
Low Cost Experiments in Cognitive Robotics for

Planning in Hostile Environments with

Incomplete Information

Felipe W. Trevizan ⋆, Leliane N. de Barros, and Flávio S. Corrêa da Silva

Institute of Mathematics, University of São Paulo
Rua do Matão, 1010, Cidade Universitária – 05508-090 São Paulo, SP, Brasil

{trevisan, leliane, fcs}@ime.usp.br

Abstract. Cognitive robotics is the research field at the confluence
of Artificial Intelligence and robotics. Its goal is to program robotic
agents using explicitly only high-level actions and relations among ac-
tions characterized as formal logical statements. The advantages of cog-
nitive robotics when compared with traditional robot programming are
(i) the possibility of formal verification of expected properties and behav-
iors of robotic agents, and (ii) the capability to program robots for highly
complex tasks in information-rich environments, including tasks and en-
vironments that require communication, coordination and cooperation
among robots.
A common barrier to work with cognitive robotics – and autonomous
robots in general – is the high cost of robots. Low cost platforms such as
LegoR© MindStormsTM are usually considered useful only for teaching
applications, and not for research prototyping and experimentation. In
the present article we show how a LegoR© MindStormsTM robot can
be used to implement and run an experiment in which several Artificial
Intelligence techniques are required.

1 Introduction

The design and implementation of agents for dynamic environments with incom-
plete information and non-deterministic actions is among the most interesting
challenges for autonomous robots. Many practical applications can be modelled
this way, e.g. search and rescue problems.

One of the most promising approach to solve this class of problems is the
cognitive robotics [1,2,3] – the research field at the confluence of Artificial Intel-
ligence and robotics. Its goal is to program robotics agents using explicitly only
high-level actions and relations among actions characterized as formal logical
statements. The advantages of cognitive robotics when compared with tradi-
tional robot programming are the possibility of formal verification of expected
properties and behaviors of autonomous robots, and the capability to program
robots for highly complex tasks in information-rich environments, including tasks
with incomplete information, non-deterministic actions and environments that
require communication, coordination and cooperation among robots.

⋆ Funded by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)



Many applications in cognitive robotics use Golog [1], a language based on the
Situation Calculus [4] which can be easily implemented as a Prolog meta-program
and can be used for the specification of control programs for robotic agents.
Golog has been successfully used to experiment with novel logical reasoning
theories [2,5], but the obtained results have rarely been tested or used for robotic
agents in complex physical environments [3,2].

A common barrier to work with cognitive robotics – and autonomous robots
in general – is the high cost of robots. Low cost platforms such as LegoR©

MindStormsTM are usually considered useful only for teaching applications,
and not for research prototyping and experimentation. In the present article
we show how a robotic agent specified in Golog can be implemented to con-
trol a LegoR© MindStormsTM robot. The implementation is done in Legolog [3],
which extends Golog specifically for the LegoR© MindStormsTM robots. Since
LegoR© MindStormsTM robots have limited computational resources, we must
build a controlled and simplified physical world if we want to use these robots
for experiments. In our case, we analyze the use of Legolog to program LegoR©

MindStormsTM robots for search and rescue operations. Essentially, search and
rescue requires that a robotic agent navigates along a hostile environment with
access only to incomplete information about the world.

Our simplified world for search and rescue operations conforms with the
Wumpus World [6], which requires that agents are programmed using a com-
position of several Artificial Intelligence techniques, such as reactive planning,
goal based planning, task execution and monitoring, reasoning with incomplete
information, generation and discrimination of hypotheses about the world.

In order to make this article self-contained, in Section 2 we briefly describe
the language Golog and the Situation Calculus, and in Section 3 we introduce
the LegoR© MindStormsTM robots , as well as the language Legolog. In Sec-
tion 4 we present the construction phases of a Legolog agent for the Wum-
pus World: (1) Situation Calculus specification of the reasoning features of the
agent; (2) Golog implementation; (3) Legolog implementation in the LegoR©

MindStormsTM robot; and (4) Physical representation of the Wumpus World.

2 Golog: A Language for Cognitive Robotics

Planning can be defined as the problem of finding a sequence of actions to
achieve a desired state of the world (goal state) or behaviors (goal task). This
usually amounts to computationally intractable problems, since the search space

is proportional to n
|plan|
a , in which na is the number of possible actions and

|plan| is the length of the smallest sequence of actions that archive the goal
state from the initial state (solution plan). In order to make this search space
smaller, classical planning algorithms employ (1) conflict resolution techniques
for actions, which typically transform state space search into plan state search
[7]; (2) heuristic methods [8,9] to guide the state space search; or (3) compound
tasks, which define constraints on actions compositions, through task networks,
also called hierarchical task network planning (HTN) [10].



Golog [1] is a programming language for intelligent agents through which we
can specify constraints on actions compositions, thus pruning the search space.
The constraints are specified in a high-level program, which can be defined as
a program comprised by (1) primitive instructions, which are actions the agent
can execute in the environment, described as Situation Calculus statements [4];
(2) tests, which make use of domain dependent predicates that are affected by
actions; (3) procedures, which correspond to compound actions as in HTN [11];
and (4) non-deterministic choices, which allow lookahead in sets of actions to
select what to add to the solution plan.

Instead of looking for a sequence of actions to achieve a goal, in Golog we
look for a sequence of actions to generate a valid execution of the high-level
program that implements the agent, i.e., a valid decomposition of the high level
program, resulting in the desired behavior of the robot. The main difference
between Golog and HTN planning is that in Golog it is still possible to reason
about actions and the effects of actions.

2.1 The Situation Calculus

Golog is based on the Situation Calculus[4]: a logical formalism based on First
Order Predicate Logics (FOPL). Its ontology includes situations, which are snap-
shots of the world; fluents, which represent world properties; and actions, which
are capable of altering the truth value of fluents . In the Situation Calculus,
the constant s0 denotes the initial situation; the function do(α, σ) denotes the
resulting situation after performing the action α in situation σ; the predicate
poss(α, σ) represents that action α can be executed in situation σ; and the pred-
icate holds(φ, σ) represents that fluent φ is true in situation σ. Section 4.2 shows
an example of Situation Calculus axioms for the Wumpus World.

Given a specification of a planning domain as a Situation Calculus axiom-
atization, the solution plan can be found through theorem proving in FOPL.
Let A be the set of axioms that characterize the actions of an agent, I the set
of axioms that characterize the initial situation and G a logical statement that
characterizes the agent’s goal. The constructive proof of

A∧ I |= (∃S).legal(S) ∧ G(S), where
legal(S) ≡ poss(α1, s0) ∧ . . . ∧ poss(αn, do(αn−1, do(. . . , do(α1, s0))) . . .),

generates an instance of the variable S as the term do(αn, do(. . . , do(α1, s0)) . . .),
which corresponds to the sequence of actions 〈α1, . . . , αn〉, that when executed
by the agent from the initial situation s0, takes it to the goal situation.

2.2 The Golog Meta-interpreter

Golog programs are executed by a specialized theorem prover in FOPL [1].
The user must provide an axiomatization A, describing the actions of an agent
(declarative knowledge), and a control program c, specifying the desired be-
havior of the agent (procedural knowledge). The execution of the Golog pro-
gram corresponds to the proof that A |= exec(c, s0, σ), where exec(c, s0, σ) ≡
(∃σ).σ ∧ legal(σ) and σ = do(αn, do(. . . , do(α1, s0)) . . .) is a decomposition of c.



Another characteristic of Golog is that it performs off-line planning, that
is, Golog searches for a sequence of actions that is a valid execution of a high-
level program before any action is actually executed by the agent. In order to
solve problems that require the execution of actions during planning, namely
on-line planning, the language Indigolog [12] was created. Using Indigolog we
can specify programs that perform sensing and execution of actions, while search
for a solution plan. However, Indigolog is not capable to combine the off-line and
on-line planning, and a solution to this problem is partially done in section 4.3.

3 The LegoR© MindStormsTM Robot

The LegoR© MindStormsTM robot main component is the RCX brick (RCX
stands for Robotic Commander Explorer). It contains a Hitachi H8/3297 16 bits
microprocessor, capable of controlling up to three actuators and three sensors
simultaneously. The actuators are motors with possible selection of five rota-
tion speeds for both directions, and the sensors can be light sensors, and touch
sensors. The RCX also has an infrared port that can communicate with an in-

frared tower, which can be connected to a desktop’s serial port, enabling the
communication between the robot and the computer. All of these features can
be programmed by the robot designer, e.g., in the language NQC (not-quite C ),
which was used in this work.

3.1 Legolog

Legolog [3] is a software package that includes the Indigolog meta-interpreter,
and the implementation of a communication protocol between the RCX brick
and the desktop. This protocol enables the exchange of messages during the
execution of a program stored in the RCX brick.

Fig. 1. Client/server model for
the Legolog package, in which
dashed rectangles are defined by
the programmer.

Legolog can be used to model client-server
applications, in which the RCX is the server
of actuators and sensors, and the desktop (ex-
ecuting the Indigolog meta-interpreter) is the
client. In Figure 1 we show how a client/server
architecture breaks a Legolog agent in mod-
ules, where (1) Client is the module executed
in the desktop. It contains the Indigolog meta-
interpreter and the agent reasoning program;
(2) Server is the module executed in the RCX
brick that contains the actions execution program.

A program to control a robot in Legolog, therefore, is comprised by two main
parts (dashed rectangles in Figure 1):
Agent reasoning program. When executed by the Indigolog meta-interpreter,
in the desktop, it performs incremental on-line generation of plans composed of
primitive actions, taking into account the robot perceptions.
Actions execution program. Implemented in NQC and stored in the RCX.
It specifies how primitive actions and perceptions are executed in the robot.



Using this model, the robot designer can define the appropriate level of ab-
straction of actions delegated to the RCX, i.e. the degree of autonomy of the
robot. The RCX can be programmed simply to control inputs and outputs; or it
can be programmed to implement more complex actions, e.g. follow a line, find
an object, or even to perform a more complex task detailed in Section 4.5.

4 Case Study: A Legolog Agent for the Wumpus World

In this section we present the main steps to build a Legolog agent for the LegoR©

MindStormsTM robot. The concrete example we pick is the Wumpus World
problem [6], which is a static domain with incomplete information that requires
planning and execution of actions, as well as the formulation of hypotheses about
the world. The Wumpus World is not only a theoretical exercise. As will become
clear when we summarize the description of this problem, it can be envisaged as
a simplified model of a search and rescue scenario.

4.1 The Wumpus World: an agent searches for a treasure in a
hostile environment

The Wumpus World problem contains an agent that must explore a square grid,
having information only about the neighborhood of the square in which it is
located. The goal of the agent is to explore the grid, which is surrounded by
walls, collecting the highest possible score on the way. The agent can increase
its score by collecting coins, which are spread in various squares, performing the
least number of movements. The agent must also avoid pits, and a wandering
agent-devouring monster called Wumpus.

Exit

Grab

Grab

Climb

Fig. 2. A solved instance
of the Wumpus World.

In Figure 2 we show a 4×4 instance of the Wum-
pus World in which the grid has already been suc-
cessfully explored. The solid line represents the path
to explore the environment and the dashed lines rep-
resent planned paths to kill the Wumpus or to get
out of the grid. Squares containing horizontal straight
lines represent breeze, and vertical curved lines rep-
resent the smell of Wumpus. This map characterizes
an instance of the problem with high difficulty for the
agent, requiring 41 actions to reach the solution state.
The arrow indicates that the Wumpus was killed.

An agent for the Wumpus World has incomplete information about the world,
since it can only sense the Wumpus (by feeling its smell) or a pit (by sensing a
breeze) when it is in a neighboring square to the Wumpus or a pit. Therefore, the
agent must perform a hypothetical reasoning about the world while exploring
the environment, in order to classify the squares as safe or dangerous. The agent
can also kill the Wumpus using an arrow.

The Wumpus World is used in introductory courses of Artificial Intelligence.
Nevertheless, the design, programming and implementation of a complete pro-
gram for an agent in the Wumpus World is no trivial task. In general, the Wum-
pus World problem is not completely solved in introductory courses. In [6], for



Wumpus World task

Reasoning about 
actions

Perception 
of the world

Reasoning about 
situations

Action 
classification

Location 
classification

Mapping 
the perceptions

to locations

Climb the 
exit

Action 
selection

Execution of 
the best action

Explore the 
world

Interactions with 
the environment

Kill the
Wumpus

Planning to 
reach the exit

Planning to 
reach a shooting

position

Diagnostic
of the Wumpus

position

Fig. 3. Task decomposition for an agent in the Wumpus World.

example, only a few suggestions are presented on how to model the set of tasks
that the agent executes (ovals in Figure 3). Moreover, that book only hints that
the logical specification of the solution of the Wumpus World problem can be
implemented as a Prolog program. The construction of such program, however,
can be quite complicated without resorting to a language like Indigolog.

4.2 Logical specification of the agent

The specification in Situation Calculus of the agent for the Wumpus World
was based initially on [6]. Figure 3 shows the task decomposition for the agent
implemented in this world. Double ovals represent sub-tasks modelled and im-
plemented specifically in this project.

The fluents in the Wumpus World are: smelly(L) or breeze(L), which mean
that position L is smelly and breezy; atAgent(L), means that the agent is at
position L; agentDirection(D), means that D is the current direction of the
agent; visited(L) and secure(L), which denote that position L has been visited
or is safe; and holding(O), denotes that the agent is holding object O.

Using these fluents, we can write a set of axioms in the Situation Calculus to
specify the agent. These axioms are divided into: (1) initial state axioms, which
describe the initial state of the world; (2) successor state axioms, which represent
how the fluents are changed or remain unchanged after the actions. For example,
the successor state axiom for the fluent smelly(L) is:

holds(smelly(L), do(A, S)) :- holds(smelly(L), S);

A==forward, stench(do(A, S)), holds(atAgent(L), do(A, S)).

It defines a position L as smelly in situation do(A,S) if L was already smelly

in situation S or if the agent sensed the smell of Wumpus when reaching it using
action A. Similarly, additional axioms must be defined describing the effects of
all remaining agent’s actions, such as: turn,forward, grab, shoot, and climb.

4.3 Procedures in Indigolog: the agent reasoning programming

Besides the above axioms, we must also specify the following compound tasks:

Actions classification The set of (primitive or composite) actions that can be
executed from a given situation are classified as Great, Good, Medium, Risky
and Deadly. This classification is implemented by procedures in Indigolog and
its modification implies in different behaviors of the agent. For example:



Fig. 4. Four maps representing two situations in the Wumpus World. The first and
the third maps show what the agent already knows about the environment: white
squares represent visited positions; black squares represent not visited positions; and
grey squares represent not visited positions which were inferred to be safe. The second
map shows the agent’s hypothetical reasoning about the first map, and the fourth map
shows the same about the third map. Squares labelled with “?” denote hypothesis;
squares labelled with “X” denote a false hypothesis.

proc(greatAction,

if(holding(gold), planning([0,0], [climb | []]),

[sense(glitter), grab] # [tryToKillWumpus])).

This defines an agent whose action with highest priority (greatAction) is to
plan the way out of the grid if it has already found coins. Otherwise, the agent
must collect coins whenever it senses its shine. Finally, if none of the previous
actions is possible, the agent must try to kill the Wumpus.

Diagnosis of the Wumpus position An interesting feature of the Wumpus
World problem is that it requires the determination of the Wumpus position
based on incomplete information. This task, illustrated in Figure 4, is named
diagnosis since the identification of the Wumpus position can explain the ob-
servations (smelly positions) of the agent in previous situations. Knowing the
position of the Wumpus gives to the agent the capability of killing it using an
arrow. The Golog procedure tryToKillWumpus:

proc(tryToKillWumpus,

[?(holding(arrow)), consultKB(smellyPositions(SmellyPos)),

startSet(Wpos), findWumpus(SmellyPos, Wpos), planKillWumpus(Wpos)]).

specifies that in order to kill the Wumpus the agent must consult its knowledge
base (consultKB) and retrieve a list of positions in which the smell of the Wum-
pus was sensed. Then the procedure findWumpus is triggered to generate and
discriminate a list of hypotheses about the possible positions of the Wumpus
(Wpos). If the list contains a single position, then the procedure planKill-
Wumpus(Wpos) leads the agent to a plan to reach an adequate position to
shoot an arrow and kill the Wumpus. The agent has only one arrow, and should
not risk to waste it before knowing for sure where the Wumpus is.

The Golog procedure findWumpus below shows how the generation and
discrimination of hypotheses about the Wumpus position is done.

proc(findWumpus([[SmeX, SmeY] | SmePos], Wpos),

[abductWumpusAt([SmeX, SmeY+1], south, Wpos),

abductWumpusAt([SmeX, SmeY-1], north, Wpos),

abductWumpusAt([SmeX+1, SmeY], west, Wpos),

abductWumpusAt([SmeX-1, SmeY], east, Wpos),

if(SmePos = [], [cut(findWumpus(SmePos, Wpos))], [endSet(Wpos)])]).



In this procedure, for each position [SmeX, SmeY] in which the smell of the
Wumpus was sensed, the four adjacent positions are considered hypotheses of
localizations of the Wumpus, since the Wumpus can be sensed only when it
is adjacent the agent. The generated hypotheses are then discriminated by the
procedure abductWumpusAt:

proc(abductWumpusAt([WumX, WumY], IgnDir, Wpos), [

if(secure([WumX, WumY]), [], if(wall([WumX, WumY]), [], [

possibleWumpusPos([WumX, WumY], IgnDir), addToSet(Wpos, [WumX,WumY])] # [?(inCave)]))]).

Initially, it is checked whether the position [WumpusX, WumpusY] has al-
ready been classified as safe or wall, otherwise the procedure possibleWumpus-
Pos analyzes the three adjacent positions, excluding the position in the already
visited direction IgnDir. This is done by verifying the hypothesis of the Wumpus
being at position [WumX, WumY] through the analysis of the past percep-
tions in order to detect conflicts , i.e., if an adjacent position to the previously
position [WumX, WumY] was visited and has not been labelled as smelly.

Planning to find the way out and the Wumpus The agent must, in certain
situations, plan to reach a goal state crossing only safe positions, without sensing
the world (off-line planning). This occurs in two occasions: when the agent
decides to (1) kill the Wumpus and (2) to climb the exit. For (1) it must
find the closest position in the direction of the Wumpus, and for decision (2) it
must find the shortest path to the exit. An example of off-line planning occurs in
the procedure described in Section 4.3, in which the command planning([0,0],
[climb | []]) is executed (decomposed) by the Indigolog meta-interpreter.

The planning algorithm was implemented in Prolog and performs an iterative
deepening search in the state space [13] when the Prolog query “plan(S),exec(S)
,holds(agentAt[Goal Pos],S)” is done, where plan(S) and exec(S) are defined as:

exec(s0).

exec(do(A,S)) :- poss(A,S), exec(S).

plan(s0).

plan(do(A,S)) :- plan(S).

This algorithm is used with the axioms of the Situation Calculus, to infer that
(∃s).plan(s) ∧ exec(s) ∧ G, in which G is a goal state. It is interesting to notice that
this algorithm, despite its simplicity, is a concise way to find a solution plan s.

4.4 Description of the representation of the Wumpus World

In order to build a physical model, we had to find a way to represent the environment
considering the sensors available for the LegoR© MindStormsTM. In our case, we only
used a light sensor. The squares in the grid were identified by tags with different light
emitting properties (opaque dark tags, shining silver tags, and so on).

In Figure 5 the dashed lines delimit each position in the Wumpus World, and the
solid lines represent the possible paths for the robot to move.



Fig. 6. LegoR© MindStormsTM robot and the physical model of the Wumpus World.

Fig. 5. (a) Physical representation
of Figure 2 and (b) zoom of the
position (4,4).

The perception tags were created to repre-
sent the three possible perceptions for the Wum-
pus World: glitter, stench and breezy. All po-
sitions in the environment were divided in quad-
rants. Each quadrant is used to represent one type
of perception (Figure 5). Another type of tag is
the rotation tag, used by the perception algo-
rithm to collect perception in the quadrants in P .
A physical model to represent the Wumpus World
can be seen in Figure 6.

4.5 Primitive actions for the RCX brick

The perceptions collected in a position for glitter, stench and breezy, is implemented
by the primitive action percept in the RCX brick which makes the robot to rotate
360◦ and returning a vector with the four perceptions. Since the robot can reach a
position coming from four alternative directions (N, S, E or W), hence the reasoning
program of the agent uses the present orientation of the robot to determine the amount
of circular shifts that must be applied to the vector to recover the correct perception.

The following primitive actions were also implemented in the RCX brick: turn cloc-
kwise, turn anti clockwise, forward, grab, shoot and climb. For the actions
grab, shoot and climb, the robot emits different sounds indicating that they have
been executed and waiting for a manual update of the environment.

5 Conclusions

Usually, researchers in cognitive robotics make use of simulations to test their theories,
due to the difficulty to find affordable robots that are simple to program, assemble and
use. The LegoR© MindStormsTM robots present all these features. Moreover, the lan-
guage Legolog permits the implementation of reasoning capabilities in robots without
requiring skills about the robot’s hardware. In [3] an implementation of Legolog was
done to show the use of this language for a simple task: to make the robot follow a line
recognizing and reacting to labelling tags. We could not find, however, in the literature,
results showing the actual use of LegoR© MindStormsTM robots to implement higher
level cognitive actions.

The present work introduces a Legolog application that solves a much more chal-
lenging task than that presented in [3] – namely, the solution of the Wumpus World
problem, which can be envisaged as a simplified model of a search and rescue scenario.
This high-level behavior was implemented in Legolog as a concise and elegant program,
making good use of the power of the Golog meta-interpreter.



Instance number 1 2 3
Wumpus position [3,3] [0,2] [3,1]
Coin position [1,1] [1,2] [3,0]
Pits positions [2,0] [3,1], [3,3]
Number of steps of the executed plan 22 25 18
Average time for on-line action selection 0.01s 0.42s 0.05s
Standard deviation of time for on-line action selection 0.03s 1.68s 0.03s
Average time for plan generation (off-line) 0.03s 1.35s 0.13s
Standard deviation time for plan generation (off-line) 0.01s 1.30s 0.10s
Total time spent by the agent reasoning program 0.38s 13.25s 9.16s

Table 1. Statistic results for 3 instances of the Wumpus World with 1 coin position
and 0.2 probability of pits.

Table 1 shows three instances of the Wumpus problem, with the Wumpus position,
coin position and pits positions specified in lines 2, 3 and 4, respectively. In all exper-
iments the robot has correctly detected safe and dangerous positions and also found
optimal planning solutions to determine the approximation of the Wumpus and the way
out. These features can be also formally verified from the agent’s logical specification.
The experiments show that for a medium size plan (22, 25 and 18 steps), the average
time spent for on-line action selection was less then 0.5 seconds, while the average time
for (off-line planning was less then 1.4 seconds. Since for this experiments we have used
a planning method based on a logical formalism, with no use of heuristics, these results
give us a good idea of how this approach can be seriously used for demonstrations and
investigations of formal theories for robotics.

References

1. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. JLP 31 (1997) 59–84

2. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Workshop on Decision-Theoretic
Planning, Proc. KR-00. (2000)

3. Levesque, H., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive
robotics. In: Proc. of the 2nd International Cognitive Robotics Workshop. (2000)

4. Mccarthy, J.: Situations, actions and causal laws. MIT Press (1963)
5. Reiter, R.: Sequential, temporal golog. In: Principles of Knowledge Representation

and Reasoning: Proc. KR-98. (1998) 547–556
6. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd. edn.

Prentice-Hall, Inc. (2003)
7. Kambhampati, S., Knoblock, C.A., Yang, Q.: Planning as refinement search: A uni-

fied framework for evaluating design tradeoffs in partial-order planning. Artificial
Intelligence 76 (1995) 167–238

8. Bonet, B., Geffner, H.: HSP: Heuristic Search Planner. In: Proc. of AIPS. (1998)
9. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through

heuristic search. J. of Artificial Intelligence Research 14 (2001) 253–302
10. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A sound and complete procedure for

hierarchical task-network planning. In: Proc. AIPS. (1994) 249–254
11. Barros, L.N., Iamamoto, E.: Planejamento de tarefas em golog. In: SBAI. (2003)
12. Lespérance, Y., Ng, H.: Integrating planning into reactive high-level robot pro-

grams. In: Proc. of the 2nd International Cognitive Robotics Workshop. (2000)
13. Pereira, S.L., Barros, L.N.: Formalizing planning algorithms: a logical framework

for the research on extending the classical planning approach. In: Proc. of the
ICAPS Workshop: Connecting Planning Theory with Practice. (2004)


