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2 Escola Politécnica, Universidade de São Paulo

Av. Prof. Mello Moraes, 2231, Cidade Universitária – 05508-900 São Paulo, SP, Brazil
fgcozman@usp.br

Abstract. This paper proposes an unifying formulation for nondeter-
ministic and probabilistic planning. These two strands of AI planning
have followed different strategies: while nondeterministic planning usu-
ally looks for minimax (or worst-case) policies, probabilistic planning
attempts to maximize expected reward. In this paper we show that both
problems are special cases of a more general approach, and we demon-
strate that the resulting structures are Markov Decision Processes with
Imprecise Probabilities (MDPIPs). We also show how existing algorithms
for MDPIPs can be adapted to planning under uncertainty.

1 Introduction

Planning is not only ubiquitous in artificial intelligence; it also appears in many
different forms. While classical planning focuses on deterministic settings with-
out any uncertainty, several non-classical approaches have tried to deal with var-
ious forms of uncertainty [1]. Among these approaches, probabilistic planning has
produced significant results in recent years [2,3,4]. Another important approach
is nondeterministic planning [5], where one does not even assign probabilities to
the consequences of actions.

A particularly apt perspective from which to read this literature is due to
Geffner and Bonet [6]. The idea is to capture what is common across approaches
by formulating general languages, models, and algorithms. As discussed in Sec-
tion 2, this perspective has been quite effective in unifying various strands of
planning, from classical to probabilistic, including variants of nondeterministic
planning. A unified understanding of planning problems is obviously beneficial
not only to artificial intelligence but to several other fields such as operations
research and management.
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The just mentioned general formulation takes probabilistic and nondetermin-
istic approaches as two extreme and unrelated positions concerning planning.
They are based on different assumptions concerning beliefs (either always trans-
lated into probabilities, or never translated into probabilities), and different pre-
scriptions for action (either focused on average behavior through expected utility,
or on worst-case guarantees coming from minimax). Accordingly, communities
in probabilistic and nondeterministic planning have had little real interaction.
In a sense, this is the general decision-theoretic contrast between Bayesian po-
sition that prescribes expected utility, and a minimax position that looks at
worst case behavior. But in decision theory there are many other options, and in
particular there are interesting options that can handle not only expected and
minimax positions, but also other positions in between. Thus one can have a
decision problem where some events have probability values attached to them,
while other events may be associated with “nondeterministic” phenomena.

In this paper we propose a unifying formulation for planning problems, where
we can smoothly transition between probabilistic and nondeterministic planning.
These two approaches are viewed as simple special cases, and our analysis reveals
a spectrum of new planning problems that has not been considered by the litera-
ture in artificial intelligence so far. We demonstrate that the resulting structures
are Markov Decision Processes with Imprecise Probabilities (MDPIPs), a model
proposed in operations research to solve control problems. We also show how
existing algorithms for MDPIPs can be adapted to planning under uncertainty.

The remainder of this paper is organized as follows. In Section 2 we summarize
Geffner and Bonet’s unifying perspective on planning — thus defining the prob-
abilistic and nondeterministic varieties. Section 3 introduces basic concepts un-
derlying risk and uncertainty. Section 4 defines our proposal model for planning
under uncertainty (PUU), named PUU model. In Section 5 we demonstrate
that the PUU model is a variant of Markov Decision Processes with Impre-
cise Probabilities (called MDPIPs in the literature). Section 6 adapts MDPIP
algorithms for PUU models. Finally, in Section 7 we draw some conclusions.

2 Planning Models

We briefly review the mathematical models needed to characterize planning tasks
with full observability for different action dynamics (partial observability can be
addressed with minor changes in the framework). Every state model that we
consider can be defined in terms of the following basic state model [6]:

BSM1 a discrete and finite state space S,
BSM2 a non-empty set of initial states S0 ⊆ S,
BSM3 a goal given by a non-empty set SG ⊆ S,
BSM4 a non-empty set of actions A(s) ⊆ A representing the actions applicable

in each state s,
BSM5 a state transition function F (s, a) ⊆ S mapping states s and actions

a ∈ A(s) into non-empty sets of states, i.e. ‖F (s, a)‖ ≥ 1, and
BSM6 a positive action cost C(a, s) for doing a ∈ A(s) in s.
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Fig. 1. This figure illustrates the structure of transition function in the different models
discussed in this paper. Solid and dotted arcs represents different actions. Solid circles
are states and dashed circles indicates possible-state sets. Note that under uncertainty
scenarios cannot be represented by the basic state model.

Differents models can be defined adding new restrictions or modifing the state-
ments 2, 5 and 6. Those models, depicted by the first row of Fig. 1, are:

– Deterministic Models (Fig. 1 (a)), where the dynamics are defined by
a deterministic state transition function, i.e., ‖F (s, a)‖ = 1. This is the
basis of the classical planning scenario, where one has additional constraints
of initial state ‖S0‖ = 1 and C(a, s) = 1 ∀s ∈ S, a ∈ A(s). A sequence
of actions a0, . . . , an−1, called plan, is a valid solution to the model if for
0 ≤ i ≤ n − 1 si+1 ∈ F(si, ai), ai ∈ A(si) and sn ∈ F (sn−1, an−1) ∩ SG.

– NondeterministicModels (Fig. 1 (b)),where the actionsmay result inmore
than one successor state without preferences among them. So we have the same
model as in deterministic planning, but uncertainty in actions. In fact, the term
“nondeterminism” should here be understood as “automata-style” nondeter-
minism and using the terminology discussed in Section 3, we actually have
planning under pure Knightian uncertainty. Since we assume full observabil-
ity, a valid solution to the model is a policy, i.e. a function π : S → ∪s∈SA(s),
that is closed and proper with respect to S0 [6]. In this model, a policy offers
guarantees about the worst-case behavior of the environment.

– Probabilistic Models (Fig. 1 (c)), where actions have probabilistic conse-
quences. Not only the function ‖F (s, a)‖ ≥ 1 is given, but also the model
includes a probability distribution P (·|s, a) over F (s, a) ∀s ∈ S, a ∈ A(s).
As in the Nondeterministic Models, a solution to the model is a policy, but in
this case the objective is to maximize expected behavior — where expected
behavior is quantified through a single probability measure.
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There are algorithms that compute policies for each one of these problems. A
recent development is the derivation of a single algorithm that can be instanti-
ated for different models, including the ones just described [2]. However it should
be emphasized that this generalized formulation does not yield a smooth family
of solutions that moves from one case to the other. In particular, there is no
algorithm that has the probabilistic and nondeterministic cases as special ones,
and also that copes with mixtures of these cases. The main goal of this paper is
to start the construction of such a framework.

3 Risk, Knightian Uncertainty and Sets of Probabilities

Instead of moving directly to our general formulation, it is instructive to start
with an open-minded review of decision theory. Here a decision maker contem-
plates a set of options (in our setting, policies); each option yields a utility
depending on the state of nature that obtains [7]. We consider a set of states of
nature Ω; then each option is a function f : Ω → �. If a decision maker can spec-
ify a single probability measure P over a field of events defined on Ω, then this
“Bayesian agent” will evaluate each option f by expected utility, EP [f ]. Typi-
cally one assumes that such an agent can select any option that is dominated by
expected utility — a simple criterion that leads to a rich theory [8].

However, there may be situations where an agent does not have a single prob-
ability measure. A common assumption then is that the agent will have no prob-
ability at all. The usual solution then is to look at worst-case scenarios: select
f that displays the highest worst utility — a minimax solution [7]. The differ-
ence between these extremes (one/no probability) is well studied in economics
and psychology. Usually the presence of probabilities is associated with the ex-
pression risk, while the absence of probabilities is associated with uncertainty,
or rather, Knightian uncertainty (from the work of Knight [9]). To indicate the
pervasiveness of these concepts in economics practice, it suffices to quote from a
relevant speech by Alan Greenspan, read in January 3 2004:

...uncertainty is not just a pervasive feature of the monetary policy landscape;
it is the defining characteristic of that landscape. The term “uncertainty” is
meant here to encompass both “Knightian uncertainty,” in which the proba-
bility distribution of outcomes is unknown, and “risk,” in which uncertainty
of outcomes is delimited by a known probability distribution...

Now it is clear that sequential decision making under risk is probabilistic plan-
ning, while sequential decision making under Knightian uncertainty is nondeter-
ministic planning. In fact, we would like to suggest that the term “nondetermin-
istic” is an unfortunate one in the present setting, as nondeterminism usually
suggests some form of probabilistic model. It seems that Knightian uncertainty,
although longer, is a less overloaded term.

Once it is recognized that risk and Knightian uncertainty are two challenges
a decision maker may face, one is naturally lead to ask about situations of both
risk and Knightian uncertainty. That is, we may consider the possibility that an
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agent displays imprecision in probability values or even that the agent considers a
set of probability values. There are many reasons where such a general situation
may arise. First, it may happen that existing beliefs are incomplete or vague
[10,11,12], either because there is no resources to spend in their elicitation, or
because experts are psychologically unable to specify precise probability values.
Second, it may be the case that a group of experts disagrees on probability values,
and no compromise can be reached other than the collection of their opinions
[13,14]. Another reason to abandon a single probability measure is when one
is interested in the robustness of inferences — that is, in evaluating how much
inferences can change when probability values are allowed to vary [8,15,16].

Our strategy in this paper is, at a fundamental level, simple: we intend to bring
the decision theory of risk and Knightian uncertainty to the realm of artificial
intelligence planning. In this setting, uncertainty will be represented by sets of
probability measures. At one extreme, we obtain probabilistic planning (all sets
are singletons); at the other extreme, we obtain nondeterministic planning (all
sets are as large as possible). Moreover, we obtain a continuum of models as
we allow sets of probability measures to transit from vacuously large ones to
singletons.

Artificial intelligence has witnessed steady interest in sets of probability mea-
sures, for example, in the theory of probabilistic logic [17,18,19], in Dempster-
Shafer theory [20], in theories of argumentation [21], and in techniques that
generalize graph-theoretic models such as Bayesian networks [22,23,24].1 Our
contribution here is to identify the planning under uncertainty spectrum with
the theory of sets of probability measures.

4 Planning Under Uncertainty: The Risk and Knightian
Uncertainty Spectrum

The planning under uncertainty model, referred to here as the PUU model, is
a more general model as it gives a precise semantics to planning tasks involving
nondeterministic and probabilistic effects of actions. A planning problem can be
solved considering, simultaneously, these two types of action’s effects.

Since the PUU model has to represent nondeterministic effects, the transition
function F (s, a) (from the basic state model described in Section 2) must be
understood as follows. Instead of taking F (s, a) ⊆ S as before, now we map
states and actions to sets of sets of the state space. That is, for all k in F (s, a),
k is a subset of or equal to S.

Definition 1. In the PUU model, the transition function F (s, a) maps states s
and actions a ∈ A(s) into nonempty sets of the parts of S: F (s, a) ⊆ 2S .

Definition 2. A possible-state set k is a set composed of possible resulting
states achieved with the execution of an action a; that is, k ∈ F (s, a) with F (s, a)
the state transition of Definition 1.
1 There is now significant literature on the theory and applications of sets of proba-

bility measures [25,26,27,28].
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With the above definitions the probabilistic function P (k|s, a), k ∈ F (a, s) has
a novel interpretation in the PUU model: Pn(k|s, a) represents the probability of
the next state to be within one of the states in k. The PUU model is illustrated
in the second row of Fig. 1 and a formal description of this model is given by:

PUU1 a discrete and finite state space S,
PUU2 a nonempty set of initial states S0 ⊆ S,
PUU3 a goal situtation given by a nonempty set SG ⊆ S,
PUU4 a nonempty set of actions A(s) ⊆ A representing the actions applicable

in each state s,
PUU5 a state transition function F (s, a) ⊆ 2S mapping states s and actions

a ∈ A(s) into nonempty sets of the parts of the state space,
PUU6 a probability distribution Pn(·|s, a) over F (s, a) ∀s ∈ S, a ∈ A(s) where

Pn(k|s, a) represents the probability of choosing the possible-state set
k ⊆ S when action a is applied in state s, and

PUU7 a positive action cost C(a, s) for doing a ∈ A(s) in s.

Notice that there are two types of choices happening the PUU model: a prob-
abilistic choice of a possible-state set and a nondeterministic choice of a suces-
sor state from the possible-state set. The planning under uncertainty task can
thus be characterized by domains for which the action dynamics satisfies the
following restrictions: (1) ‖F (s, a)‖ > 1 and (2) ∃k ∈ F (s, a)s.t.‖k‖ > 1, for
s ∈ S, a ∈ A(s) (Fig. 1 (d)). If none of these requirements is true, then PUU
model is reduced to one of the models described in Section 2.

If the first requirement is false, i.e. ‖F (s, a)‖ = 1, and the second is true,
the PUU model is equivalent to the nondeterministic model (Fig. 1 (e)). This is
because: ∀s ∈ S , a ∈ A(s), if ‖F (s, a)‖ = 1 then Pn(k ∈ F (s, a)|s, a) = 1,
which means that the choice of a possible-state set will be deterministic while
the occurrence of a single state s′ ∈ k will be nondeterministic.

For the planning set where the first requirement is true and the second is
false, then the model corresponds to the Probabilistic Model (Fig. 1 (f)). This
is due to the fact that ∀s ∈ S, a ∈ A(s), k ∈ F (s, a) ‖k‖ = 1, implying that
there will be only one candidate to the nondeterministic choice, with probability
Pn(k|s, a) after executing a in the state s. Under this assumptions the probability
distribuition over 2S is equivalent to a probability distribuition over S.

Finally, when both requirements are false, the model is equivalent to the
deterministic model (Fig. 1 (d)) once there is no point of choice: neither in the
probabilistic choice of a possible-state set nor in the nondeterministic choice of
a sucessor state.

Furthermore, the complete PUU model is equivalent to a Markov Decision
Process having imprecisely known transition probabilities. This equivalence,
proved in the next section, gives a formal semantics for the PUU model.

5 The Relation Between PUU and MDPIP Model

Markov Decision Processes with Imprecise Probabilities (MDPIPs) [29,30] are
an extension of Markov Decision Processes (MDPs) [31] where the probabilities
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describing the transition between states are not defined as a number, but as a
finite set of linear inequalities. Consequently, the possible effects of an action
are modelled by a credal set K [23] over the state space instead of a probability
distribution over the same space. A precise definition of an MDPIP is:

MIP1 a discrete and finite state space S,
MIP2 a goal situtation given by a nonempty set SG ⊆ S,
MIP3 a nonempty set of actions A(s) ⊆ A representing the actions applicable

in each state s,
MIP4 a nonempty credal set Ks(a) representing the possibles probability distri-

butions P (·|a, s) over S, and
MIP5 a positive action cost C(a, s) for doing a ∈ A(s) in s.

The formulation above is based on Game Theory and considers the existence
of a mechanism that selects the exact probability distribution after an action
has been selected. This mechanism is usually called nature and an MDPIP can
be solved only if an assumption is made about its behavior. In this paper, we
assume that nature is intent on maximizing the expected total discount cost
for each state that the plannet wishes to minimize (1). Therefore, a minimax
criterion is adopted to find a policy.

V (s) = min
a∈A(s)

max
P (·|s,a)∈Ks(a)

{C(a, s) + γ
∑

s′∈S
P (s′|s, a)V (s′)} (1)

In [30] it has been shown that the solution to (1), called V ∗(s), exists and is
unique. It is also proved that the optiomal policy for an MDPIP can be expressed
by a stationary policy, i.e., the same policy for any instant in time. We have the
following fundamental relationship between the PUU model and MDPIPs:

Proposition 1. The PUU model is a special case of the MDPIPs model.

Proof. Note that PUU1, PUU3, PUU4 and PUU7 are equal, respectively, to
MIP1, MIP2, MIP3 and MIP5. Thus the proof is reduced to prove that PUU5
and PUU6 implies in MIP4.

First, note that PUU6 bounds the probability of being in state s′ after apply-
ing the action a in the state s by (2). This is due to the definition of possible-
state set: let k ∈ F (s, a), if s′ ∈ k, then nature is not able to choose s′ as a
non-deterministic effect of a.

Pn({s′}|s, a) ≤ P (s′|s, a) ≤
∑

k∈F (s,a)
s′∈k

Pn(k|s, a) ≤ 1 ∀s′ ∈ S (2)

Let us define the set of states D(k, s, a), for (3) . This set represents all non-
deterministic effects of k that bellong only to k.

D(k, s, a) = k \
⋃

k′∈F (s,a)
k′ �=k

k′ (3)
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From PUU5 and PUU6 it is possible to bound the sum of the probabilities of
each state in a possible-state set k ∈ F (s, a) and in the associated set D(k, s, a).
These bounds are presented in (4).

0 ≤
∑

s′∈D(k,s,a)

P (s′|s, a) ≤ Pn(k|s, a) ≤
∑

s′∈k

P (s′|s, a) ≤ 1 (4)

The set of inequations (2) and (4) for a state s ∈ S and an action a ∈ A(s)
describe a possible credal set Ks(a) for MIP4. ��

Proposition 1 not only makes the results in [29,30] valid for the PUU model, but
also suggests algorithms to solve it. An algorithm that can solve a PUU problem,
inspired by previous algorithms for MDPIPs, is given in the next section.

6 Algorithms

Due to Proposition 1, every algorithm for MDPIPs can be applied to solve a
PUU problem. However, the process is not immediate as it is necessary to adapt
several key concepts. To illustrate this, we selected a modified version of the
policy-iteration algorithm [31] given by [30]. This algorithm is divided in two
phases, policy evaluation, where the expected utility of a policy is calculated,
and policy improvement in which a better policy is built based on the values
received from the policy evaluation phase.

The algorithm presented bellow receives an tuple 〈S, A, Ks(a) (constructed
by proposition 1) , C(a, s)〉, a discount factor γ and an initial, possible random,
policy π as input and return the optimal policy for this PUU problem.

Policy evaluation. For every state s ∈ S:
(a) Select a probability distribution P (·|s, π(s)) ∈ Ks(π(s)).
(b) Use P (·|s, π(s)) to solve (5).

Vπ(s) = C(π(s), s) + γ
∑

s′∈S
P (s′|s, a)Vπ(s′) (5)

(c) Find the probability distribution P ′(·|s, π(s)) ∈ Ks(π(s)) s.t.

max
P ′(·|s,π(s))∈Ks(π(s))

{C(π(s), s) + γ
∑

s′∈S
P (s′|s, π(s))Vπ(s′), (6)

where Vπ(s′) are solutions to (5).
(d) If Vπ(s) is equal to C(π(s), s)+γ

∑
s′∈S P ′(s′|s, a)Vπ(s′) then proceed to the

policy improvement phase, otherwise, return to step (b) with P (·|s, π(s)) ←
P ′(·|s, π(s)).

Policy improvement. For every state s ∈ S, find π′(s) s.t.

π′(s) = argmin
a∈A(s)

max
P (·|s,a)∈Ks(a)

{C(a, s) + γ
∑

s′∈S
P (s′|s, a)Vπ(s′)}, (7)
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using the value Vπ(s′) from (5). If π′(s) is different from π(s) for some state
s ∈ S, return to the policy evaluation phase with π ← π′; otherwise, π is the
minimax optimal solution for the PUU problem.

7 Conclusions and Future Work

We can list the following contributions of this work. First, we identified a gen-
eral formulation that encompasses probabilistic and nondeterministic planning,
and that includes a continuum of planning problems between these extremes.
In fact, the probabilistic/nondeterministic actions we define open new types of
planning scenarios that go beyond existing planning problems. For example, one
may have actions whose transitions are specified by general sets of probabilities,
not just the set-valued consequences discussed in this paper. Second, we have
shown how our proposal fits within the MDPIP framework. Proposition 1 estab-
lishes the link between planning under risk and Knightian uncertainty and the
previous literature on MDPIPs. We have then shown how to transfer algorithms
previously developed for MDPIP to our proposal.

This paper should open a profitable avenue for future research in a variety of
directions. It would be interesting to explore the many possible combinations of
probabilistic and nondeterministic actions, and more general transitions defined
by sets of probability measures. However, we feel that the most fruitful task
for the near future is to adapt existing online algorithms for existing planning
problems, such as RTDP and LRTDP [3], to the full generality of planning under
risk and Knightian uncertainty.

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufman (2004)

2. Bonet, B., Geffner, H.: Learning Depth-First Search: A unified approach to heuris-
tic search in deterministic and non-deterministic settings, and its application to
MDPs. In: ICAPS, To Appear (2006)

3. Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time
dynamic programming. In: ICAPS, Trento, Italy, AAAI Press (2003) 12–21

4. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution algorithms
for factored MDPs. J. Artif. Intell. Res. (JAIR) 19 (2003) 399–468

5. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic
domains under partial observability via symbolic model checking. In: IJCAI. (2001)
473–478

6. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search
in belief space. In: ICAPS, Breckenridge, CO, AAAI Press (2000) 52–61

7. Luce, D., Raiffa, H.: Games and Decisions. Dover edition, Mineola (1957)
8. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer-Verlag

(1985)
9. Knight, F.H.: Risk, Uncertainty, and Profit. Hart, Schaffner & Marx; Houghton

Mifflin Company, Boston (1921)



Unifying Nondeterministic and Probabilistic Planning 511

10. Levi, I.: The Enterprise of Knowledge. MIT Press (1980)
11. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,

London (1991)
12. Walley, P.: Measures of uncertainty in expert systems. AI 83 (1996) 1–58
13. Seidenfeld, T., Kadane, J.B., Schervish, M.J.: On the shared preferences of two

Bayesian decision makers. The Journal of Philosophy 86(5) (1989) 225–244
14. Seidenfeld, T., Schervish, M.: Two perspectives on consensus for (Bayesian) infer-

ence and decisions. IEEE Transactions on Systems, Man and Cybernetics 20(1)
(1990) 318–325

15. Huber, P.J.: Robust Statistics. Wiley, New York (1980)
16. Kadane, J.B., ed.: Robustness of Bayesian Analyses. Volume 4 of Studies in

Bayesian econometrics. Elsevier Science Pub. Co., New York (1984)
17. Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artificial

Intelligence 69 (1994) 93–122
18. Halpern, J.Y.: Reasoning about uncertainty. MIT Press (2003)
19. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28 (1986) 71–87
20. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
21. Anrig, B., Bissig, R., Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumen-

tation systems: Introduction to assumption-based modeling with ABEL. Technical
Report 99-1, Institute of Informatics, University of Fribourg (1999)

22. Cozman, F.G.: Credal networks. AI 120 (2000) 199–233
23. Cozman, F.G.: Graphical models for imprecise probabilities. International Journal

of Approximate Reasoning 39(2-3) (2005) 167–184
24. Fagiuoli, E., Zaffalon, M.: 2U: An exact interval propagation algorithm for poly-

trees with binary variables. Artificial Intelligence 106(1) (1998) 77–107
25. de Cooman, G., Cozman, F., Moral, S., Walley, P., eds.: Proceedings of the

First International Symposium on Imprecise Probabilities and Their Applications
(SIPTA). Universiteit Gent, Ghent, Belgium (1999)

26. de Cooman, G., Fine, T.L., Seidenfeld, T.: Proceedings of the 2nd International
SIPTA Shaker Publishing, The Netherlands (2001)

27. Bernard, J.M., Seidenfeld, T., Zaffalon, M., eds.: Proceedings of the 3rd Interna-
tional SIPTA Carleton Scientific, Lugano, Switzerland (2003)

28. Cozman, F.G., Nau, R., Seidenfeld, T.: Proceedings of the Fourth International
Symposium on Imprecise Probabilities and Their Applications. SIPTA (2005)

29. White III, C.C., Eldeib, H.K.: Markov decision processes with imprecise transition
probabilities. Operations Research 42(4) (1994) 739–749

30. Satia, J.K., Jr, R.E.L.: Markovian decision processes with uncertain transition
probabilities. Operations Research 21(3) (1973) 728–740

31. Howard, R.A.: Dynamic Porgramming and Markov Processes. MIT Press (1960)


	Introduction
	Planning Models
	Risk, Knightian Uncertainty and Sets of Probabilities
	Planning Under Uncertainty: The Risk and Knightian Uncertainty Spectrum
	The Relation Between PUU and MDPIP Model
	Algorithms
	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




