
Learning Efficiency Meets Symmetry Breaking

Yingbin Bai1, Sylvie Thiébaux1, 2, Felipe Trevizan1

1School of Computing, The Australian National University
2LAAS-CNRS, Université de Toulouse

yingbin.bai@anu.edu.au, sylvie.thiebaux@anu.edu.au, felipe.trevizan@anu.edu.au

Abstract

Learning-based planners leveraging Graph Neural Networks
can learn search guidance applicable to large search spaces,
yet their potential to address symmetries remains largely un-
explored. In this paper, we introduce a graph representation of
planning problems allying learning efficiency with the ability
to detect symmetries, along with two pruning methods, action
pruning and state pruning, designed to manage symmetries
during search. The integration of these techniques into Fast
Downward achieves a first-time success over LAMA on the
latest IPC learning track dataset.

Extended version — https://arxiv.org/abs/2504.19738
Code — https://github.com/bybeye/Distincter

Introduction
Over the past two decades, heuristic search has achieved
significant success across a variety of planning problems,
and has become the standard approach in the field (Richter
and Westphal 2010; Höller et al. 2020; Corrêa et al. 2022;
Geißer et al. 2022; Klößner, Seipp, and Steinmetz 2023).
Nevertheless, even in classical planning, scalability remains
a significant challenge for these methods. This has led a
growing number of researchers to turn to learning-based
methods, particularly using Graph Neural Networks (GNNs)
(Toyer et al. 2020; Shen, Trevizan, and Thiébaux 2020;
Ståhlberg, Bonet, and Geffner 2022; Chen, Trevizan, and
Thiébaux 2024; Horcı́k and Sı́r 2024; Hao et al. 2024;
Drexler et al. 2024). Unlike traditional model-based meth-
ods, which are reliant solely on analysing planning domain
and problem definitions, GNNs are capable of learning pat-
terns and strategies from existing plans to enhance search
efficiency and adaptability.

However, learning efficiency alone is insufficient to
address the challenges inherent in large-scale planning,
which often involves a substantial number of symmetrical
states (Wehrle et al. 2015; Sievers et al. 2019). Although
these states do not affect plan quality, they consume sig-
nificant computational resources and can considerably slow
down the search process. In this paper, we use NNs and
GNNs with permutation invariant activation functions to

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learn a permutation invariant function allowing them to pro-
duce consistent outputs for symmetrical inputs. Despite this
advantage, the full potential of this feature has not yet been
effectively harnessed to detect and break symmetries during
the search process.

In this paper, we remedy this by introducing a graph rep-
resentation designed to achieve two key objectives: learning
efficiency and symmetry reduction. Leveraging the strengths
of this representation, we propose two pruning methodolo-
gies: action pruning and state pruning. Action pruning in-
fers symmetries by analyzing object involvement in action
parameters, without generating child states nor computing
their heuristic value. Additionally, since GNNs can retain
invariant outputs for symmetrical inputs, state pruning ex-
ploits this property to efficiently identify symmetries be-
tween states.

To evaluate the proposed techniques, we implemented
them on top of Fast Downward (Helmert 2006) in a plan-
ner called Distincter and carried out experiments on the
2023 International Planning Competition Learning Track.
The overall coverage of Distincter surpasses that of the tradi-
tional SOTA method, LAMA (Richter and Westphal 2010),
for the first time in the recent literature on learning plan-
ning heuristics, marking a significant milestone for learning-
based methods.

In terms of related work, recent independent work by
(Drexler et al. 2024) removes symmetries in the training set
in offline mode, thereby improving training effectiveness. In
contrast, our approach focuses on removing symmetries dur-
ing the search process, so as to enhance search efficiency and
scale to large planning problems.

Background and Notation
A lifted planning problem is defined as a tuple Π =
⟨O, T ,P,A, I,G⟩, where O denotes a set of objects, T is
a set of object types, P consists of first-order predicates, A
comprises action schemas, I specifies the current (or initial)
state, and G delineates the goal.

A predicate p ∈ P has parameters xp1 , . . . , xpn for pn ∈
N, where each parameter requires a specific type of object.
A predicate can be instantiated by assigning each xi to an
object from O, resulting in a proposition ρ. A state is an
assignment of truth value to the propositions.

An action schema a = ⟨Xa, pre(a), add(a), del(a)⟩ is



defined as a tuple comprising a list of typed parameters
Xa = (xa1 , . . . xan), along with sets of preconditions, add
effects, and delete effects, all of which are predicates in P
with parameters from Xa. When all parameters of an action
schema are instantiated with objects of the required types,
the action is referred to as a ground action. A ground action
a is applicable in a state s if pre(a) ⊆ s. When a is applied
to s, the resulting state s′ is given by (s\del(a))∪add(a). In
this context, the state s is referred to as the parent state, and
s′ is known as the child state. Since the set of applicable ac-
tions for a parent state is typically not a singleton, expanding
a parent state usually generates a set of child states.

A sequence of actions a1, . . . , an is applicable in a state
s if there exists a sequence of states s0, . . . , sn such that
s0 = s, and for each i ∈ {1, . . . , n}, the state si is the result
of applying ai in si−1. The aim is to find a plan for a given
planning problem Π, which is a sequence of ground actions
that is applicable in the initial state I and results in a state
sn such that G ⊆ sn.

A colored (or labelled) graph is a tuple G = ⟨V,E, c, l⟩
where V is the set of vertices, E is the set of edges, and
c (resp. l) maps vertices (resp. edges) to their color. Two
graphs G = ⟨V,E, c, l⟩ and G′ = ⟨V ′, E′, c′, l′⟩ are iso-
morphic, denoted by G ∼= G′, if there exists a bijection
τ : V → V ′ such that (u, v) ∈ E iff (τ(u), τ(v)) ∈ E′,
c′(τ(v)) = c(v) for all v ∈ V , and l′((τ(u), τ(v))) =
l((u, v)) for all (u, v) ∈ E.

An automorphism of G is defined as an equivalence rela-
tion σ representing an isomorphism between G and itself.
The set of all automorphisms of G forms a group under
the operation of composition, known as the automorphism
group Aut(G) of the graph. The orbit of a vertex v in a graph
consists of all vertices that can be transformed into v by any
automorphism in Aut(G). This implies that any two vertices
within the same orbit are structurally equivalent in the graph,
maintaining the same connections and roles relative to other
vertices and edges.

Distincter
Typed Instance Learning Graph (TILG)
Our graph representation extends the Instance Learning
Graph (ILG) (Chen, Trevizan, and Thiébaux 2024), main-
taining similar structures but offering additional information
for learning and symmetry detection. The graph’s vertices
represent objects and propositions in the initial (current)
state and the goal, and edges exist between propositions and
the objects in their parameter list.1 Vertex features capture
the object types, the predicates instanciated by the propo-
sitions, and whether goal propositions have been achieved.
Edge features capture the index of objects in proposition pa-
rameter lists. Formally:
Definition 1 Let Π = ⟨O, T ,P,A, I,G⟩ represent a
lifted planning problem. The typed instance learning graph
(TILG) for Π is the undirected graph GΠ = ⟨V,E, f, l⟩,
such that:

1In the following, we will use the word symmetric to refer to
states represented by isomorphic TILG and to objects or proposi-
tions that are related via τ (or σ depending on the context).

• V = O ∪ I ∪ G
• E = {(o, p(o1, ..., on))|o ∈ O,∃i o = oi, p(o1, ..., on) ∈
I ∪ G}

• c : V →{(status, class) | status ∈ {0, 1, 2, 3}, class ∈
T ∪P}, maps each vertex to a tuple where:
– status indicates the goal status of propositions: 0 for

non-goal propositions in I \ G, 1 for unachieved goal
propositions in G \ I, and 2 for achieved goal propo-
sitions in I ∩ G. status = 3 for object vertices.

– class refers to the object type for object vertices, and
for proposition vertices, it denotes the predicate of
which the proposition is an instance.

• l : E → N, where for each edge e ∈ E, l(e) indicates
the index of the object in the proposition parameters.

In ILG, the object type information is absent, whereas
TILG embeds it within each object vertex. This may seem
minor, but it adds valuable information to each object vertex
significantly enriching the information available. Moreover,
Fast Downward omits static propositions during search,
which causes them to be missing in existing ILG imple-
mentations as well. While this omission does not affect
traditional heuristic methods, it significantly impacts learn-
ing methods, which estimate heuristics based on the graph.
Without static propositions, crucial information is lost, lead-
ing to blind guesses for some actions. For instance, “wait-
ing” propositions in the childsnack domain are static, and
without this information, planners are unable to determine
which table the tray should be moved to. Therefore, TILG
includes static propositions.

In the following, all elements of the problem Π are fixed,
except for the current state s. We shall therefore identify Π
with s and will refer to the TILG Gπ as Gs.

Action Pruning
With Greedy Best-First Search (GBFS), planners select the
state with the smallest heuristic value to expand, which re-
quires computing the heuristic value of all child states. When
child states contain a large number of symmetries, this can
result in significant time wasted on redundant calculations.

Shallow pruning was designed to address this challenge
(Pochter, Zohar, and Rosenschein 2011). However, the prob-
lem description graph (PDG) used in shallow pruning re-
quires instantiating all predicates and action schemas within
the graph, resulting in significant computational overhead
for each state. To improve efficiency, we introduce Action
Pruning, which replaces the PDG with TILG. A key inno-
vation of action pruning is its ability to infer symmetrical
child states from the parent state, eliminating the need for
action preconditions and effects in the graph. By leveraging
the much more compact TILG representation and its infer-
ence capability, action pruning enables faster automorphism
calculations.

Definition 2 (Object Tuples Equivalence) Let ⟨A1, . . . , An⟩
and ⟨B1, . . . , Bn⟩ be two tuples of objects s.t. Ai and Bi in
O with corresponding vertices ui and vi in the TILG Gs. We
say that ⟨A1, . . . , An⟩ is equivalent to ⟨B1, . . . , Bn⟩ in s,
denoted as ⟨A1, . . . , An⟩ ≃ ⟨B1, . . . , Bn⟩, iff there exist an



Algorithm 1: Action pruning algorithm

Input: Planning problem with current state s
Input: Set As of actions applicable in s
Output: Pruned action set Ap ⊆ As

1: K ← ∅, Ap ← ∅
2: Graph Gs ← TILG(s) with encoding in Eq. 1
3: Orbits Os ← Nauty(Gs)
4: for a in As do
5: Ka ← Replace params with orbits(a,Os)
6: if Ka not in K then
7: K ← K ∪ {Ka}
8: Ap ← Ap ∪ {a}
9: end if

10: end for
11: return Ap

automorphism of Gs represented by the bijective function σ
s.t. σ(ui) = vi for all i ∈ {1, . . . , n}.
Theorem 1 Let Ai and Bi be objects in O for i ∈
{1, . . . , n} with Ai ̸= Aj and Bi ̸= Bj for all i ̸= j. Let
an action schema α ∈ A, and consider two ground actions,
a = α(A1, A2, . . . , An) and b = α(B1, B2, . . . , Bn), ap-
plicable in a state s, resulting in successor states sa and sb
respectively. If ⟨A1, . . . , An⟩ ≃ ⟨B1, . . . , Bn⟩ in s then the
TILGs Gsa and Gsb are isomorphic, i.e., Gsa

∼= Gsb .

The proof of Theorem 1 is in the supplementary material
(Bai, Thiebaux, and Trevizan 2025).

Unfortunately, identifying all isomorphic successor states
in order to prune actions requires testing an exponential
number of tuples against the automorphisms of Gs. There-
fore, we resort to a simpler method that over-approximates
the set of equivalent tuples and isomorphic successor states,
and consequently does not preserve the completeness of the
search process. It relaxes the conditions of the theorem by
checking the equivalence of all individual pairs Ai and Bi

in s, i.e., the condition that ⟨A1, . . . , An⟩ ≃ ⟨B1, . . . , Bn⟩
is replaced with ⟨Ai⟩ ≃ ⟨Bi⟩ ∀i, or in other terms that Ai

and Bi are in the same orbit of Gs. In our experiments, we
find that this over-approximation yields good results in prac-
tice. Moreover, we did not observe any failure due to incom-
pleteness, and therefore do not currently employ any fall-
back mechanism.

This process of action pruning is outlined in Algorithm 1.
First, the planning problem with current state s is converted
into a TILG Gs. The Nauty library (McKay and Piperno
2014) is then utilized to compute the orbits Os of Gs. Since
Nauty lacks support for feature vectors, we aggregate ver-
tex features into an unique vertex color to detect automor-
phisms. This color-coding strategy is detailed in Equation 1:

color =
N∑
i=1

10βi × Fi with

βi =

{ ∑i−1
n=1⌈log10 Mn⌉ i ≥ 2

0 i = 1
,

(1)

where N denotes the number of features, Fi represents the
value of feature i, and Mn is the maximum possible value of

feature i.
After obtaining the orbits Os of Gs, the parameters of

each applicable action a are substituted with their respec-
tive orbit IDs, generating a unique hash key Ka. This hash
key is subsequently used to identify and eliminate symmet-
ric actions, ensuring that only distinct actions are retained in
Ap for further processing.

State Pruning
Symmetries arise not only between child states but also
across states from different parents. Many state pruning ap-
proaches have been proposed and proven useful in classical
planning (Pochter, Zohar, and Rosenschein 2011; Domsh-
lak, Katz, and Shleyfman 2012). However, the main issue
limiting their widespread use in planning problems is their
high computational cost. To address this issue, we propose
a novel method that performs state pruning with negligible
additional overhead. Specifically, building on the permuta-
tion invariance property of GNNs, we use the embeddings
from the second-to-last layer of the network as hash keys to
efficiently detect and eliminate symmetries across states.

The idea of using neural network outputs to check sim-
ilarity is not new, having been employed in Siamese net-
works since early work in deep learning (Bromley et al.
1993). These identical architecture, weight-shared networks
are specifically designed to assess and compare the similar-
ity between two inputs. This approach has proven effective
across various fields, including fingerprint identification (Li
et al. 2021) and anomaly detection (Zhou et al. 2021). For
GNNs, Chen et al. (2019) highlight the equivalence between
graph isomorphism testing and approximating permutation-
invariant functions. Moreover, standard GNNs have been
shown to possess an expressive power, comparable to that of
the 1-LWL test (Xu et al. 2019). While this implies GNNs
may be unable to distinguish some non-isomorphic graphs,
compromising the completeness of the search when state
pruning is used, our results demonstrate that GNNs based
on TILG can be highly effective in both heuristic prediction
and state pruning.

The TILG Gsi for the current state si is fed through a
graph network ϕθ to encode an embedding zi. Subsequently,
zi is processed by a fully connected linear layer φθ to gener-
ate a heuristic value ĥi ∈ R. This process is represented by
zi = ϕθ(Gsi) and ĥi = φθ(zi).

Next, zi is rounded up and encoded using MD5 to shorten
its length, serving as a key in a hash map for state match-
ing. Since zi is efficiently captured during the network’s for-
ward pass, there is no need to generate keys through compu-
tationally expensive methods like calculating isomorphisms
in PDG (Pochter, Zohar, and Rosenschein 2011), resulting
in minimal additional cost for state pruning.

Experiments
Datasets. We evaluate our framework, Distincter, on the
2023 International Planning Competition Learning Track
(Seipp and Segovia-Aguas 2023), which includes ten do-
mains. In ablation experiments, to assess the effectiveness



Domain hFF LAMA GOOSE OptRank GPR Distincter

blocksworld 28 61 61±10 44±11 69 88±4
childsnack 26 34 16±4 32±1 20 64±5
ferry 71 70 70±0 64±4 82 83±1
floortile 10 10 1±0 1±0 2 2±0
miconic 90 90 89±1 88±4 90 90±0
rovers 29 70 28±1 31±2 36 42±2
satellite 64 90 29±2 29±3 39 48±17
sokoban 36 40 34±0 32±1 38 32±2
spanner 30 30 39±16 65±0 74 90±0
transport 41 68 37±4 42±5 28 50±3

Sum 425 563 405 429 478 589

Table 1: Coverage comparison with SOTA methods on the
2023 International Planning Competition Learning Track.

Domain LAMA Distincter

blocksworld 390 198±10
childsnack 45 34±3
ferry 257 206±2
floortile 34 32±0
miconic 324 273±8
rovers 72 106±11
satellite 18 27±8
sokoban 46 49±14
spanner 14 16±0
transport 49 45±3
Sum 1249 987

Table 2: Average plan lengths over problems solved by both
LAMA and Distincter.

of two proposed pruning methods, we further employ six
domains that contain a lot of symmetrical states.

Network Structure. Our graph network consists of
RGCN layers with a hidden dimension of 64 (Schlichtkrull
et al. 2018), followed by global add pooling, and a linear
layer producing a one-dimensional output. The network is
implemented using the standard PyTorch Geometric pack-
age (Fey and Lenssen 2019). For further setting information,
please see the supplementary material (Bai, Thiebaux, and
Trevizan 2025).

Training and Evaluation. For each domain, we train a
GNN using the RMSE loss function for 30 epochs, including
10 warm-up epochs. We use an initial learning rate of 10−3

and apply cosine annealing(Loshchilov and Hutter 2017)
over a single cycle, with a momentum value of 0.9. To adapt
to varying numbers of examples (N ) across different do-
mains, we set the number of iterations to 100 per epoch and
adjust the batch size accordingly, using N

100 .
For evaluation, our planner is based on Fast Downward

using eager-GBFS (Helmert 2006) guided by GNN heuristic
values. Upon completing the training, the model is saved in
JIT format and executed using C++. To ensure result stabil-
ity and mitigate dataset bias, we employ early stopping on

Domain None Action State Distincter

blocksworld 79±11 79±7 88±3 88±4
childsnack 34±4 63±3 61±1 64±5
ferry 82±0 82±0 83±1 83±1
floortile 2±1 2±0 2±0 2±0
miconic 90±0 90±0 90±0 90±0
rovers 41±2 41±3 41±2 42±2
satellite 45±13 46±13 47±17 48±17
sokoban 32±2 32±2 32±2 32±2
spanner 83±0 90±0 83±0 90±0
transport 42±1 42±1 49±2 50±3
gripper 24±9 75±4 90±0 90±0
grippers 62±5 89±1 85±1 90±1
logistics 19±9 36±4 53±4 52±3
movie 90±0 74±17 90±0 75±17
tsp 76±24 78±0 90±0 90±0
tyreworld 0±0 1±1 64±20 65±21

Sum 803 920 1048 1051

Table 3: Ablation study. “None” refers to GBFS + GNN
heuristic without pruning, “Action” denotes the use of ac-
tion pruning, “State” represents the use of state pruning.

a validation set to select optimal models (Bai et al. 2023).
All experiments are conducted on a single CPU core with an
NVIDIA A6000 GPU and 8GB of memory, with a 30 minute
timeout per problem. The mean and standard deviation are
computed from three trials.

Results
We compare Distincter with SOTA baselines, including
both traditional heuristic search methods, namely LAMA
(Richter and Westphal 2010) and GBFS with hFF (Hoff-
mann and Nebel 2001), and GBFS with learnt heuristics us-
ing GOOSE (Chen, Thiébaux, and Trevizan 2024), its op-
timal ranking counterpart (Hao et al. 2024) and Gaussian
Process Regression (GPR) from WL features (Chen, Tre-
vizan, and Thiébaux 2024). Note that, as shown in (Hao
et al. 2024), other methods such as STRIPS-HGN (Shen,
Trevizan, and Thiébaux 2020) and Perfrank (Chrestien et al.
2023), are dominated by our baselines. All baselines are
run on the same hardware and with the same computational
requirements as Distincter. In terms of coverage, Distinc-
ter matches or surpasses all baselines across five domains.
Notably, when compared to the strongest learning base-
line, GPR (Chen, Trevizan, and Thiébaux 2024), Distincter
achieves parity or superiority in eight of the ten domains.
Additionally, the total coverage of Distincter surpasses that
of model-based methods: it exceeds that of hFF by a sub-
stantial margin of 164 and that of LAMA by 26. In Table 2,
we report the average plan length over the problems suc-
cessfully solved by both approaches. The results suggest a
correlation between plan length and coverage.

In keeping with the 8GB memory requirement of the IPC
learning track, we found it is insufficient for the Fast Down-
ward translator to ground some large problems, resulting in
performance loss as shown in Table 1. For instance, in the



“ferry” domain, when sufficient memory is available, Dis-
tincter can solve all 90 test problems.

Although Distincter exhibits very good performance
across many domains, it struggles in others – see e.g. its low
performance on “Floortile” and “Sokoban”, and the large de-
viations observed in the “Satellite” domain. The key issue
with Floortile and Sokoban is that they require path-finding
and geometrical reasoning which cannot be achieved with
the limited receptive field of ordinary GNNs. Dead ends in
these domains are another issue, as they cannot always be
captured when training with optimal plans only. In Satellite,
due to the the lack of static propositions in its graph, GOOSE
learns a simple strategy that works in simple problems only.
On the other hand, thanks to statics being included, Distinc-
ter is able to learn to solve much larger problems. However,
standard GNNs are not expressive enough to learn to dis-
tinguish all non-isomorphic Satellite states (Drexler et al.
2024), and therefore the learning procedure fails every once
in a while, leading to a large variance.

Ablation Study
To assess the effectiveness of our proposed pruning tech-
niques, we performed ablation experiments across four con-
figurations. From Table 3, we observe that in domains with
a high degree of symmetries, such as “spanner” and “child-
snack”, action pruning offers substantial benefits. However,
in the “movie” domain, which contains a large number of
redundant objects, action pruning consumes excessive time
computing symmetries. In contrast, state pruning improves
performance in seven domains, demonstrating its broader
utility. By combining both techniques, we can leverage their
strengths to achieve better overall outcomes.

Conclusion
We introduced TILG, a novel graphical representation that
captures key problem-solving features and is designed for
combining efficiency with symmetry detection. Leveraging
the properties of TILG, we proposed two efficient pruning
techniques that are suitable for large-scale planning prob-
lems. Our framework, Distincter, achieved a historic mile-
stone by outperforming the LAMA framework on the learn-
ing track of the 2023 International Planning Competition.

In addition, both pruning methods are applicable to tradi-
tional model-based approaches. Although state pruning with
GNNs can be computationally expensive, small dedicated
GNNs can mitigate this issue.

Acknowledgments
The authors thank Sandra Kiefer and Brendan McKay for
useful discussions. This work was supported by the Aus-
tralian Research Council grant DP220103815, by the Arti-
ficial and Natural Intelligence Toulouse Institute (ANITI)
under the grant agreement ANR-23-IACL-0002, and by
the European Union’s Horizon Europe Research and Inno-
vation program under the grant agreement TUPLES No.
101070149.

References
Bai, Y.; Han, Z.; Yang, E.; Yu, J.; Han, B.; Wang, D.; and
Liu, T. 2023. Subclass-Dominant Label Noise: A Coun-
terexample for the Success of Early Stopping. In NeurIPS.
Bai, Y.; Thiebaux, S.; and Trevizan, F. 2025. Learning Effi-
ciency Meets Symmetry Breaking. arXiv:2504.19738.
Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; and Shah,
R. 1993. Signature Verification Using a Siamese Time Delay
Neural Network. In NeurIPS, 737–744.
Chen, D. Z.; Thiébaux, S.; and Trevizan, F. W. 2024.
Learning Domain-Independent Heuristics for Grounded and
Lifted Planning. In AAAI, 20078–20086.
Chen, D. Z.; Trevizan, F. W.; and Thiébaux, S. 2024. Re-
turn to Tradition: Learning Reliable Heuristics with Classi-
cal Machine Learning. In ICAPS, 68–76.
Chen, Z.; Villar, S.; Chen, L.; and Bruna, J. 2019. On the
equivalence between graph isomorphism testing and func-
tion approximation with GNNs. In NeurIPS, 15868–15876.
Chrestien, L.; Edelkamp, S.; Komenda, A.; and Pevný, T.
2023. Optimize Planning Heuristics to Rank, not to Estimate
Cost-to-Goal. In NeurIPS.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2022. The FF Heuristic for Lifted Classical Planning. In
AAAI, 9716–9723.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
Symmetry Breaking in Cost-Optimal Planning as Forward
Search. In ICAPS, 343–347.
Drexler, D.; Ståhlberg, S.; Bonet, B.; and Geffner, H.
2024. Symmetries and Expressive Requirements for Learn-
ing General Policies. In KR.
Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. CoRR, abs/1903.02428.
Geißer, F.; Haslum, P.; Thiébaux, S.; and Trevizan, F. W.
2022. Admissible Heuristics for Multi-Objective Planning.
In ICAPS, 100–109.
Hao, M.; Trevizan, F. W.; Thiébaux, S.; Ferber, P.; and Hoff-
mann, J. 2024. Guiding GBFS through Learned Pairwise
Rankings. In IJCAI, 6724–6732.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. Artif. In-
tell. Res., 14: 253–302.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. J. Artif. In-
tell. Res., 67: 835–880.
Horcı́k, R.; and Sı́r, G. 2024. Expressiveness of Graph Neu-
ral Networks in Planning Domains. In ICAPS, 281–289.
Klößner, T.; Seipp, J.; and Steinmetz, M. 2023. Cartesian
Abstractions and Saturated Cost Partitioning in Probabilistic
Planning. In ECAI, 1272–1279.
Li, Q.; Liao, X.; Liu, M.; and Valaee, S. 2021. Indoor Lo-
calization Based on CSI Fingerprint by Siamese Convolu-
tion Neural Network. IEEE Trans. Veh. Technol., 70(11):
12168–12173.



Loshchilov, I.; and Hutter, F. 2017. SGDR: Stochastic Gra-
dient Descent with Warm Restarts. In ICLR.
McKay, B. D.; and Piperno, A. 2014. Practical graph iso-
morphism, II. Journal of Symbolic Computation, 60: 94–
112.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In AAAI,
1004–1009.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res., 39: 127–177.
Schlichtkrull, M. S.; Kipf, T. N.; Bloem, P.; van den Berg,
R.; Titov, I.; and Welling, M. 2018. Modeling Relational
Data with Graph Convolutional Networks. In ESWC, vol-
ume 10843, 593–607.
Seipp, J.; and Segovia-Aguas, J. 2023. Int. Planning Com-
petition 2023 - Learning Track.
Shen, W.; Trevizan, F. W.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In ICAPS, 574–584.
Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2019. The-
oretical Foundations for Structural Symmetries of Lifted
PDDL Tasks. In ICAPS, 446–454.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In ICAPS, 629–
637.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020. As-
nets: Deep learning for generalised planning. J. Artif. Intell.
Res., 68: 1–68.
Wehrle, M.; Helmert, M.; Shleyfman, A.; and Katz, M.
2015. Integrating Partial Order Reduction and Symmetry
Elimination for Cost-Optimal Classical Planning. In IJCAI,
1712–1718.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In ICLR.
Zhou, X.; Liang, W.; Shimizu, S.; Ma, J.; and Jin, Q.
2021. Siamese Neural Network Based Few-Shot Learning
for Anomaly Detection in Industrial Cyber-Physical Sys-
tems. IEEE Trans. Ind. Informatics, 17(8): 5790–5798.


