs. This is in
comparison to feed forward or convolutional neural networks for image processing which
have more structured computation and hence can more efficiently utilise GPU hardware.

117

118

Chapter 8

Related work

The field of learning for planning is growing increasingly quickly due to the large scale
advancements in deep learning approaches such as neural network architectures and deep
learning accelerator hardware such as graphics processing units (GPUs) and tensor pro-
cessing units (TPUs). Nevertheless, to the best of our knowledge, our GOOSE model
introduces several novel contributions. It is the first approach for learning domain-
independent heuristics from scratch with no assumptions on our domains and pro-
vides competitive performance over classical heuristics in both domain-dependent and
domain-independent training settings. Another novel contribution is learning domain-
independent heuristics using graph representations based on only the lifted planning rep-
resentation. On top of its strong performance, we provide extensive theoretical and em-
pirical studies on GOOSE’s capabilities and limitations of learning domain-independent
heuristics.

To further emphasise the novelty of our contributions, it is imperative to explore the
large body of related work of learning for planing. We will categorise such prior work
into three classes: learning heuristics in Sec. 8.1, learning policies in Sec. 8.2 and other
applications of learning for planning in Sec. 8.3. Studies on learning heuristics are most
similar to our work. Works on learning policies are worth considering given that there
are several strong connections between the heuristic space and the action space. For
example, the optimal heuristic h∗ encloses all optimal policies. Other works that are not
categorised into learning heuristics or policies are also worth considering to appreciate
the expanse and impact of this field beyond learning heuristics and policies.

8.1 Learning heuristics for planning

The method of learning heuristics for search is not a new concept for GOOSE. However,
almost all previous works focus on learning domain-dependent heuristics. We recall from

119

8 Related work

Sec. 2.2.4 that domain-dependent heuristics are learned from a specific domain and are
effective only for that specific domain. We proceed to explore prior work in historical
order of when they were published.

Neural network learned heuristics were introduced as early in 2004 by Ernandes and Gori
for solving the n-puzzle problem with n2 size feature representations of states where the
(n× k + t)-th entry is set to 1 if square k is occupied by tile number t and 0 otherwise.
Yoon et al. [2008] learns domain-dependent heuristics by learning ∆(s) := h∗(s)−hFF(s)
for every state with weighted linear combinations of features extracted from the relaxed
plan in the computation of hFF. Samadi et al. [2008] represent states as vectors of com-
puted heuristics and use neural networks to learn the optimal heuristic for each domain.
They further modify the mean squared error loss function to guide their models to learn
admissible heuristics. Jabbari Arfaee et al. [2011] employs bootstrapping by starting
with a weak heuristic h0 to provide training samples to learn a stronger heuristic h1
and repeats this bootstrapping process of alternating between generating more useful
training samples and learning heuristics from such samples. Garrett et al. [2016] frame
learning heuristics for GBFS as a ranking problem and use Rank Support Vector Ma-
chines as their learning architecture. Gomoluch et al. [2017] is the first work which
learns domain-independent heuristics with neural networks where states are represented
by hand engineered features of planning task and values of the hFF and hcea [Helmert and
Geffner, 2008] heuristics. However, the performance gain is marginal compared to the
performance of the hFF heuristic it leveraged and evaluation was done on few domains
and problems. Our work differs in that we do not compute other domain-independent
heuristics as features and are still competitive with such heuristics. Francès et al. [2019]
use mixed linear programs to learn potential heuristics [Pommerening et al., 2015] for
various domains which are descending and dead-end avoiding [Seipp et al., 2016] and
thus guaranteed to find a plan in polynomial time with greedy search.

STRIPS-HGN [Shen et al., 2020] is the first model which is able to learn domain-
independent heuristics from scratch and was able to achieve informedness better than
hmax on certain domains. Its performance may be improved if it has access to more
training time and data. However, as discussed in Ch. 3, STRIPS-HGN has three main
drawbacks when it comes to learning domain-independent heuristics: (1) its hypergraph
representation of planning instances ignores delete lists and thus cannot theoretically
learn how to compute h∗, (2) its aggregation and update function is not permutation
invariant due to the need to order the set of neighbours of each node which may cause
it to learn biases in the training data and prevent it from generalising effectively, and
(3) it assumes an upper limit on the sizes of action precondition and effects, meaning
that in practice it also has to discard certain edges in its hypergraph in its message
updating step. We note that STRIPS-HGN can be made permutation invariant in ex-
pectation if the order for the set of neighbours of each node is defined randomly. It is
also worth considering as future work to fairly compare GOOSE to STRIPS-HGN in the
domain-independent training setting given enough computing resources.

A large scale empirical study of domain-dependent neural network heuristics for prob-

120

8.1 Learning heuristics for planning

lems of same size and domain was conducted to study what deep learning tools were
helpful for learning heuristics [Ferber et al., 2020]. States are represented as binary vec-
tors encoding which non-static propositions are true in the state. The study conducted
experiments on various neural network parameters such as number of layers, dropout rate
of neurons during training and regularisation weight, and also on data size and sampling
methods. Neural logic machines (NLMs) [Dong et al., 2019] are neural network archi-
tectures that can learn first order logic rules and are applied to learn heuristics [Gehring
et al., 2022] from scratch or with the aid of hFF values as reward generators in the
context of reinforcement learning. However, the learned heuristics from scratch are not
competitive with even hadd and it is not clear whether leveraging hFF values provide
a speedup over search with hFF by itself as evaluation is not done by runtime but by
termination after 100000 node evaluations. Furthermore, NLMs are domain-dependent
architectures as they assume a maximum arity of input predicates. Nevertheless the
original NLM paper showed that NLM can learn to generalise and solve Blocksworld
instances, sort arrays, and solve path finding problems with perfect accuracy.

Ferber et al. [2022] also provides a comprehensive study of other neural network heuristics
which study three methods for learning heuristics: with bootstrapping using different
state representations and deeper neural networks than Jabbari Arfaee et al. [2011], with
bootstrapping but learning an estimator of search space size instead of a heuristic, and
learning from approximate value iteration values. Bootstrapping can also be generalised
to leapfrogging which is the same as bootstrapping except that the learned heuristics can
generalise to planning instances with different sizes and number of objects, contrary to
work by Jabbari Arfaee et al. [2011] and Ferber et al. [2022]. Leapfrogging was explored
in detail by Karia and Srivastava [2021] which learns both heuristics and actions at the
same time using neural networks. The neural network architecture makes three classes
of predictions: a heuristic prediction, an action schema prediction, and predictions of
the parameters of the action schema in order to produce a ground action.

Lastly, Staahlberg et al. [2022b] provide a theoretical analysis of which domains MPNNs
can learn the optimal heuristic for by using the well known result concerning the con-
nection between MPNNs and 2-variable counting logics [Cai et al., 1992, Xu et al., 2019,
Barceló et al., 2020]. Similar to how our work, no theoretical guarantees concerning
generalisation are provided. Instead generalisation is empirically evaluated and it shows
that the learned heuristics in conjunction with A∗ search provides optimal plans for
domains whose optimal heuristic value can be represented by 2-variable counting logics.
We note that their methods are inherently domain-dependent given that their models
use different MLP update functions for predicates of the planning problems. This means
that they cannot generalise to unseen problems with a different number of predicates.
However, we reiterate that the work was developed for a constructive theoretical anal-
ysis of MPNNs for domain-dependent planning instead of constructing fast performing
models or domain-independent learning.

121

8 Related work

8.2 Learning generalised policies for planning

Given a planning task with state space S and set of actions A, a policy is a function
π : S → A that maps a state to an action to take. Policies are usually only considered in
planning under uncertainty where we have to account for multiple effects of stochastic
actions, meaning that a plan, i.e. a sequence of actions, does not guarantee us of reaching
the goal with probability 1. However, it is easy to see that a policy is a generalisation of
a plan. Generalised policies are policies that are defined on states for multiple planning
tasks, for example the set of all possibly infinitely many tasks of the Blocksworld domain.

Before exploring prior work for learning generalised policies, we note that it is possible
to generate a policy from a heuristic function. For classical planning, this is done for
each state s by selecting the action a corresponding to the best successor state s′ with
the lowest heuristic value estimate. This is indeed analogous to choosing greedy actions
with the best Q-value in the context of probabilistic planning or reinforcement learning,
where Q(s, a) provides an estimate of the expected cost to a goal when executing action
a in the state s. We also discuss a possible method for learning domain-independent
policies with our GOOSE method later in Sec. 9.3.1.

We primarily focus on neural network architectures for learning generalised policies for
planning beginning with ASNets [Toyer et al., 2020] and refer to Sec. 7 of the same
paper for a comprehensive literature review of generalised policy learning methods before
the ASNets era. ASNets can be viewed as a graph neural network architecture with
message passing performed between grounded propositions and actions, with different
update functions corresponding to different action schema. Concurrent with the original
ASNets paper [Toyer et al., 2018] were handcrafted convolutional neural network and
graph neural network architectures for learning policies for Sokoban and the travelling
salesman problem (TSP) respectively [Groshev et al., 2018]. ASNets have also been
combined with Upper Confidence Bounds applied to Trees (UCT) [Shen et al., 2019] to
aid improper policies returned from ASNets, resulting from suboptimally trained ASNets
models or problems that are too hard for ASNets to learn completely. Staahlberg et al.
[2022a] also leverage their GNN architecture for learning 2-variable counting logics to
learn generalised policies in an unsupervised fashion by using a modified Bellman error
loss function.

There also exists a branch of works focusing on learning generalised policies for proba-
bilistic planning expressed in RDDL. All such methods leverage graph neural networks
for domain-dependent learning. ToRPIDo [Bajpai et al., 2018] represent states with
graphs where nodes represent state variables and edges are constructed for between
nodes whose corresponding objects are connected by non-fluents in the domain. Thus,
action information is implicitly learnt during training. Furthermore, the action state
decoder is fixed meaning that policies only transfer between problems of the same size.
TraPSNet [Garg et al., 2019] improves on ToRPIDo by learning generalised policies
for problems of variable size. However, the model assumes that there is one binary
non-fluent nf and all other fluents, non-fluents and action templates are unary. Their

122

8.3 Other applications of learning for planning

graph representation consists of object nodes, and edges between two objects o and o′

if nf(o, o′) = 1. SymNet [Garg et al., 2020] and SymNet2 [Sharma et al., 2022] are also
generalised policy learners for RDDL which do not have the restrictions of TraPSNet
and ToRPIDo. SymNet constructs |A|+ 1 disjoint graphs, where |A| denotes the num-
ber of actions. Each graph have the same set of nodes given by tuples of objects, with
differences in their edges. SymNet2 extends SymNet to be more expressive by noticing
that certain pairs of actions are scored the same in SymNet under certain conditions.

8.3 Other applications of learning for planning

There are also several other approaches for applying learning for planning, either to aid
with the solving process as has done by learning heuristics and generalised policies, but
also to aid with modelling planning problems themselves.

Other methods to aid solving with learning

A simple usage of learning for planning is by performing model selection from a portfolio
of classical planners. Such methods are known as portfolio-based methods where we have
a learner which predicts for each planning problem what is the fastest planner to solve
that problem. The motivation for such a technique is that there no is planner that
dominates all other planners on all domains. Delfi [Katz et al., 2018] is one such method
which employs a convolutional neural network (CNN) for learning the best planner for
each planning task. They represent tasks as images by using the abstract structure graph
(ASG) representation of the graph which they turn into an image by using its adjacency
matrix. Ma et al. [2020] uses GNNs on the FDR problem description graph (FDG)
and ASG representations of planning tasks and also introduces adaptive scheduling by
changing the chosen planner to a second one midtask if the first does not solve the task
in a given time limit. However, the effective of such methods rely on progress of classical
planners.

Learning can also be used to provide transformations of our planning task to make it
easier to solve when given to another planner. Gnad et al. [2019] uses various classical
machine learning approaches such as decision trees, logistic regression, kernel ridge re-
gression, linear regression, and support vector machine regression in order to learn which
parts of a problem to ground for a planning task. The motivation is that some prob-
lems are infeasible to completely ground but it is possible to solve a partially grounded
version of the problem. The method includes learning a priority score for actions during
a modified version of the grounding algorithm of Fast Downward [Helmert, 2006]. To
enforce partial grounding, the algorithm is terminated after a specified upper bound of
actions have been created. Given that this may lead to unsolvable problems, the method
involves incremental grounding of more actions when partially grounded tasks are found
unsolvable.

PLOI [Silver et al., 2021] takes an alternative approach and learns which subsets of

123

8 Related work

objects are sufficient for solving the planning problem, motivated by the idea that not
all objects in a task are useful for solving the task. The authors use a GNN to score the
usefulness of objects for solving a task, and incrementally plan with larger subsets of
objects until a plan is found. Their model scales well over the base planner they use on
problems with large number of objects but few goals. They do note that the effectiveness
of their method depends on the relative number of necessary objects to all objects in the
problem, where if all objects in the task are necessary PLOI has no impact.

Methods to aid modelling with learning

Another bottleneck in using model-based planning besides the solving process is the mod-
elling process. Modelling is usually done by humans handwriting domains and problems
in PDDL which may be prone to errors and may not account for unseen obstacles in
the real world. Despite its lack of robustness to unseen instances, learning models are
usually good at handling noise common in the real world. This idea has been leveraged
for automatically learning safe planning models from plans and trajectories [Stern and
Juba, 2017, Juba et al., 2021] with extensions to deal with stochastic [Juba and Stern,
2022] and numeric planning [Mordoch et al., 2023].

Bonet and Geffner [2020] learn planning models from the structure of the state space with
no additional information with encodings of SAT theories. The theories are specified by
a set of hyperparameters representing upper bounds on the number of action schemas,
predicates and arguments of the learned planning models. In this way the problem
is phrased as a search over hyperparameters which return the best satisfiable theories
corresponding to the simplest planning models. We also refer to [Arora et al., 2018] for a
comprehensive review of other classical machine learning methods for learning planning
models.

124

Chapter 9

Conclusion

We conclude our work in this chapter by providing a summary of our major contributions
and questions we aimed to answer in this thesis, a transparent discussion about current
limitations of our work, and a large trove of promising future work to be explored.

9.1 Contributions

The main focus of our thesis was to speed up solving planning problems by leveraging
major advances in deep learning algorithms and hardware. Our contributions span across
various topics and themes.

Modelling

We developed novel graph representations of planning tasks with the goal of learning
domain-independent heuristics when combined with graph representation learning mod-
els such as message passing neural networks (MPNNs). The graphs include grounded
and lifted variants, both with their own advantages and disadvantages. Namely, our
grounded graph representations SDGE and FDGE provide more expressivity when used
in conjunction with MPNNs, while our lifted graph representations LDG and LDGE are
much smaller and quicker to evaluate with MPNNs. Our work also provides the first
domain-independent graphs with no assumptions on the planning domains we work with.

Theory

We also provided a comprehensive theoretical and empirical study to help us answer
the question what can we learn? More specifically, we identify the domain-independent
heuristics that we can or can not learn with our graph representations and MPNNs. We
also provide a discussion on the impacts of our results and complement the theory with
a set of experimental results.

125

9 Conclusion

Parallelisation

We introduced more intelligent algorithms and ideas for parallelising heuristic evalua-
tions with GPUs during heuristic search in order to speed up our planner. This is done
by observing that naive methods of batching as many heuristic evaluations as we can
is not ‘useful’, given that there are nontrivial parallelisation costs and not all heuristic
evaluations are necessary for the search algorithm. Motivated by this, we introduced
ideas of adaptive batching of heuristic evaluations which observe the local topology of
the search space in order to increase or decrease parallelisation of heuristic evaluation.
Our parallelised algorithms can also be leveraged by classical multicore and multithread
processors.

Learning for planning

Our final contribution is the culmination of all our novel learning and planning contri-
butions in the form of the GOOSE model for learning to solve planning tasks quickly.
Furthermore, we provide a second diverse and comprehensive set of experiments that
establish a new standard of empirical evaluation for the field. We have put effort in both
the learning and planning sides of our implementation in order to optimise GOOSE to
be tested against state-of-the-art planners and be competitive in terms of runtime on
certain domains. Our experiments also consist of test problems with number of objects
of up to 10 times the number seen in training samples in order to transparently identify
the generalisation limits of GOOSE.

9.2 Limitations

As with all research works, there exist several possible limitations. One conceptual
limitation with this line of research is the expensive evaluation procedure as we re-
quired access to many hundreds of GPU hours computing time to test and prototype
our models and perform experiments. For example, evaluating GOOSE performance on
search alone requires up to 5008 GPU hours: 2 search configurations (eager and lazy)
× 2 training taxonomies (domain-dep and domain-indep.) × 6 graph representations ×
2 model readout configurations × 626 test instances × 1

6hr timeout. Note that this is
a worst case bound since some problems require much less time than our cutoff of 600
seconds to be solved, and we can also terminate evaluation on a domain early when no
problems are solved given that problems can be sorted in order of difficulty. Even with
just one model configuration, evaluation on all 626 test instances with the given timeout
requires at most 100 GPU hours. All of this ignores additional time required for training
and prototyping models. This resource issue limits reproducibility of the work but also
explains smaller problem sets used in empirical evaluation in the literature, with testing
done on problems with lower difficulty and timeouts.

Another current limitation with this work and the current literature with the domain-
dependent training setting is its practical usage when compared to classical planners.

126

9.3 Future work

For example, it may be the case that we have access to few or no training samples for
a real life planning problem and domain. Although this is a motivation for introducing
domain-independent learning of heuristics, and we suggest that GOOSE is competitive
in learning domain-independent heuristics with respect to other works in the field of
learning for planning, its performance is not yet significantly more competitive than
classical planners. Nevertheless, this is not a dead end since we can passively rely
on advances in GPU hardware, collection of more data, and explore various methods
described in the following section to improve GOOSE. Moreover, transductive, problem-
specific learning [Ferber et al., 2022] can also complement domain-independent heuristics,
where we spend time on learning additional information about each planning problem
to aid with search as a preprocessing step. This is not an unreasonable strategy and is
also common in classical planning methods such as abstraction heuristics.

Furthermore, there are classes of planning problems such as Hanoi and Sokoban where
learning domain-dependent heuristics still perform inferior to classical heuristics in terms
of runtime and informedness. One explanation for this is the fixed receptive field of
GOOSE which limits model expressivity and is also major limitation for other neural
network methods for planning [Toyer et al., 2020, Shen et al., 2020]. Nevertheless, it
is worth noting that methods for solving computationally hard problems are generally
complementary to one another, meaning that there is no one method that is better than
all others for all problems.

9.3 Future work

Given the large theoretical and practical scope of our work, there remains a lot of future
work to be investigated. These can be categorised into three main components: addi-
tional model modifications and engineering to further optimise performance, extending
our model to account for more expressive classes of planning, and additional theoretical
studies to provide a yardstick for understanding the potentials and limits of this research
direction.

9.3.1 Improving performance

There are various additional methods to improve the performance of GOOSE, ranging
from pure optimisation of the runtime of the code to exploring methods of improving
domain-dependent and domain-independent training and learning.

Additional engineering effort

On the implementation side, it is possible to further optimise our heuristic evaluations
by implementing our entire learning component in C++ or possibly even CUDA code
over what we have done which is using Python packages and calling Python code with
pybind. Low level optimisations of this form may include reducing the overhead costs
of transferring graph data between the CPU host and GPU device on each iteration of

127

9 Conclusion

search. On the learning side, we may also generate a greater and more diverse dataset
for domain-independent training. On the planning side, we may explore and refine our
ideas for adaptive batched search algorithms proposed in Sec. 6.

Improving training for generalisation

With the exception of Spanner, our model struggles to learn useful heuristics when
the sizes of our problems becomes much larger than instances it has been trained on.
However, we are still able to achieve significant improvements over classical heuristics
on problems with unseen size with a reasonable range. This suggests that methods like
leapfrogging [Groshev et al., 2018, Karia and Srivastava, 2021] applied to our model may
allow us to continually learn to solve increasingly large planning problems.

Also apparent with other models which exploit learning for planning, there is still no
clear robust method of training neural network heuristic functions which can generalise
well to unseen problems. Validation techniques alleviate the issue somewhat but have
no strong theoretical guarantees. More specifically, there is no method to guarantee that
retraining the model using the same methods will provide consistent results with low
variance, and no method to predict when we are overfitting to the training set. Lastly,
we recall that we have not tuned any hyperparameters of the model nor of the optimiser
and doing so may improve on our collected results.

Learning preferred operators

Both eager and lazy heuristic search methods benefit from preferred operators as they
provide an additional layer of informativeness, and empirical evaluation has suggested
that they are a very powerful technique for satisficing search. It is possible to learn
preferred operators with our graph representations and exploit dual queue search algo-
rithms which use preferred operators. Similarly to ASNets [Toyer et al., 2020], we can
learn to perform binary classification on nodes corresponding to applicable grounded ac-
tions in order to learn the best possible action we can perform at any state. This would
mean our model will output both a heuristic value, and confidence values on applicable
node actions for each graph. The training loss would thus be a weighted sum of mean
squared error and binary cross entropy. For our lifted graphs, this would require ex-
tending their definition in order to represent applicable grounded nodes of a given state.
One can in fact also view learning preferred operators described this way as learning
domain-independent generalised policies.

Intelligent domain-independent training paradigms

It is possible to leverage ideas from zero-shot or transductive learning in order to learn
from test instances without true labels in order to improve on a pretrained model with no
knowledge of the task it is solving. However, such techniques are usually of a statistical
nature which have certain assumptions of the distributions of the data it is performing

128

9.3 Future work

inference for and may be difficult to directly apply to planning tasks which may have
more complex distributions due to their inherent computational hardness.

Furthermore, it is worth experimenting with domain-dependent training of GOOSE using
pretrained domain-independent parameters.

Graph representation improvements

We noted that in some experiments, the lifted graphs have higher generalisation and
informativeness capabilities than grounded graphs. One possible reason for this is that
their compact nature provides a form of regularisation. A more compelling reason is that
they encode information about predicates and action schema where this information is
lost for grounded graphs, and MPNNs may not be able to recover the predicates and
action schema from the structure of grounded graphs due to their expressivity limits.
Thus, it is possible to introduce predicate and schema information into our grounded
graphs in a similar fashion to what is done with our lifted graphs.

It is also possible to modify certain aspects of our novel lifted graphs, LDG and LDGE.
For example, the current representation has a disjoint union of goals and facts true in the
given state as done with ASGs but it is also possible to take the union instead. We may
also investigate other forms of positional encoding PE functions for encoding argument
indices.

9.3.2 Extensions for more expressive planning

For our work, we have been mainly focused on learning to solve classical planning prob-
lems, i.e. we assume that the world is static, discrete and deterministic. However, there
exist a myriad of more expressive planning models with which it is possible to leverage
learning to solve. As suggested by Shen [2019] we can learn heuristics for probabilistic
planning problems by constructing graph representations of Stochastic Shortest Path
problems (SSP) [Bertsekas and Tsitsiklis, 1991]. For ground graphs, this would mean
introducing additional nodes and edges to represent probabilistic effects of stochastic
actions. One natural extension of SDGE is illustrated in Fig. 9.1. For lifted graphs, an
extension may introducing additional nodes and edges of the graph layers described in
Fig. 3.5b corresponding to action schema to encode probabilistic schema effects.

Numeric planning, introduced in PDDL2.1 [Fox and Long, 2003], consists of numeric
states where state variables may have infinite domains given by rational numbers, and
preconditions, effects and optimisation functions given by linear equations of numeric
variables. We can encode numeric planning problems by introducing additional nodes
with numeric features beyond one hot encodings corresponding to numeric variables,
action preconditions and effects, and optimisation functions. It is easy to adapt heuristic
search to numeric planning given that it has well defined state successor generators.

We may also learn heuristics for multi-objective planning in which heuristics are now
sets of vectors instead of scalars [Geißer et al., 2022, Chen et al., 2023]. One possible way

129

9 Conclusion

a

eff1

eff2

eff3

pre1

pre2

pre3

p1

p2

p3

p4

p5

0.3

0.1

0.6

Figure 9.1: A possible SDGE extension to deal with stochastic planning. The figure
illustrates the subgraph of an action a with pre(a) = {pre1,pre2, pre3},
and three probabilistic effects of the form (prob. of activating, add, del)
with eff1(a) = (0.3, {p1} , {p4}), eff2(a) = (0.1, {p1, p5} , ∅), and eff3(a) =
(0.6, {p2, p3} , {p4}).

to extend our methods to learn multi-objective heuristics is to modify our graph neural
networks into generative models from which we sample learned joint distributions of our
input and output data. For example, given an input graph representation of our planning
task, our model may learn to return an associated Gaussian Mixture Model where means
of Gaussian components correspond to heuristic vectors in our sets. Indeed, neural
networks have been employed to learn mixture models [Bishop, 1994]. However, learners
in this direction are unlikely to be completely domain-independent given that the output
heuristic vector sizes are dependent on the domain and the models we consider cannot
learn to output variable sized vectors. Furthermore, by learning to output vectors instead
of scalars, we may lose permutation invariance of multiple objectives across domains.

9.3.3 Open theoretical questions

As discussed in Sec. 4.3.1, there are multiple directions we can take to provide more
informed theoretical results. One direction is to further refine our expressivity results
by considering classes of planning tasks where we can learn h∗ with our graph repre-
sentations and MPNNs, and the probabilities of doing so. We may also consider more
expressive GNN models which are still tractable for our setting. Another direction is
to study generalisation bounds or extrapolation results of our learned models. A more
impactful direction may be to provide general theory for learning for planning which is
agnostic to the choice of (tractable) learning models such as GOOSE, STRIPS-HGN or
ASNets.

130

9.4 Final remarks

9.4 Final remarks

Model-free learners and model-based solvers are the two major paradigms of artificial
intelligence in the current age. Due to large scale advances and interest of deep learning
which are also generally favoured by political influences and the age of information, it
is inevitable that we can no longer ignore model-free learners and conversely we can no
longer focus our attention solely on model-based solvers.

In this thesis we contribute to bridging the gap between these two major paradigms.
We introduce GOOSE for leveraging several advances in deep learning research and
hardware in order to aid with solving combinatorially difficult planning problems more
efficiently. Although we have identified several major contributions in our work, there
are still many more open problems to solve and various possible research directions to
explore as discussed in our extensive future works section.

131

132

Appendix A

Graph and dataset statistics

A.1 Graph sizes

Fig. A.1 and A.2 illustrate the distributions of graph size of the various graph represen-
tations on the dataset described in Ch. 5.

SDG SDG-EL FDG FDG-EL ASG LDG LDG-EL
5

10
2

5
100

2

5
1000

2

5
10k

2

5
100k

2

5
1M SDG

SDG-EL
FDG
FDG-EL
ASG
LDG
LDG-EL

representation

no
de

s

Figure A.1: Box plots of number of nodes for various graph representations.

133

A Graph and dataset statistics

SDG SDG-EL FDG FDG-EL ASG LDG LDG-EL
10
2

5
100

2

5
1000

2

5
10k

2

5
100k

2

5
1M

2

5
10M

2 SDG
SDG-EL
FDG
FDG-EL
ASG
LDG
LDG-EL

representation

ed
ge
s

Figure A.2: Box plots of number of edges for various graph representations.

A.2 Inference dataset information

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

Figure A.3: Distribution of samples by their h∗ labels.

134

A.2 Inference dataset information

Table A.1: Unitary cost domains from 1998-2018 IPCs with corresponding number of
solved instances and states for use in the inference experiments described in
Ch. 5.

Domain # data # plans

ipc-1998-grid-2 79 3
ipc-1998-logistics-1 483 14
ipc-1998-logistics-2 140 5
ipc-1998-movie-1 240 30
ipc-1998-mystery-1 153 19
ipc-1998-mystery-prime-1 238 31
ipc-1998-mystery-prime-2 37 5
ipc-2000-elevator-simple 7356 145
ipc-2000-freecell 1746 50
ipc-2000-logistics 1492 33
ipc-2002-depots 396 14
ipc-2002-driverlog 312 15
ipc-2002-freecell 800 18
ipc-2002-rovers 301 13
ipc-2002-satellite 203 10
ipc-2004-pipesworld-no-tankage 482 25
ipc-2004-pipesworld-tankage 331 18
ipc-2004-satellite 203 10
ipc-2011-no-mystery 517 20
ipc-2011-parking 168 8
ipc-2014-barman 150 3
ipc-2014-hiking 450 18
ipc-2014-parking 170 8
ipc-2018-organic-synthesis 19 7

135

136

137

B Additional results for inference

Appendix B

Additional results for inference

B.1 Best performing model scores

32
0

20

40

60

80

100
None

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
LPE1

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
RNI1

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
VN

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
LPE4

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
RNI4

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

32
0

20

40

60

80

100
SUM

SDG

SDGE

FDR

FDRE

ASG

LDG

LDGE

Figure B.1: Maximum accuracy per target h∗ value over 5 experiment repeats. The
vertical red line indicates the interval of the h∗ values which the model was
exposed to during training. y-axis: accuracy, x-axis: target h∗ value.

138

139

C Additional results for search

Appendix C

Additional results for search

C.1 Domain-dependent training validation scores

Table C.1: Validation metrics of best model with sum readout and domain-
dependent training chosen for each domain. w. loss represents the best
weighted train and validation loss given by Eq. 5.3

Domain Metric SDG SDGE FDG FDGE LDG LDGE

Blocksworld (3)

w. loss 0.06 0.00 0.13 0.06 0.09 0.18
mean runtime 2.9 7.3 4.0 9.8 6.7 25.8
mean expanded 30 29 30 30 46 311
solved 3 3 3 3 3 3

Ferry (3)

w. loss 0.36 0.02 0.04 0.04 6.38 7.73
mean runtime 6.7 16.6 7.5 18.7 41.9 -
mean expanded 52 38 38 38 976 -
solved 3 3 3 3 1 0

Gripper (1)

w. loss 0.48 0.47 0.39 0.35 0.21 0.21
mean runtime 3.2 6.7 3.3 10.3 6.5 12.1
mean expanded 35 43 35 38 40 36
solved 1 1 1 1 1 1

Hanoi (1)

w. loss 27.72 44.16 93.98 10.47 621.35 1036.46
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

n-puzzle (3)

w. loss 0.39 0.57 2.19 1.47 169.92 170.34
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

Sokoban (3)

w. loss 0.11 0.02 0.03 0.06 20.73 20.66
mean runtime 49.7 248.3 71.9 17.7 93.9 133.2
mean expanded 894 1372 496 70 4646 1630
solved 3 2 2 2 3 2

Spanner (3)

w. loss 0.00 0.00 0.12 0.00 0.25 0.26
mean runtime - 14.2 4.6 - 8.2 18.8
mean expanded - 31 31 - 31 31
solved 0 3 1 0 3 3

VisitAll (3)

w. loss 0.04 0.03 0.04 0.04 0.04 0.04
mean runtime 22.7 31.6 17.8 48.8 18.2 50.3
mean expanded 334 222 258 258 328 334
solved 3 3 3 3 3 3

VisitSome (3)

w. loss 6.35 0.39 4.33 1.44 6.37 6.25
mean runtime 4.8 10.1 6.1 135.7 85.5 -
mean expanded 67 56 101 1016 2883 -
solved 2 3 3 2 2 0

140

C.1 Domain-dependent training validation scores

Table C.2: Validation metrics of best model with mean readout and domain-
dependent training chosen for each domain. w. loss represents the best
weighted train and validation loss given by Eq. 5.3

Domain Metric SDG SDGE FDG FDGE LDG LDGE

Blocksworld (3)

w. loss 0.07 0.03 0.03 0.01 0.06 0.05
mean runtime 3.2 7.1 3.3 9.1 6.0 10.1
mean expanded 30 29 29 29 32 27
solved 3 3 3 3 3 2

Ferry (3)

w. loss 0.38 0.02 0.05 0.02 8.12 7.60
mean runtime 7.1 16.9 7.0 20.4 207.0 517.7
mean expanded 46 39 39 42 3430 2691
solved 3 3 3 3 1 1

Gripper (1)

w. loss 0.34 0.25 6.37 0.72 0.21 0.23
mean runtime 3.4 6.9 8.9 12.0 7.8 13.7
mean expanded 57 42 137 74 40 38
solved 1 1 1 1 1 1

Hanoi (1)

w. loss 48.81 25.75 85.65 9.89 11513.92 320.39
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

n-puzzle (3)

w. loss 0.41 0.22 0.95 0.29 170.14 170.20
mean runtime 516.1 - 257.1 - - -
mean expanded 3292 - 1261 - - -
solved 1 0 1 0 0 0

Sokoban (3)

w. loss 0.04 0.02 0.03 0.02 20.71 20.67
mean runtime 178.0 152.7 7.7 159.4 101.1 137.7
mean expanded 3379 833 59 653 4662 1634
solved 3 3 3 3 3 2

Spanner (3)

w. loss 0.00 0.00 0.00 0.00 0.23 0.22
mean runtime - - - - 8.8 19.9
mean expanded - - - - 31 31
solved 0 0 0 0 3 3

VisitAll (3)

w. loss 0.09 0.07 0.03 0.02 0.05 0.07
mean runtime 15.0 47.3 106.9 224.2 18.8 59.4
mean expanded 274 325 1615 1291 373 390
solved 3 3 3 3 3 3

VisitSome (3)

w. loss 4.96 0.44 1.08 0.32 5.86 5.53
mean runtime 8.9 59.8 32.1 385.4 9.6 42.7
mean expanded 173 440 626 3135 188 346
solved 3 3 3 3 3 3

141

C Additional results for search

C.2 Domain-independent training validation scores

Table C.3: Validation metrics of best model with sum readout and domain-
independent training chosen for each domain. w. loss represents the best
weighted train and validation loss given by Eq. 5.3

Domain Metric SDG SDGE FDG FDGE LDG LDGE

Blocksworld (3)

w. loss 2.27 1.59 96.94 0.51 6.88 4.20
mean runtime 13.2 - 212.0 81.1 - -
mean expanded 264 - 5325 469 - -
solved 3 0 3 3 0 0

Ferry (3)

w. loss 31.56 1.59 25.36 0.51 6.88 4.20
mean runtime 14.0 - - 78.4 - -
mean expanded 119 - - 184 - -
solved 3 0 0 3 0 0

Gripper (1)

w. loss 24.34 1.59 25.36 0.51 8.92 6.88
mean runtime 4.4 - - 120.6 36.5 41.4
mean expanded 90 - - 874 1250 332
solved 1 0 0 1 1 1

Hanoi (1)

w. loss 2.27 1.59 25.36 0.51 6.88 4.20
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

n-puzzle (3)

w. loss 2.27 1.59 25.36 0.51 6.88 4.20
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

Sokoban (3)

w. loss 31.56 90.17 25.36 3.72 6.88 5.79
mean runtime 284.0 424.2 - 836.1 87.5 360.7
mean expanded 5403 2315 - 3964 4666 4569
solved 3 1 0 1 3 3

Spanner (3)

w. loss 2.27 1.59 25.36 0.51 6.88 4.20
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

VisitAll (3)

w. loss 5.53 8.23 25.36 22.75 10.89 4.20
mean runtime 14.6 65.6 - 51.6 22.8 53.0
mean expanded 266 434 - 285 446 334
solved 3 3 0 3 3 3

VisitSome (3)

w. loss 2.27 8.23 96.94 37.93 10.89 6.88
mean runtime 465.6 96.4 49.4 131.3 13.2 34.6
mean expanded 9386 696 979 999 344 266
solved 3 2 1 3 3 3

142

C.2 Domain-independent training validation scores

Table C.4: Validation metrics of best model with mean readout and domain-
independent training chosen for each domain. w. loss represents the best
weighted train and validation loss given by Eq. 5.3

Domain Metric SDG SDGE FDG FDGE LDG LDGE

Blocksworld (3)

w. loss 1.45 0.32 0.58 0.25 6.60 5.86
mean runtime 20.5 142.5 20.2 25.0 403.7 46.6
mean expanded 279 813 229 113 20055 631
solved 3 3 3 3 1 1

Ferry (3)

w. loss 1.96 0.25 0.84 0.35 4.85 4.79
mean runtime 42.8 203.9 20.1 51.5 - -
mean expanded 406 542 133 118 - -
solved 3 3 3 3 0 0

Gripper (1)

w. loss 1.45 0.25 0.84 0.33 5.03 5.65
mean runtime 23.4 - 5.4 52.9 11.7 34.3
mean expanded 673 - 96 600 319 300
solved 1 0 1 1 1 1

Hanoi (1)

w. loss 1.45 0.25 0.58 0.25 4.85 4.79
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

n-puzzle (3)

w. loss 1.45 0.25 0.58 0.25 4.85 4.79
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

Sokoban (3)

w. loss 3.04 0.25 0.71 0.25 5.03 5.86
mean runtime 402.6 - 272.6 - 86.6 368.0
mean expanded 7602 - 3660 - 4648 4666
solved 3 0 3 0 3 3

Spanner (3)

w. loss 1.45 0.25 0.58 0.25 4.85 4.79
mean runtime - - - - - -
mean expanded - - - - - -
solved 0 0 0 0 0 0

VisitAll (3)

w. loss 1.45 0.25 0.58 0.25 6.60 4.79
mean runtime - - - - 19.2 53.8
mean expanded - - - - 334 334
solved 0 0 0 0 3 3

VisitSome (3)

w. loss 1.45 0.25 1.08 0.25 5.63 4.86
mean runtime - - 449.5 - 12.0 53.7
mean expanded - - 8942 - 246 429
solved 0 0 1 0 3 3

143

C Additional results for search

C.3 Coverage table – few objects

Table C.5: Coverage table of classical heuristics and learned heuristics with sum read-
out on planning tasks with few objects.

Eager

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (40) 33 40 40 40 40 40 40 40 40 40 39 40 32 24 40 30 23
Ferry (125) 90 125 79 125 125 125 125 125 125 112 65 125 115 40 125 56 40
Gripper (10) 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10
Hanoi (8) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6
n-puzzle (20) 10 20 10 19 20 20 20 20 20 5 1 20 17 12 20 4 1
Sokoban (30) 30 30 30 30 30 30 30 30 30 30 30 30 18 23 23 30 30
Spanner (75) 65 65 60 60 60 70 75 72 70 75 75 60 40 40 60 55 40
VisitAll (40) 10 40 10 40 39 40 40 40 40 40 40 40 10 13 31 40 40
VisitSome (40) 22 40 16 33 30 39 40 40 40 36 37 39 23 29 35 39 37

Lazy

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (40) 33 40 40 40 40 40 40 40 40 40 40 40 37 31 40 32 23
Ferry (125) 88 125 82 125 125 125 125 125 125 118 82 125 119 59 125 59 41
Gripper (10) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Hanoi (8) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7
n-puzzle (20) 10 20 10 19 20 20 20 20 20 10 8 20 20 11 20 10 5
Sokoban (30) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Spanner (75) 65 65 69 70 70 75 75 74 75 75 75 60 56 60 65 55 40
VisitAll (40) 10 40 10 40 40 40 40 40 40 40 40 40 15 15 34 40 40
VisitSome (40) 22 40 16 35 33 40 40 40 40 34 34 40 25 32 37 38 40

Table C.6: Coverage table of classical heuristics and learned heuristics with mean read-
out on planning tasks with few objects.

Eager

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (40) 33 40 40 40 40 40 40 40 40 40 40 40 40 40 40 33 34
Ferry (125) 90 125 79 125 125 125 125 125 125 116 107 125 125 113 125 97 78
Gripper (10) 10 10 10 10 10 10 10 10 10 10 10 10 8 10 10 9 10
Hanoi (8) 8 8 8 8 8 8 8 8 8 7 7 8 6 8 7 7 6
n-puzzle (20) 10 20 10 19 20 20 20 20 20 2 1 19 14 20 20 3 1
Sokoban (30) 30 30 30 30 30 30 30 30 30 30 27 30 17 15 23 15 27
Spanner (75) 65 65 60 60 60 70 70 70 69 75 75 58 52 70 61 55 50
VisitAll (40) 10 40 10 40 39 40 40 40 40 40 40 14 31 20 13 40 40
VisitSome (40) 22 40 16 33 30 40 40 40 40 38 37 19 29 38 29 39 40

Lazy

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (40) 33 40 40 40 40 40 40 40 40 40 40 40 40 40 40 33 36
Ferry (125) 88 125 82 125 125 125 125 125 125 118 117 125 125 109 125 96 79
Gripper (10) 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10
Hanoi (8) 8 8 8 8 8 8 8 8 7 8 7 8 7 8 8 8 6
n-puzzle (20) 10 20 10 19 20 20 20 20 20 10 5 20 19 20 20 8 3
Sokoban (30) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Spanner (75) 65 65 69 70 70 75 75 75 75 75 75 60 58 70 70 55 50
VisitAll (40) 10 40 10 40 40 40 40 40 40 40 40 16 36 20 15 40 40
VisitSome (40) 22 40 16 35 33 40 40 40 40 40 39 23 35 39 34 39 40

144

C.4 Coverage table – many objects

C.4 Coverage table – many objects

Table C.7: Coverage table of classical heuristics and learned heuristics with sum read-
out on planning tasks with many objects.

Eager

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (90) - 15 - 20 10 18 22 13 10 9 6 16 - 4 6 - -
Ferry (90) - 90 - 11 38 9 43 20 41 - - 44 - 1 17 - -
Gripper (18) 1 18 - 18 14 7 1 5 3 14 12 4 - - - 3 7
Hanoi (18) 1 1 - - - - - - - - - - - - - - -
n-puzzle (50) - 11 - - 11 10 8 - 10 - - 6 - - 5 - -
Sokoban (90) 42 81 82 52 45 30 31 29 34 27 27 20 12 3 18 18 18
Spanner (90) - - - - - - - 1 - 15 50 - - - - - -
VisitAll (90) - 75 - 2 9 38 39 21 20 31 31 44 30 - 16 17 30
VisitSome (90) - 7 - - - 2 8 - 2 4 - 3 - 2 2 7 12

Lazy

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (90) - 13 - 21 10 17 23 14 10 8 7 15 - 7 8 - -
Ferry (90) - 90 - 16 69 11 40 19 40 - - 44 - - 13 - -
Gripper (18) 1 18 - 18 18 10 12 17 18 15 12 5 1 - 13 7 9
Hanoi (18) 1 1 - - - - - - - - - - - - - - -
n-puzzle (50) - 11 - - 14 12 12 5 13 - - 7 - - 6 - -
Sokoban (90) 42 81 90 63 72 32 34 29 34 33 27 39 18 18 18 25 24
Spanner (90) - - - - - 10 3 10 1 45 90 - - - - - -
VisitAll (90) - 73 - 4 14 40 30 24 17 30 25 40 28 - 17 15 25
VisitSome (90) - 5 - - - - 13 3 4 5 - 7 1 2 5 7 12

Table C.8: Coverage table of classical heuristics and learned heuristics with mean read-
out on planning tasks with many objects.

Eager

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (90) - 15 - 20 10 25 26 32 31 19 8 6 4 9 10 - -
Ferry (90) - 90 - 11 38 35 40 39 40 - - 14 5 30 12 - -
Gripper (18) 1 18 - 18 14 7 7 5 7 7 6 2 - 4 2 3 5
Hanoi (18) 1 1 - - - - - - - - - - - - - - -
n-puzzle (50) - 11 - - 11 5 8 8 6 - - 6 - 8 5 - -
Sokoban (90) 42 81 82 52 45 38 31 39 38 28 27 9 4 30 3 36 36
Spanner (90) - - - - - - - - - 15 9 - - - - - -
VisitAll (90) - 75 - 2 9 15 15 10 5 10 10 - - - - 12 12
VisitSome (90) - 7 - - - 7 6 - 1 6 3 - - - - 10 9

Lazy

Baseline Domain-dependent Domain-independent

Domain b
li
n
d

h
g
c

h
m

a
x

h
a
d
d

h
F
F

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

h
S
D
G

h
S
D
G
E

h
F
D
G

h
F
D
G
E

h
L
D
G

h
L
D
G
E

Blocksworld (90) - 13 - 21 10 26 32 33 32 20 7 5 4 10 9 - -
Ferry (90) - 90 - 16 69 33 40 40 40 - - 13 5 28 12 - -
Gripper (18) 1 18 - 18 18 7 8 5 7 7 6 2 - 4 1 6 8
Hanoi (18) 1 1 - - - - - - - - - - - - - - -
n-puzzle (50) - 11 - - 14 8 8 9 9 - - 3 - 8 7 - -
Sokoban (90) 42 81 90 63 72 35 39 45 35 31 31 20 18 37 18 36 36
Spanner (90) - - - - - 1 - 2 1 25 9 - - - - - -
VisitAll (90) - 73 - 4 14 15 15 10 5 10 10 - - - - 15 15
VisitSome (90) - 5 - - - 7 4 - 1 3 3 - - - - 9 7

145

C Additional results for search

C.5 Coverage plots of runtime and plan quality

C.5.1 Blocksworld

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed
mean readout + eager search

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure C.1: Cumulative coverage over runtime on seen/small size Blocksworld in-
stances. Total number of problems: 40.

0 20 40 60 80
cost

0

10

20

30

40

so
lv

ed

mean readout + eager search

0 10 20 30 40 50 60 70
cost

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
cost

0

10

20

30

40

so
lv

ed

mean readout + lazy search

0 10 20 30 40 50 60 70
cost

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure C.2: Cumulative coverage over plan cost on seen/small size Blocksworld in-
stances. Total number of problems: 40.

146

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

5

10

15

20

25

30

35

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

5

10

15

20

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

5

10

15

20

25

30

35

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

5

10

15

20

25

so
lv

ed

sum readout + lazy search

Figure C.3: Cumulative coverage over runtime on unseen/large size Blocksworld in-
stances. Total number of problems: 90.

0 100 200 300 400
cost

0

5

10

15

20

25

30

35

so
lv

ed

mean readout + eager search

0 100 200 300 400
cost

0

5

10

15

20

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400
cost

0

5

10

15

20

25

30

35

so
lv

ed

mean readout + lazy search

0 100 200 300 400
cost

0

5

10

15

20

25

so
lv

ed

sum readout + lazy search

Figure C.4: Cumulative coverage over plan cost on unseen/large size Blocksworld
instances. Total number of problems: 90.

147

C Additional results for search

C.5.2 Ferry

0 20 40 60 80 100 120
runtime

0

20

40

60

80

100

120

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

20

40

60

80

100

120

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

20

40

60

80

100

120

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

20

40

60

80

100

120

so
lv

ed

sum readout + lazy search

Figure C.5: Cumulative coverage over runtime on seen/small size Ferry instances. To-
tal number of problems: 125.

0 10 20 30 40 50 60
cost

0

20

40

60

80

100

120

so
lv

ed

mean readout + eager search

0 10 20 30 40 50
cost

0

20

40

60

80

100

120

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80
cost

0

20

40

60

80

100

120

so
lv

ed

mean readout + lazy search

0 10 20 30 40 50 60 70
cost

0

20

40

60

80

100

120

so
lv

ed

sum readout + lazy search

Figure C.6: Cumulative coverage over plan cost on seen/small size Ferry instances.
Total number of problems: 125.

148

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.7: Cumulative coverage over runtime on unseen/large size Ferry instances.
Total number of problems: 90.

0 50 100 150 200 250 300 350
cost

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 50 100 150 200 250 300 350
cost

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400
cost

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 100 200 300 400
cost

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.8: Cumulative coverage over plan cost on unseen/large size Ferry instances.
Total number of problems: 90.

149

C Additional results for search

C.5.3 Gripper

0 20 40 60 80 100 120
runtime

0

2

4

6

8

10

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

2

4

6

8

10

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

2

4

6

8

10

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

2

4

6

8

10

so
lv

ed

sum readout + lazy search

Figure C.9: Cumulative coverage over runtime on seen/small size Gripper instances.
Total number of problems: 10.

0 10 20 30 40
cost

0

2

4

6

8

10

so
lv

ed

mean readout + eager search

0 10 20 30 40
cost

0

2

4

6

8

10

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 10 20 30 40
cost

0

2

4

6

8

10

so
lv

ed

mean readout + lazy search

0 10 20 30 40
cost

0

2

4

6

8

10

so
lv

ed

sum readout + lazy search

Figure C.10: Cumulative coverage over plan cost on seen/small size Gripper instances.
Total number of problems: 10.

150

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + lazy search

Figure C.11: Cumulative coverage over runtime on unseen/large size Gripper instances.
Total number of problems: 18.

0 100 200 300 400
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + eager search

0 100 200 300 400
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + lazy search

0 100 200 300 400
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + lazy search

Figure C.12: Cumulative coverage over plan cost on unseen/large size Gripper in-
stances. Total number of problems: 18.

151

C Additional results for search

C.5.4 Hanoi

0 20 40 60 80 100 120
runtime

0

2

4

6

8

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

2

4

6

8

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

2

4

6

8

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

2

4

6

8

so
lv

ed

sum readout + lazy search

Figure C.13: Cumulative coverage over runtime on seen/small size Hanoi instances. To-
tal number of problems: 8.

0 500 1000 1500 2000 2500
cost

0

2

4

6

8

so
lv

ed

mean readout + eager search

0 500 1000 1500 2000 2500 3000
cost

0

2

4

6

8

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 500 1000 1500 2000 2500
cost

0

2

4

6

8

so
lv

ed

mean readout + lazy search

0 500 1000 1500 2000 2500 3000
cost

0

2

4

6

8

so
lv

ed

sum readout + lazy search

Figure C.14: Cumulative coverage over plan cost on seen/small size Hanoi instances.
Total number of problems: 8.

152

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + lazy search

Figure C.15: Cumulative coverage over runtime on unseen/large size Hanoi instances.
Total number of problems: 18.

0 5000 10000 15000 20000 25000 30000
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + eager search

0 5000 10000 15000 20000 25000 30000
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 5000 10000 15000 20000 25000 30000
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

mean readout + lazy search

0 5000 10000 15000 20000 25000 30000
cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

so
lv

ed

sum readout + lazy search

Figure C.16: Cumulative coverage over plan cost on unseen/large size Hanoi instances.
Total number of problems: 18.

153

C Additional results for search

C.5.5 n-puzzle

0 20 40 60 80 100 120
runtime

0

5

10

15

20

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

5

10

15

20

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

5

10

15

20

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

5

10

15

20

so
lv

ed

sum readout + lazy search

Figure C.17: Cumulative coverage over runtime on seen/small size n-puzzle instances.
Total number of problems: 20.

0 100 200 300 400
cost

0

5

10

15

20

so
lv

ed

mean readout + eager search

0 100 200 300 400
cost

0

5

10

15

20

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 50 100 150 200 250 300 350
cost

0

5

10

15

20

so
lv

ed

mean readout + lazy search

0 100 200 300 400
cost

0

5

10

15

20

so
lv

ed

sum readout + lazy search

Figure C.18: Cumulative coverage over plan cost on seen/small size n-puzzle instances.
Total number of problems: 20.

154

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

12

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

12

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

12

14

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

12

14

so
lv

ed

sum readout + lazy search

Figure C.19: Cumulative coverage over runtime on unseen/large size n-puzzle instances.
Total number of problems: 50.

0 200 400 600 800
cost

0

2

4

6

8

10

12

so
lv

ed

mean readout + eager search

0 200 400 600 800 1000
cost

0

2

4

6

8

10

12

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 200 400 600 800 1000
cost

0

2

4

6

8

10

12

14

so
lv

ed

mean readout + lazy search

0 200 400 600 800 1000
cost

0

2

4

6

8

10

12

14

so
lv

ed

sum readout + lazy search

Figure C.20: Cumulative coverage over plan cost on unseen/large size n-puzzle in-
stances. Total number of problems: 50.

155

C Additional results for search

C.5.6 Sokoban

0 20 40 60 80 100 120
runtime

0

5

10

15

20

25

30

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

5

10

15

20

25

30

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

5

10

15

20

25

30

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

5

10

15

20

25

30

so
lv

ed

sum readout + lazy search

Figure C.21: Cumulative coverage over runtime on seen/small size Sokoban instances.
Total number of problems: 30.

0 10 20 30 40 50 60 70
cost

0

5

10

15

20

25

30

so
lv

ed

mean readout + eager search

0 20 40 60 80
cost

0

5

10

15

20

25

30

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80
cost

0

5

10

15

20

25

30

so
lv

ed

mean readout + lazy search

0 20 40 60 80
cost

0

5

10

15

20

25

30

so
lv

ed

sum readout + lazy search

Figure C.22: Cumulative coverage over plan cost on seen/small size Sokoban instances.
Total number of problems: 30.

156

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.23: Cumulative coverage over runtime on unseen/large size Sokoban in-
stances. Total number of problems: 90.

0 25 50 75 100 125 150
cost

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 25 50 75 100 125 150
cost

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 25 50 75 100 125 150 175
cost

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 25 50 75 100 125 150 175
cost

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.24: Cumulative coverage over plan cost on unseen/large size Sokoban in-
stances. Total number of problems: 90.

157

C Additional results for search

C.5.7 Spanner

0 20 40 60 80 100 120
runtime

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.25: Cumulative coverage over runtime on seen/small size Spanner instances.
Total number of problems: 75.

0 5 10 15 20 25
cost

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 5 10 15 20 25
cost

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 5 10 15 20 25
cost

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 5 10 15 20 25
cost

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.26: Cumulative coverage over plan cost on seen/small size Spanner instances.
Total number of problems: 75.

158

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.27: Cumulative coverage over runtime on unseen/large size Spanner instances.
Total number of problems: 90.

0 10 20 30 40 50 60 70
cost

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 25 50 75 100 125 150
cost

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80
cost

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 50 100 150 200 250
cost

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.28: Cumulative coverage over plan cost on unseen/large size Spanner in-
stances. Total number of problems: 90.

159

C Additional results for search

C.5.8 VisitAll

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure C.29: Cumulative coverage over runtime on seen/small size VisitAll instances.
Total number of problems: 40.

0 100 200 300 400 500 600 700
cost

0

10

20

30

40

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600 700
cost

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600 700
cost

0

10

20

30

40

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600 700
cost

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure C.30: Cumulative coverage over plan cost on seen/small size VisitAll instances.
Total number of problems: 40.

160

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.31: Cumulative coverage over runtime on unseen/large size VisitAll in-
stances. Total number of problems: 90.

0 2000 4000 6000 8000
cost

0

20

40

60

80

so
lv

ed

mean readout + eager search

0 2000 4000 6000 8000
cost

0

20

40

60

80

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 2000 4000 6000 8000
cost

0

20

40

60

80

so
lv

ed

mean readout + lazy search

0 2000 4000 6000 8000
cost

0

20

40

60

80

so
lv

ed

sum readout + lazy search

Figure C.32: Cumulative coverage over plan cost on unseen/large size VisitAll in-
stances. Total number of problems: 90.

161

C Additional results for search

C.5.9 VisitSome

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

mean readout + eager search

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100 120
runtime

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure C.33: Cumulative coverage over runtime on seen/small size VisitSome instances.
Total number of problems: 40.

0 20 40 60 80 100
cost

0

10

20

30

40

so
lv

ed

mean readout + eager search

0 20 40 60 80 100
cost

0

10

20

30

40

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 20 40 60 80 100
cost

0

10

20

30

40

so
lv

ed

mean readout + lazy search

0 20 40 60 80 100
cost

0

10

20

30

40

so
lv

ed

sum readout + lazy search

Figure C.34: Cumulative coverage over plan cost on seen/small size VisitSome in-
stances. Total number of problems: 40.

162

C.5 Coverage plots of runtime and plan quality

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

so
lv

ed

mean readout + eager search

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

12

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

so
lv

ed

mean readout + lazy search

0 100 200 300 400 500 600
runtime

0

2

4

6

8

10

12

14

so
lv

ed

sum readout + lazy search

Figure C.35: Cumulative coverage over runtime on unseen/large size VisitSome in-
stances. Total number of problems: 90.

0 100 200 300 400 500 600
cost

0

2

4

6

8

10

so
lv

ed

mean readout + eager search

0 100 200 300 400
cost

0

2

4

6

8

10

12

so
lv

ed

sum readout + eager search

0 100 200 300 400 500 600
runtime

0

20

40

60

80

so
lv

ed

blind

gc

max

add

FF

SDG

SDGE

FDR

FDRE

LDG

LDGE

SDGunseen

SDGE
unseen

FDGunseen

FDGE
unseen

LDGunseen

LDGE
unseen

0 100 200 300 400 500 600
cost

0

2

4

6

8

10

so
lv

ed

mean readout + lazy search

0 200 400 600 800
cost

0

2

4

6

8

10

12

14

so
lv

ed

sum readout + lazy search

Figure C.36: Cumulative coverage over plan cost on unseen/large size VisitSome in-
stances. Total number of problems: 90.

163

164

Bibliography

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The
surprising power of graph neural networks with random node initialization. CoRR,
abs/2010.01179, 2020.

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The
surprising power of graph neural networks with random node initialization. In Proc.
of the 30th International Joint Conference on Artificial Intelligence (IJCAI), 2021.

Mohammad Abdulaziz, Michael Norrish, and Charles Gretton. Exploiting symmetries by
planning for a descriptive quotient. In Proc. of the 24th International Joint Conference
on Artificial Intelligence (IJCAI), 2015.

Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the
rubik’s cube with deep reinforcement learning and search. Nat. Mach. Intell., 1(8):
356–363, 2019.

Vidal Alcázar and Álvaro Torralba. A reminder about the importance of computing and
exploiting invariants in planning. In Proc. of the 25th International Conference on
Automated Planning and Scheduling (ICAPS), pages 2–6, 2015.

Ron Alford, Pascal Bercher, and David Aha. Tight bounds for HTN planning with task
insertion. In Proc. of the 25th International Joint Conference on Artificial Intelligence
(IJCAI), pages 1502–1508, 2015.

Dario Amodei and Danny Hernandez. Ai and compute, 2018. Accessed from https:

//openai.com/research/ai-and-compute on May 8, 2023.

Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie Pesty. A
review of learning planning action models. Knowl. Eng. Rev., 33:e20, 2018.

Christer Bäckström and Inger Klein. Planning in polynomial time: the SAS-PUBS class.
Comput. Intell., 7:181–197, 1991.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-
put. Intell., 11:625–656, 1995.

165

https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute

Bibliography

Aniket (Nick) Bajpai, Sankalp Garg, and Mausam. Transfer of deep reactive policies
for MDP planning. In Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 10988–10998, 2018.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-
Pablo Silva. The logical expressiveness of graph neural networks. In 8th International
Conference on Learning Representations (ICLR), 2020.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neu-
ral networks with local graph parameters. Neural Information Processing Systems
(NeurIPS), 34, 2021.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural computation, 15(6):1373–1396, 2003.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path
problems. Mathematics of Operations Research, 16(3):580–595, 1991.

Christopher Bishop. Mixture density networks. Technical Report NCRG/94/004, 1994.

Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artif.
Intell., 90(1-2):281–300, 1997.

Blai Bonet and Hector Geffner. Labeled RTDP: improving the convergence of real-
time dynamic programming. In Proc. 13th International Conference on Automated
Planning and Scheduling (ICAPS), pages 12–21, 2003.

Blai Bonet and Hector Geffner. Learning first-order symbolic representations for plan-
ning from the structure of the state space. In Proc. of the 24th European Conference
on Artificial Intelligence (ECAI), volume 325, pages 2322–2329, 2020.

Blai Bonnet and Héctor Geffner. HSP: Heuristic search planner. First description of
HSP at the AIPS-98 Planning Competition, 1998.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Im-
proving graph neural network expressivity via subgraph isomorphism counting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Zhaoxing Bu, Roni Stern, Ariel Felner, and Robert Craig Holte. A* with lookahead re-
evaluated. In Proc. of the 7th Annual Symposium on Combinatorial Search (SOCS),
2014.

Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. Best-first heuristic search
for multicore machines. J. Artif. Intell. Res., 39:689–743, 2010.

Tom Bylander. The computational complexity of propositional STRIPS planning. Artif.
Intell., 69(1-2):165–204, 1994.

166

Bibliography

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris,
and Petar Velickovic. Combinatorial optimization and reasoning with graph neural
networks. In Proc. of the 30th International Joint Conference on Artificial Intelligence
(IJCAI), pages 4348–4355, 2021.

Dillon Chen and Pascal Bercher. Fully observable nondeterministic htn planning – for-
malisation and complexity results. In ICAPS 2021, pages 74–84, 2021.

Dillon Chen and Pascal Bercher. Flexible FOND HTN planning: A complexity analysis.
In Proc. of the 32nd International Conference on Automated Planning and Scheduling
(ICAPS), pages 26–34, 2022.

Dillon Chen, Felipe Trevizan, and Sylvie Thiébaux. Heuristic Search for Multi-Objective
Probabilistic Planning. In Proc. of 37th AAAI Conference on Artificial Intelligence,
2023.

Stephen V. Chenoweth. On the np-hardness of blocks world. In Proc. of the 9th National
Conference on Artificial Intelligence, pages 623–628, 1991.

Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem Francès. Lifted
successor generation using query optimization techniques. In Proc. of the 30th Inter-
national Conference on Automated Planning and Scheduling (ICAPS), pages 80–89,
2020.

Augusto B. Corrêa, Guillem Francès, Florian Pommerening, and Malte Helmert. Delete-
relaxation heuristics for lifted classical planning. In Proc. of the 31st International
Conference on Automated Planning and Scheduling (ICAPS), pages 94–102, 2021.

Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem Francès. The
FF heuristic for lifted classical planning. In Proc. of the 36th AAAI Conference on
Artificial Intelligence, pages 9716–9723, 2022.

Joseph Culberson. Sokoban is pspace-complete. In Proc. of the International Conference
on Fun with Algorithms, pages 65–76, 1997.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in neural infor-
mation processing systems, pages 3837–3845, 2016.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou.
Neural logic machines. In 7th International Conference on Learning Representations
(ICLR), 2019.

167

Bibliography

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks
to graphs. CoRR, abs/2012.09699, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982,
2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Graph neural networks with learnable structural and positional representa-
tions. International Conference on Machine Learning (ICLR), 2022.

Stefan Edelkamp. Planning with pattern databases. In Proc. of the 6th European Con-
ference on Planning (ECP), pages 13–24, 2001.

Marco Ernandes and Marco Gori. Likely-admissible and sub-symbolic heuristics. In
Ramón López de Mántaras and Lorenza Saitta, editors, Proc. of the 16th European
Conference on Artificial Intelligence (ECAI), pages 613–617, 2004.

Kutluhan Erol, Dana S. Nau, and V.S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artif. Intell., 76(1):75–88,
1995.

Kutluhan Erol, James Hendler, and Dana S Nau. Complexity results for HTN planning.
Annals of Mathematics and Artificial Intelligence, 18(1):69–93, 1996.

Matthew P. Evett, James A. Hendler, Ambuj Mahanti, and Dana S. Nau. PRA*: Mas-
sively parallel heuristic search. J. Parallel Distributed Comput., 25(2):133–143, 1995.

Ariel Felner, Sarit Kraus, and Richard E. Korf. KBFS: k-best-first search. Ann. Math.
Artif. Intell., 39(1-2):19–39, 2003.

Patrick Ferber, Malte Helmert, and Jörg Hoffmann. Neural network heuristics for classi-
cal planning: A study of hyperparameter space. In Giuseppe De Giacomo, Alejandro
Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugaŕın, and Jérôme
Lang, editors, Proc. of the 24th European Conference on Artificial Intelligence (ECAI),
volume 325, pages 2346–2353, 2020.

Patrick Ferber, Florian Geißer, Felipe W. Trevizan, Malte Helmert, and Jörg Hoffmann.
Neural network heuristic functions for classical planning: Bootstrapping and compar-
ison to other methods. In Akshat Kumar, Sylvie Thiébaux, Pradeep Varakantham,
and William Yeoh, editors, Proc. of 32nd International Conference on Automated
Planning and Scheduling (ICAPS), pages 583–587, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. CoRR, abs/1903.02428, 2019.

Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res., 20:61–124, 2003.

168

Bibliography

Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, and Florian Pommerening.
Generalized potential heuristics for classical planning. In Proc. of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 5554–5561, 2019.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Sankalp Garg, Aniket Bajpai, and Mausam. Size independent neural transfer for RDDL
planning. In J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth
Srivastava, editors, Proc. of 29th International Conference on Automated Planning
and Scheduling (ICAPS), pages 631–636, 2019.

Sankalp Garg, Aniket Bajpai, and Mausam. Symbolic network: Generalized neural poli-
cies for relational mdps. In International Conference on Machine Learning (ICML),
volume 119, pages 3397–3407, 2020.

Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to
rank for synthesizing planning heuristics. In Proc. of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), pages 3089–3095, 2016.

Hector Geffner. Model-free, model-based, and general intelligence. In Proc. of the 27th
International Joint Conference on Artificial Intelligence (IJCAI), pages 10–17, 2018.

Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Au-
tomated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2013.

Clement Gehring, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Pack Kaelbling,
Shirin Sohrabi, and Michael Katz. Reinforcement learning for classical planning:
Viewing heuristics as dense reward generators. In Proc. of the 32nd International
Conference on Automated Planning and Scheduling (ICAPS), pages 588–596, 2022.

F. Geißer, P. Haslum, Sylvie Thiébaux, and Felipe Trevizan. Admissible heuristics
for multi-objective planning. In Proc. 32nd International Conference on Automated
Planning and Scheduling (ICAPS), pages 100–109, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In International Conference on
Machine Learning (ICML), pages 1263–1272, 2017.

Daniel Gnad, Álvaro Torralba, Mart́ın Ariel Domı́nguez, Carlos Areces, and Facundo
Bustos. Learning how to ground a plan - partial grounding in classical planning. In
Proc. of the 23rd AAAI Conference on Artificial Intelligence, pages 7602–7609, 2019.

Pawel Gomoluch, Dalal Alrajeh, Alessandra Russo, and Antonio Bucchiarone. Towards
learning domain-independent planning heuristics. CoRR, abs/1707.06895, 2017.

169

Bibliography

Edward Groshev, Maxwell Goldstein, Aviv Tamar, Siddharth Srivastava, and Pieter
Abbeel. Learning generalized reactive policies using deep neural networks. In Proc. of
the 28th International Conference on Automated Planning and Scheduling (ICAPS),
pages 408–416, 2018.

Naresh Gupta and Dana S. Nau. Complexity results for blocks-world planning. In Proc.
of the 9th National Conference on Artificial Intelligence, pages 629–633, 1991.

Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning. Artif.
Intell., 56(2-3):223–254, 1992.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages
1024–1034, 2017.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 14(3):1–159, 2020.

Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artif. Intell., 129(1-2):35–62, 2001.

Patrik Haslum. Reducing accidental complexity in planning problems. In Proc. of the
20th International Joint Conference on Artificial Intelligence (IJCAI), pages 1898–
1903, 2007.

Patrik Haslum. hm(P) = h1(Pm): Alternative characterisations of the generalisation
from hmax to hm. In Proc. of the 19th International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2009.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for cost-optimal planning. In
Proc. of the 22nd AAAI Conference on Artificial Intelligence, pages 1007–1012, 2007.

Patrik Haslum, John K. Slaney, and Sylvie Thiébaux. Minimal landmarks for optimal
delete-free planning. In Proc. of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS), 2012.

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Introduc-
tion to the Planning Domain Definition Language. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

Xin He, Yapeng Yao, Zhiwen Chen, Jianhua Sun, and Hao Chen. Efficient parallel a*
search on multi-gpu system. Future Gener. Comput. Syst., 123:35–47, 2021.

170

Bibliography

Robert A. Hearn and Erik D. Demaine. Pspace-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation.
Theor. Comput. Sci., 343(1-2):72–96, 2005.

Malte Helmert. The fast downward planning system. J. Artif. Intell. Res., 26:191–246,
2006.

Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Artif.
Intell., 173(5-6):503–535, 2009.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. of the 19th International Conference on
Automated Planning and Scheduling (ICAPS), pages 162–169, 2009.

Malte Helmert and Hector Geffner. Unifying the causal graph and additive heuristics.
In Proc. of the 18th International Conference on Automated Planning and Scheduling
(ICAPS), pages 140–147, 2008.

Malte Helmert and Gabriele Röger. How good is almost perfect? In Proc. of the 23rd
AAAI Conference on Artificial Intelligence, pages 944–949, 2008.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics
for optimal sequential planning. In Proc. of the 17th International Conference on
Automated Planning and Scheduling (ICAPS), pages 176–183, 2007.

Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. J. Artif. Intell. Res., 14:253–302, 2001.

Daniel Höller and Gregor Behnke. Encoding lifted classical planning in propositional
logic. In Proc. of the 32nd International Conference on Automated Planning and
Scheduling (ICAPS), pages 134–144, 2022.

Robert C. Holte. Common misconceptions concerning heuristic search. In Proc. of the
3rd Annual Symposium on Combinatorial Search (SOCS), 2010.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. Neural Information Processing Systems (NeurIPS), 2020.

León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila McIlraith. Symbolic plans as
high-level instructions for reinforcement learning. In Proc. of the 30th International
Conference on Automated Planning and Scheduling (ICAPS), pages 540–550, 2020.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Cole-
man. Zinc: a free tool to discover chemistry for biology. Journal of chemical informa-
tion and modeling, 52(7):1757–1768, 2012.

171

Bibliography

Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. Learning heuristic functions
for large state spaces. Artif. Intell., 175(16):2075–2098, 2011.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability
between c++11 and python, 2017. https://github.com/pybind/pybind11.

Brendan Juba and Roni Stern. Learning probably approximately complete and safe
action models for stochastic worlds. In Proc. of the 36th AAAI Conference on Artificial
Intelligence, pages 9795–9804, 2022.

Brendan Juba, Hai S. Le, and Roni Stern. Safe learning of lifted action models. In Proc.
of the 18th International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 379–389, 2021.

Rushang Karia and Siddharth Srivastava. Learning generalized relational heuristic net-
works for model-agnostic planning. In Proc. of the 35th AAAI Conference on Artificial
Intelligence, pages 8064–8073, 2021.

Michael Katz and Carmel Domshlak. Optimal additive composition of abstraction-based
admissible heuristics. In Proc. of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), pages 174–181, 2008.

Michael Katz, Shirin Sohrabi, Horst Samulowitz, and Silvan Sievers. Delfi: Online
planner selection for cost-optimal planning. Working Notes of the 9th International
Planning Competition, pages 57–64, 2018.

Henry Kautz and Bart Selman. BLACKBOX: A new approach to the application of
theorem proving to problem solving. Working notes of the AIPS-98 Workshop on
Planning as Combinatorial Search, 1998.

Henry Kautz, Bart Selman, and Jörg Hoffmann. SatPlan: Planning as Satisfiability.
Working Notes of the 5th International Planning Competition, 2006.

Emil Keyder and Hector Geffner. Heuristics for planning with action costs revisited. In
Proc. of the 18th European Conference on Artificial Intelligence (ECAI), volume 178,
pages 588–592, 2008.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs. Advances in neural information processing
systems, 30, 2017.

Sandra Kiefer and Brendan D. McKay. The iteration number of colour refinement. In
47th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 168, pages 73:1–73:19, 2020.

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

172

Bibliography

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations (ICLR),
2017.

Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. Evaluation of a simple, scalable,
parallel best-first search strategy. Artif. Intell., 195:222–248, 2013.

Thorsten Klößner and Jörg Hoffmann. Pattern databases for stochastic shortest path
problems. In Proc. of the 14th International Symposium on Combinatorial Search
(SOCS), pages 131–135, 2021.

Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artif. Intell., 27(1):97–109, 1985.

Richard E. Korf. Linear-space best-first search. Artif. Intell., 62(1):41–78, 1993.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems (NeurIPS), pages 1097–1105, 2012.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman.
Building machines that learn and think like people. CoRR, abs/1604.00289, 2016.

Pascal Lauer, Alvaro Torralba, Daniel Fiser, Daniel Höller, Julia Wichlacz, and Joerg
Hoffmann. Polynomial-time in pddl input size: Making the delete relaxation feasible
for lifted planning. In Proc. of the 30th International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances
in Neural Information Processing Systems (NeurIPS), 33:4465–4478, 2020.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph
convolutional networks and guided tree search. Advances in neural information pro-
cessing systems, 31, 2018.

Nir Lipovetzky and Hector Geffner. Width and serialization of classical planning prob-
lems. In Proc. of the 20th European Conference on Artificial Intelligence (ECAI),
volume 242, pages 540–545, 2012.

Nir Lipovetzky and Hector Geffner. Best-first width search: Exploration and exploitation
in classical planning. In Proc. of the 31st AAAI Conference on Artificial Intelligence,
pages 3590–3596, 2017.

Michael L. Littman. Probabilistic propositional planning: Representations and complex-
ity. In Proc. of the 14th National Conference on Artificial Intelligence (AAAI), pages
748–754, 1997.

173

Bibliography

Tengfei Ma, Patrick Ferber, Siyu Huo, Jie Chen, and Michael Katz. Online planner
selection with graph neural networks and adaptive scheduling. In Proc. of the 34th
AAAI Conference on Artificial Intelligence, pages 5077–5084, 2020.

Lawrence Mandow and José-Luis Pérez-de-la-Cruz. Multiobjective a∗ search with con-
sistent heuristics. J. ACM, 57(5):27:1–27:25, 2010.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably power-
ful graph networks. Advances in Neural Information Processing Systems (NeurIPS),
32, 2019.

Arman Masoumi, Megan Antoniazzi, and Mikhail Soutchanski. Modeling organic chem-
istry and planning organic synthesis. In Proc. of the 1st Global Conference on Artificial
Intelligence (GCAI), volume 36, pages 176–195, 2015.

Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb.
Comput., 60:94–112, 2014.

Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

Argaman Mordoch, Roni Stern, and Brendan Juba. Learning safe numeric action models.
In Proc. of the 37th AAAI Conference on Artificial Intelligence, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-
order graph neural networks. In AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 4602–4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse:
Towards scalable higher-order graph embeddings. Neural Information Processing Sys-
tems (NeurIPS), 33, 2020.

Christopher Morris, Matthias Fey, and Nils M Kriege. The power of the weisfeiler-
leman algorithm for machine learning with graphs. International Joint Conference on
Artificial Intelligence (IJCAI), 2021a.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Mar-
tin Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine
learning: The story so far. arXiv e-prints, pages arXiv–2112, 2021b.

Bernhard Nebel. The small solution hypothesis for MAPF on directed graphs is true.
CoRR, abs/2210.04590, 2022.

Ian Parberry. A real-time algorithm for the (n2-1)-puzzle. Information Processing Let-
ters, 56(1):23–28, 1995. ISSN 0020-0190.

Judea Pearl. Heuristics - intelligent search strategies for computer problem solving.
Addison-Wesley series in Artificial Intelligence. Addison-Wesley, 1984.

174

Bibliography

Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Exploiting problem symmetries in
state-based planners. In Proc. of the 25th AAAI Conference on Artificial Intelligence,
2011.

Ira Pohl. Bi-directional and heuristic search in path problems. Technical report, Stanford
University, 1969.

Ira Pohl. Practical and theoretical considerations in heuristic search algorithms. Univer-
sity of California (Santa Cruz). Information Sciences, 1975.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proc. of the 29th AAAI Conference
on Artificial Intelligence, pages 3335–3341, 2015.

Daniel Ratner and Manfred K. Warmuth. Finding a shortest solution for the N × N
extension of the 15-puzzle is intractable. In Proc. of the 5th National Conference on
Artificial Intelligence, pages 168–172, 1986.

Silvia Richter and Malte Helmert. Preferred operators and deferred evaluation in satis-
ficing planning. In Proc. of the 19th International Conference on Automated Planning
and Scheduling (ICAPS), 2009.

Silvia Richter and Matthias Westphal. The LAMA Planner: Guiding Cost-Based Any-
time Planning with Landmarks. J. Artif. Intell. Res., 39:127–177, 2010.

Mehdi Samadi, Ariel Felner, and Jonathan Schaeffer. Learning from multiple heuristics.
In Proc. of the 23rd AAAI Conference on Artificial Intelligence, pages 357–362, 2008.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph
neural networks. In Proc. of the 2021 SIAM International Conference on Data Mining
(SDM), pages 333–341, 2021.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional networks.
In Proc. of the Extended Semantic Web Conference (ESWC), Lecture Notes in Com-
puter Science, pages 593–607, 2018.

Jendrik Seipp and Malte Helmert. Counterexample-guided cartesian abstraction refine-
ment. In Proc. of the 23rd International Conference on Automated Planning and
Scheduling (ICAPS), 2013.

Jendrik Seipp, Florian Pommerening, Gabriele Röger, and Malte Helmert. Correlation
complexity of classical planning domains. In Proc. of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), pages 3242–3250, 2016.

175

Bibliography

Jendrik Seipp, Thomas Keller, and Malte Helmert. Saturated cost partitioning for op-
timal classical planning. J. Artif. Intell. Res., 67:129–167, 2020.

Vishal Sharma, Daman Arora, Florian Geißer, Mausam, and Parag Singla. Symnet
2.0: Effectively handling non-fluents and actions in generalized neural policies for
RDDL relational mdps. In James Cussens and Kun Zhang, editors, Proc. of the 38th
Conference on Uncertainty in Artificial Intelligence, (UAI), volume 180, pages 1771–
1781, 2022.

William Shen. Learning heuristics for planning with hypergraph networks. Bachelor’s
thesis, The Australian National University, 2019.

William Shen, Felipe W. Trevizan, Sam Toyer, Sylvie Thiébaux, and Lexing Xie. Guid-
ing search with generalized policies for probabilistic planning. In Proc. of the 12th
International Symposium on Combinatorial Search (SOCS), pages 97–105, 2019.

William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning Domain-Independent
Planning Heuristics with Hypergraph Networks. In Proc. of 30th International Con-
ference on Automated Planning and Scheduling (ICAPS), 2020.

Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan Sievers, and Martin Wehrle.
Heuristics and symmetries in classical planning. In Proc. of the 29th AAAI Conference
on Artificial Intelligence, pages 3371–3377, 2015.

Silvan Sievers, Gabriele Röger, Martin Wehrle, and Michael Katz. Theoretical Founda-
tions for Structural Symmetries of Lifted PDDL Tasks. In Proc. of 29th International
Conference on Automated Planning and Scheduling (ICAPS), volume 29, pages 446–
454, 2019.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Grae-
pel, and Demis Hassabis. Mastering the game of go with deep neural networks and
tree search. Nat., 529(7587):484–489, 2016.

Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B. Tenenbaum, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. Planning with learned object importance in large problem
instances using graph neural networks. In Proc. of the 35th AAAI Conference on
Artificial Intelligence, pages 11962–11971, 2021.

John K. Slaney and Sylvie Thiébaux. Blocks world revisited. Artif. Intell., 125(1-2):
119–153, 2001.

Simon Staahlberg, Blai Bonet, and Hector Geffner. Learning generalized policies without
supervision using gnns. In Proc. of the 19th International Conference on Principles
of Knowledge Representation and Reasoning (KR), 2022a.

176

Bibliography

Simon Staahlberg, Blai Bonet, and Hector Geffner. Learning general optimal policies
with graph neural networks: Expressive power, transparency, and limits. In Proc.
of 32nd International Conference on Automated Planning and Scheduling (ICAPS),
pages 629–637, 2022b.

Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete
learning of action models. In Proc. of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), pages 4405–4411, 2017.

Roni Stern, Tamar Kulberis, Ariel Felner, and Robert Holte. Using lookaheads with op-
timal best-first search. In Proc. of the 24th AAAI Conference on Artificial Intelligence,
2010.

Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3
(1):1–22, 1976.

Alvaro Torralba and Cosmina Croitoru. Planning systems and the IPC. University
Lecture, Saarland University, 2019. Available online at: https://fai.cs.uni-saarl
and.de/teaching/winter18-19/planning-material/planning21-planning-sys

tems-and-the-ipc-post-handout.pdf, last accessed on 05.05.2023.

Álvaro Torralba, Carlos Linares López, and Daniel Borrajo. Abstraction heuristics for
symbolic bidirectional search. In Proc. of the 25th International Joint Conference on
Artificial Intelligence (IJCAI), pages 3272–3278, 2016.

Sam Toyer, Felipe W. Trevizan, Sylvie Thiébaux, and Lexing Xie. Action schema net-
works: Generalised policies with deep learning. In Proc. of the 32nd AAAI Conference
on Artificial Intelligence, pages 6294–6301, 2018.

Sam Toyer, Sylvie Thiébaux, Felipe W. Trevizan, and Lexing Xie. Asnets: Deep learning
for generalised planning. J. Artif. Intell. Res., 68:1–68, 2020.

Felipe Trevizan, Sylvie Thiébaux, P. Santana, and B. Williams. I-dual: Solving Con-
strained SSPs via Heuristic Search in the Dual Space. In Proc. of the 26th International
Joint Conference on Artificial Intelligence (IJCAI), 2017a.

Felipe W. Trevizan, Sylvie Thiébaux, and Patrik Haslum. Occupation measure heuristics
for probabilistic planning. In Proc. of the 27th International Conference on Automated
Planning and Scheduling (ICAPS), pages 306–315, 2017b.

Felipe W. Trevizan, Sylvie Thiébaux, and Patrik Haslum. Operator counting heuristics
for probabilistic planning. In Proc. of the 27th International Joint Conference on
Artificial Intelligence (IJCAI), pages 5384–5388, 2018.

Alan M. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc., s2-42(1):230–265, 1937.

Alan M. Turing. Computing machinery and intelligence. Mind, LIX(236):433–460, 1950.

177

https://fai.cs.uni-saarland.de/teaching/winter18-19/planning-material/planning21-planning-systems-and-the-ipc-post-handout.pdf
https://fai.cs.uni-saarland.de/teaching/winter18-19/planning-material/planning21-planning-systems-and-the-ipc-post-handout.pdf
https://fai.cs.uni-saarland.de/teaching/winter18-19/planning-material/planning21-planning-systems-and-the-ipc-post-handout.pdf

Bibliography

Karthik Valmeekam, Alberto Olmo Hernandez, Sarath Sreedharan, and Subbarao Kamb-
hampati. Large language models still can’t plan (A benchmark for llms on planning
and reasoning about change). CoRR, abs/2206.10498, 2022.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo Hernandez,
and Subbarao Kambhampati. On the planning abilities of large language models (A
critical investigation with a proposed benchmark). CoRR, abs/2302.06706, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. International Conference on Learning
Representations (ICLR), 2017.

Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell.
Neural execution of graph algorithms. In 8th International Conference on Learning
Representations (ICLR), 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Lau-
rent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James
Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman
Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning.
Nat., 575(7782):350–354, 2019.

Qing Wang, Dillon Ze Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan.
N -WL: A new hierarchy of expressivity for graph neural networks. In 11th Interna-
tional Conference on Learning Representations (ICLR), 2023.

Asiri Wijesinghe and Qing Wang. A new perspective on” how graph neural networks go
beyond weisfeiler-lehman?”. In International Conference on Learning Representations,
2022.

Christopher Makoto Wilt and Wheeler Ruml. Building a heuristic for greedy search. In
Proc. of the 8th Annual Symposium on Combinatorial Search (SOCS), pages 131–140,
2015.

David H Wolpert and William G Macready. No free lunch theorems for search. Technical
Report 05-010, Santa Fe Institut, 1995.

178

Bibliography

Fan Xie, Martin Müller, and Robert Holte. Adding local exploration to greedy best-first
search in satisficing planning. In Proc. of the 28th AAAI Conference on Artificial
Intelligence, pages 2388–2394, 2014.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In International Conference on Learning Representations (ICLR),
2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. What can neural networks reason about? 8th International Conference
on Learning Representations (ICLR), 2020.

Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn, it’s
what we cannot teach. In Proc. of the 37th International Conference on Machine
Learning, (ICML), volume 119, pages 10831–10841. PMLR, 2020.

Sung Wook Yoon, Alan Fern, and Robert Givan. Learning control knowledge for forward
search planning. J. Mach. Learn. Res., 9:683–718, 2008.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In
International Conference on Machine Learning (ICML), volume 97, pages 7134–7143.
PMLR, 2019.

Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware
graph neural networks. In Proc. of the 35th AAAI Conference on Artificial Intelligence,
2021.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 34, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Up-
lifting any gnn with local structure awareness. International Conference on Learning
Representations (ICLR), 2022.

Rong Zhou and Eric A. Hansen. Parallel structured duplicate detection. In Proc. of the
22nd AAAI Conference on Artificial Intelligence, pages 1217–1224, 2007.

Yichao Zhou and Jianyang Zeng. Massively parallel A* search on a GPU. In Proc. of
the 29th AAAI Conference on Artificial Intelligence, pages 1248–1255. AAAI Press,
2015.

179

	Introduction
	AI, deep learning, and planning
	Learning for planning, planning for learning, and why we need both
	Contributions
	Structure of the thesis

	Background
	Planning formalisms
	Propositional STRIPS
	Finite Domain Representation
	Lifted STRIPS
	Additional comments

	Heuristic search
	Heuristic search algorithms
	Heuristic functions
	Brief history of heuristic search and extensions
	Taxonomy of learning heuristic functions

	Graph neural networks
	Message passing neural networks
	MPNNs and the Weisfeiler-Lehman algorithm
	Beyond MPNNs

	Graph representations
	Grounded graphs
	STRIPS-HGN hypergraphs as graphs
	Grounded STRIPS graphs with full information
	FDR graphs

	Lifted graphs

	What can we learn?
	Lower bounds
	Upper bounds
	Further discussion
	A more refined hierarchy
	More powerful GRL techniques

	Experiments 1: expressivity and generalisability
	Setup
	Dataset
	Model configurations
	Feature augmentations
	Training pipeline and hyperparameters

	Results
	Expressivity
	Generalisability
	Discussion

	The GOOSE framework
	Learning and planning
	Optimising heuristic evaluation
	Background of GPU usage and parallelisation in search
	Parallelised lazy search
	Parallelised eager search

	Experiments 2: inference for search
	Benchmark domains
	Blocksworld
	Ferry
	Gripper
	Hanoi
	n-puzzle
	Sokoban
	Spanner
	VisitAll
	VisitSome

	GOOSE setup
	Learner
	Planner

	Experimental setup
	Testing instances
	Training pipeline and model selection
	Baselines

	Results
	Blocksworld
	Ferry
	Gripper
	Hanoi
	n-puzzle
	Sokoban
	Spanner
	VisitAll
	VisitSome

	CPU vs GPU runtime

	Related work
	Learning heuristics for planning
	Learning generalised policies for planning
	Other applications of learning for planning

	Conclusion
	Contributions
	Limitations
	Future work
	Improving performance
	Extensions for more expressive planning
	Open theoretical questions

	Final remarks

	Graph and dataset statistics
	Graph sizes
	Inference dataset information

	Additional results for inference
	Best performing model scores

	Additional results for search
	Domain-dependent training validation scores
	Domain-independent training validation scores
	Coverage table – few objects
	Coverage table – many objects
	Coverage plots of runtime and plan quality
	Blocksworld
	Ferry
	Gripper
	Hanoi
	n-puzzle
	Sokoban
	Spanner
	VisitAll
	VisitSome

	Bibliography

